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Abstract

We deal with the problem of blind separation of the components, in particular for

documents corrupted by bleed-through and show-through. So, we analyze a regulariza-

tion technique, which estimates the original sources, the interference levels and the blur

operators. We treat the estimate of the interference levels, given the original sources

and the blur operators. In particular, we investigate several GNC-type algorithms for

minimizing the energy function. In the experimental results, we find which algorithm

gives more precise estimates of the interference levels.

1 Introduction

In this paper we deal with a Blind Source Separation (BSS) problem. These topics have been

widely studied since the end of the last century, and have various applications.

In particular, we analyze the digital reconstruction of degraded documents. We observe

that weathering, powder, humidity, seeping of ink, mold and light transmission can determine

the degradation of the paper and the ink of written text. Some of the consequences in damaged

documents are, for instance, stains, noise, transparency of writing on the verso side and on the

close pages, unfocused or overlapping characters, and so on. Historically, the first techniques

of restoration for degraded documents were manual, and they led to a material restoration.

Recently, thanks to the diffusion of scanners and software for reconstruction of images, videos,

texts, photographs and films, several new techniques were used in the recovery and restoration
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of deteriorated material, like for instance digital or virtual restoration. Digital imaging for

documents is very important, because it allows to have digital achieves, to make always possible

the accessibility and the readability. The Digital Document Restoration consists of a set of

processes finalized to the visual and aesthetic improvement of a virtual reconstruction of a

corrupted document, without risk of deterioration.

We deal with show-through and bleed-through effects. The show-through is a front-to-back

interference, caused by the transparency of the paper and the scanning process, and by means

of which the text in the recto side of the document can appear also in the verso side, and

conversely. The bleed-through is an intrinsic front-to-back physical deterioration caused by

ink seeping, and its effect is similar to that of show-through. The physical model for the show-

through distortion, is very complex, because there are the spreading of light in the paper,

the features of the paper, the reflectance of the verso and the transmittance parameters. In

[22], Sharma gave a mathematical model was first analyzed and then further approximated

so to become easier to handle. This model describes the observed recto and verso images as

mixtures of the two uncorrupted texts. A nonlinear modified Sharma model is proposed in

[13, 18, 19, 21]. Some nonlinear models which assume that the interference levels depend on

the location are presented in [9, 12, 24]. So, the model turns to be non-stationary, that is not

translation invariant. The algorithms in [9, 24] for the resolution of the related inverse problem

are fast heuristics. In [4], a non-stationary model is proposed. However, in order to obtain

more precise results, a computationally more expensive regularized problem has been sketched

in [8] and [23]). Now we analyze in detail the iterative technique to solve such a model, in

which the sources, the blur operators and the interference level are computed separately at

every step, until a fixed point is found. In this paper, in particular, we deal with determining

the interference level, by fixing the blur operators and the ideal sources. To this aim, we use

a GNC-type technique (see, e.g., [1, 2, 3, 5, 6, 11, 14, 15, 16, 17, 20]). In a forthcoming paper,

the steps about finding the blur operators and the ideal sources will be treated.

The paper is structured as follows. In Section 2 we deal with the regularization of the

modified Sharma model. In Section 3 we describe the alternating iterative algorithm, used to

find the minimum of the energy function. In Section 4 we analyze the technique to determine

the interference levels, given the blur operator and the ideal sources. In Section 5 we pro-

pose different types of convex approximations. In Section 6 we present GNC-type alternative

minimization techniques. In Section 7 we compare the proposed technique by means of the

experimental results.
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2 Regularization of the problem

In this paper we consider a modified Sharma-type model related to the show-through phe-

nomenon in paper documents, as follows (see, e.g., [8, 23]):f
s(i, j) = f(i, j)eqr(i,j)

(
zr(i,j)

N
−1
)

rs(i, j) = r(i, j)eqf (i,j)
(

zf (i,j)

N
−1
), (1)

where N is the maximum value of the light intensity, which is assumed to correspond with the

background of the analyzed document; qf (i, j) is the interference level which affects the light in-

tensity of interferences from the recto to the verso; qr(i, j) is the interference level which affects

the light intensity of interferences from the verso to the recto; f s = [f s(i, j)]i=1,...,n,j=1,...,m, r
s =

[rs(i, j)]i=1,...,n,j=1,...,m ∈ Rnm are the vectors which represent the observed mixtures (expressed

in the lexicographic form); f = [f(i, j)]i=1,...,n,j=1,...,m, r = [r(i, j)]i=1,...,n,j=1,...,m ∈ Rnm are the

vectors which represent the ideal images of the recto and the verso of the document (expressed

in the lexicographic form); zf = [zf (i, j)]i=1,...,n,j=1,...,m = Af, zr = [zr(i, j)]i=1,...,n,j=1,...,m = Ar

are the blurred images of the recto and the verso, where A ∈ R(nm)×(nm) is the blur operator,

which in general has the form of a matrix with Toeplitz blocks.

The problem of the blind separations of components consists of finding an estimate of the

recto/verso pair of the source document, which is denoted by s = (f, r), of the interference

level q = (qf , qr) and of the blur operator A, given in input the observed images of the recto

and the verso. This is an ill-posed problem in the Hadamard sense, because in general it can

have no solutions, or the solution can be not unique and/or not stable with respect to small

variations of the data.

To estimate the solution of the problem, some regularization techniques are used, which

substantially consist of finding the minimum of a function, called energy function, by imposing

some uniformity constraints on the solution.

The solution of the considered problem is

(f ∗, r∗, q∗, A∗) = arg min
(f,r,q,A)

E(f, r, q, A),

where

E(f, r, q, A) = T (f, r, q, A) + Ŝ(f) + Ŝ(r) + S(qf ) + S(qr) + Sc(qf , qr) (2)

is the energy function, and

T (f, r, q, A) = Tf (qr) + Tr(qf ) =
n∑
i=1

m∑
j=1

(
f s(i, j)− f(i, j)e−qr(i,j)

(
1− zr(i,j)

N

))2

+

+
n∑
i=1

m∑
j=1

(
rs(i, j)− r(i, j)e−qf (i,j)

(
1−

zf (i,j)

N

))2

(3)
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is the consistency term, which measures the faithfulness of the solution to the data, and

Ŝ(f) + Ŝ(r) is the regularization term, or smoothness term, which is chosen according to the

properties which the estimated source has to satisfy, and measures the faithfulness of the

estimated source to a priori informations. Moreover, the last terms of (2) are given by

S(qv) =
n∑
i=1

m∑
j=1

λ2
v

(
qv(i, j)− qv(i− 1, j)

)2

+
n∑
i=1

m∑
j=1

λ2
v

(
qv(i, j)− qv(i, j − 1)

)2

,

where v ∈ {f, r}, λv is the regularization parameter related to the interference level of the

recto (resp. verso), if v = f (resp., v = r), and

Sc(qf , qr) =
n∑
i=1

m∑
j=1

λ2
c(qf (i, j)− qr(i, j))2

is the joint smoothness term. The parameter λc is the regularization parameter between the

interference of the recto and the verso with respect to the same pixel.

3 Alternating techniques

To minimize the function in (2), we use a strategy of alternating minimization, which consists

of the estimation of the minimum of the function with respect to each single variable, fixing

the other ones. We proceed according the following scheme:

k = 0

initialize f0, r0, q0, A0

while a stationary point of E is not found

k = k + 1

fk = arg minf E(f, rk−1, qk−1, Ak−1)

rk = arg minr E(fk−1, r, qk−1, Ak−1)

qk = arg minq E(fk−1, rk−1, q, Ak−1)

Ak = arg minAE(fk−1, rk−1, qk−1, A)

To solve the problem of minimization of the dual energy, which in general is not convex, a

technique introduced by Blake and Zisserman can be used (see, e.g., [1, 2, 3, 5, 6, 11, 14,

15, 16, 17, 20]). With such a technique, called GNC (Graduate Non-Convexity), the energy

function E, is approximated by means of a finite family {E(p)} of functions, in such a way that

4



the first one is convex and the last one coincides with the given function. Moreover, we call x

the variable with respect to which we will compute the minimum of E. The algorithm is given

as follows:

initialize x

while Ep 6= E

find the minimum of the function Ep, starting with x

replace x with the value found at the previous step

update the value of the parameter p

By choosing different approximating functions, it is possible to obtain various formulations of

the GNC algorithm. The minimization of each of the approximating functions E(p) can be

done by means of an algorithm called NL-SOR (Non Linear Successive Over-Relaxation) (see,

e.g., [7]).

4 Determining the interference levels

In this paper, we deal with finding only the interference levels, fixed the recto, the verso and

the blur mask. The other steps of the alternating algorithm will be treated in a forthcoming

paper. The energy function with respect to the interference level is given by

E(fk−1, rk−1, q, Ak−1) =
n∑
i=1

m∑
j=1

(
f s(i, j)− f(i, j)e−qr(i,j)

(
1− zr(i,j)

N

))2

+

+
n∑
i=1

m∑
j=1

(
rs(i, j)− r(i, j)e−qf (i,j)

(
1−

zf (i,j)

N

))2

+ (4)

+ S(qf ) + S(qr) + Sc(qf , qr) + k,

where k is a constant depending on fk−1 and rk−1. Now, let

ψ(f) = r, ψ(r) = f. (5)
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Given v ∈ {f, r} and fixed a pixel (k, t), the partial derivative of the regularization terms with

respect to qv(k, t) is

∂(S(qv) + S(qψ(v)) + Sc(qv, qψ(v)))

∂qv(k, t)
=

= 2λ2
v

(
qv(k, t)− qv(k − 1, t) + qv(k, t)− qv(k + 1, t) + qv(k, t)− qv(k, t− 1) +

+ qv(k, t)− qv(k, t+ 1)

)
+ 2λ2

c

(
qv(k, t)− qψ(v)(k, t)

)
=

= 2λ2
v

(
4qv(k, t)− qv(k − 1, t)− qv(k + 1, t)− qv(k, t− 1)− qv(k, t+ 1)

)
+

+ 2λ2
c

(
qv(k, t)− qψ(v)(k, t)

)
.

Now we consider the Hessian matrix H related to the function S(qv) + S(qψ(v)) + Sc(qv, qψ(v)).

Fix v ∈ {f, r} and a pixel (k, t), on the associated row of H, in correspondence with the

principal diagonal we have

∂2(S(qv) + S(qψ(v)) + Sc(qv, qψ(v)))

∂q2
v(k, t)

= 8λ2
v + 2λ2

c ,

and the non-null terms are given by

∂2(S(qv) + S(qψ(v)) + Sc(qv, qψ(v)))

∂qv(k, t) ∂ η
= −2λ2

v,

where η ∈ {qv(k − 1, t), qv(k + 1, t), qv(k, t− 1), qv(k, t+ 1)}, and

∂2(S(qv) + S(qψ(v)) + Sc(qv, qψ(v)))

∂qv(k, t) ∂ qψ(v)(k, t)
= −2λ2

c .

Since λv and λc are different from zero, H is irreducible, and for k = 1 and t = 1 the

variable η assumes only two values, then by virtue of the Gerschgorin theorems (see, e.g.,

[10]) the matrix H is positive-definite, and hence the sum of the smoothness terms is a convex

function.

Now, fixed v ∈ {f, r} and a pixel (k, t), let us consider the consistency term T (q) =

Tv(qψ(v)) + Tψ(v)(qv), related to the interference level of (4). We get:

∂T (q)

∂qv(k, t)
=

= 2

(
(ψ(v))s(k, t)− ψ(v)(k, t)e−qv(k,t)

(
1− zv(k,t)

N

))
ψ(v)(k, t)e−qv(k,t)

(
1− zv(k,t)

N

)(
1− zv(k, t)

N

)
=

= 2

(
1− zv(k, t)

N

)
ψ(v)(k, t)

(
ψ(v)s(k, t)e−qv(k,t)

(
1− zv(k,t)

N

)
− ψ(v)(k, t)e−2qv(k,t)

(
1− zv(k,t)

N

))
;
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∂2T (q)

∂qv(k, t)2
= 2

(
1− zv(k, t)

N

)2

ψ(v)(k, t) (6)(
− (ψ(v))s(k, t)e−qv(k,t)

(
1− zv(k,t)

N

)
+ 2ψ(v)(k, t)e−2qv(k,t)

(
1− zv(k,t)

N

))
.

Since the second mixed derivatives are equal to zero, then the Hessian matrix is a diagonal

matrix, whose elements are given in (6). Such elements are positive if and only if

qv(k, t) < −
ln

(
(ψ(v))s(k,t)
2ψ(v)(k,t)

)
1− zv(k,t)

N

for all v ∈ {f, r}, k ∈ {1, . . . , n}, t ∈ {1, . . . ,m}.

Thus, the energy function related to the interference level is given by the sum of the terms

of data consistency, which are not necessarily convex, and the smoothness terms, which are

convex. Hence, in general the uniqueness of the global minimum is not guaranteed.

5 Convex approximation of the data consistency term

To approximate the term of faithfulness to the data, it is possible to approximate Tr and

Tf separately. Moreover, we can approximate each term of the sum in (3) separately too.

Fixed i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and v ∈ {f, r}, let ψ be as in (5), and denoting by

α =
ψ(v)(i, j)

ψ(vs)(i, j)
, γ =

zv(i, j)

N
− 1, q = qv(i, j), the term related to the faithfulness to the data

can be expressed as

T (f, r, q, A) = Tf (qr) + Tr(qf ) =
n∑
i=1

m∑
j=1

(
f s(i, j)− f(i, j)e−qr(i,j)

(
1− zr(i,j)

N

))2

+

+
n∑
i=1

m∑
j=1

(
rs(i, j)− r(i, j)e−qf (i,j)

(
1−

zf (i,j)

N

))2

= (7)

=
n∑
i=1

m∑
j=1

∑
v∈{f,r}

ψ(v)s(i, j)ϕi,j,v(q),

where

ϕi,j,v(q) =

(
1− α eqγ

)2

= 1− 2α eqγ + α2 e2qγ. (8)

Therefore, to make the function ϕi,j,v in (8) convex, we will proceed in several ways. In

particular, in this paper we approximate the quantity

gi,j,v(q) = eqγ (9)

by a line of the type g̃(q) = Ã q + B̃. So, the approximation of ϕi,j,v(q) is given by ϕ̃(q) =

(1− αÃ q − B̃)2, which is a convex function, since ϕ̃′′(q) = 2α2 Ã2.
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5.1 Interpolating approximation

Now we approximate gi,j,v(q) with the line p
(1)
i,j,v(q) interpolating at the points (3, e3γ) and (0, 1).

To compute the interpolating polynomial, we use the Lagrange method, obtaining

p
(1)
i,j,v(q) = L0(q)ȳ0 + L1(q)ȳ1,

where L0(q), L1(q) are the Lagrange polynomial bases defined by

L0(q) =
q − x̄1

x̄0 − x̄1

=
q

3

and

L1(q) =
q − x̄0

x̄1 − x̄0

= −1

3
(q − 3),

and so we get

p
(1)
i,j,v(q) = q

(
e3γ

3
− 1

3

)
+ 1.

Thus, the convex approximation of ϕi,j,v(q) is given by

ϕ
(1)
i,j,v(q) =

(
1− α qe

3γ − 1

3
− α

)2

. (10)

Figure 1: On the left side: Graph of gi,j,v(q) in blue and p(1)(q) in red. On the right side: Graph of

ϕi,j,v(q) in blue and ϕ(1)(q) in red (α = 100, γ = 0.1).

5.2 The best line approximation

Now we approximate gi,j,v(q) by the line p
(2)
i,j,v(q) of best approximation with respect to the

2-norm in P1([0, 3]) = {p : [0, 3] → R| p is a polynomial of degree at most 1}. We begin with

using the Gram-Schmidt method to find an orthonormal basis {e1, e2} for P1([0, 3]). We choose

as basis the following polynomials:

x1 = 1, x2 = q.
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We normalize the first basis polynomial. We have

e1 =
x1

‖x1‖
=

1√
3

=

√
3

3
.

By applying the Gram-Schmidt algorithm, we get

z2 = x2− < x2, e1 > e1 = qr −
1

3

∫ 3

0

q dq = q − 1

3

[
q2

2

]3

0

= q − 3

2
.

By normalizing z2 we obtain

e2 =
z2

‖z2‖
=

2

3

(
q − 3

2

)
,

where

‖z2‖ =

√∫ 3

0

(
q − 3

2

)2

dq =
3

2
.

So, we have constructed an orthonormal basis {e1, e2} of P1([0, 3]). Thus, the best approxima-

tion polynomial of gi,j,v(q) is given by

p
(3)
i,j,v(q) = c1e1 + c2e2,

where

c1 =< gi,j,v, e1 >=

∫ 3

0

gi,j,v(q)e1 dq =

√
3

3

∫ 3

0

eqγ dq =

√
3

3

[
eqγ

γ

]3

0

=

√
3

3

e3γ

γ
−
√

3

3

1

γ
,

c2 =< g, e2 >=

∫ 3

0

g(q)e2 dq =
2

3

∫ 3

0

eqγ
(
q − 3

2

)
dq =

2

3

∫ 3

0

eqγq dq −
∫ 3

0

eqγ dq =

=
2

3

{[
eqγ

γ
q

]3

0

−
∫ 3

0

eqγ

γ
dq

}
−
[
eqγ

γ

]3

0

=

=
2

3

{
3
e3γ

γ
−
[
eqγ

γ2

]3

0

}
− e3γ

γ
+

1

γ
= 2

e3γ

γ
− 2

3

e3γ

γ2
+

2

3

1

γ2
− e3γ

γ
+

1

γ
.

Thus, we have

p
(3)
i,j,v(q) = c1 e1(q) + c2 e2(q) =

=

√
3

3

(√
3

3

e3γ

γ
−
√

3

3

1

γ

)
+

2

3

(
q − 3

2

)(
2
e3γ

γ
− 2

3

e3γ

γ2
+

2

3

1

γ2
− e3γ

γ
+

1

γ

)
=

=
1

3

e3γ

γ
− 1

3

1

γ
+

4

3

e3γ

γ
q − 4

9

e3γ

γ2
q +

4

9

1

γ2
q − 2

3

e3γ

γ
q +

2

3

1

γ
q − 2

e3γ

γ
+

2

3

e3γ

γ2
− 2

3

1

γ2
+
e3γ

γ
− 1

γ
=

=
2

3

1

γ

(
2e3γ − 2

3

e3γ

γ
+

2

3

1

γ
− e3γ + 1

)
− 5

3

e3γ

γ
− 4

3

1

γ
+

2

3

e3γ

γ2
− 2

3

1

γ2
+
e3γ

γ
,
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and hence we obtain p
(2)
i,j,v(q) = A(2) q +B(2), where

A(2) =
2

3 γ

(
2e3γ − 2(e3γ − 1)

3 γ
− e3γ + 1

)
,

B(2) = −5 e3γ

3 γ
− 4

3 γ
+

2 e3γ

3 γ2
− 2

3 γ2
+
e3γ

γ
.

The convex approximation of ϕi,j,v(q) is

ϕ
(2)
i,j,v(q) =

(
1− αA(2) q −B(2)

)2

. (11)

Figure 2: On the left side: Graph of gi,j,v(q) in blue and p(2)(q) in red. On the right side: Graph of

ϕi,j,v(q) in blue and ϕ(2)(q) in red (α = 100, γ = 0.1).

5.3 Hybrid best approximation and interpolation

Now we approximate gi,j,v(q) by means of the line p
(5)
i,j,v(q) of best approximation related to

the 2-norm in P1([0, 3]) = {p : [0, 3] → R| p is a polynomial of degree at most 1}, which

interpolates gi,j,v(q) at a chosen point q̄.

Now we make a change of coordinates, in such a way that the ”new” origin coincides with

(q̄, gi,j,v(q̄)). Let us define

g̃(q) = gi,j,v(q + q̄)− gi,j,v(q̄). (12)

Note that g̃ is a translation of gi,j,v in the Cartesian plane. Now we determine the polynomial

p̃(5) of best approximation of g̃ with respect to the 2-norm in

P1([−q̄, 3− q̄]) = {p : [−q̄, 3− q̄]→ R | p is a polynomial of degree at most 1}

which interpolates g̃ at 0.

We use the Gram-Schmidt method to find an orthonormal basis {e1} of the space

{p ∈ P1([−q̄, 3− q̄])| p(0) = 0}.
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A basis for this space is given by x1 = q. By normalizing, we get

||x1|| =

√∫ 3−q̄

−q̄
q2 dq =

√
3 (
√
q̄2 − 3q̄ + 3).

So, the normalized basis is given by

e1 =
x1

||x1||
=

q
√

3

3(
√
q̄2 − 3q̄ + 3)

.

The polynomial p̃(5)(q) of best approximation of g̃i,j,v(q) is

p̃(5)(q) = c1e1(q),

where

c1 = < g̃, e1 >=

∫ 3−q̄

−q̄
g̃(q) e1(q) dq =

= −
√

3

3(
√
q̄2 − 3q̄ + 3)

eq̄γ
(

(q̄ − 3)e(3−q̄)γ − q̄ e−q̄γ

γ
+
e(3−q̄)γ − e−q̄γ

γ2
+

9− 6q̄

2

)
.

Therefore, we get

p̃
(5)
i,j,v(q) = − q

6(q̄2 − 3q̄ + 3)
eq̄γ
(

(2q̄ − 6)e(3−q̄)γ − 2q̄ e−q̄γ

γ
+

+ 2
e(3−q̄)γ − e−q̄γ

γ2
+ 9− 6q̄

)
.

By taking the inverse translation, we obtain

p
(5)
i,j,v(q) = p̃(5)(q − q̄) + gi,j,v(q̄) = A(5)(q̄) q +B(5)(q̄),

where

A(5)(q̄) = − eq̄γ

6(q̄2 − 3q̄ + 3)

(
(2q̄ − 6)e(3−q̄)γ − 2q̄ e−q̄γ

γ
+

+ 2
e(3−q̄)γ − e−q̄γ

γ2
+ 9− 6q̄

)
,

B(5)(q̄) =
q̄ eq̄γ

6(q̄2 − 3q̄ + 3)

(
(2q̄ − 6)e(3−q̄)γ − 2q̄ e−q̄γ

γ
+

+ 2
e(3−q̄)γ − e−q̄γ

γ2
+ 9− 6q̄

)
+ eq̄γ.

In particular, for q̄ = 0 we get

A(3) = A(5)(0) =
1

18

(
6e3γ

γ
− 2

e3γ − 1

γ2
− 9

)
,

B(3) = B(5)(0) =
1

18
e3γ

(
6e−3γ

γ
+ 2

e−3γ − 1

γ2
+ 9

)
,
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while for q̄=3 we have

A(4) = A(5)(3) =
1

18
e3γ

(
6e−3γ

γ
+ 2

e−3γ − 1

γ2
+ 9

)
,

B(4) = B(5)(3) =
1

6
e3γ

(
6e−3γ

γ
+ 2

e−3γ − 1

γ2
+ 9

)
+ e3γ.

From this it follows that two possible convex approximation of ϕi,j,v(q) are

ϕ
(κ)
i,j,v(q) =

(
1− αA(κ) q − αB(κ)

)2

, κ = 3, 4. (13)

Figure 3: On the left side: Graph of gi,j,v(q) in blue and p(3)(q) in red. On the right side: Graph of

ϕi,j,v(q) in blue and ϕ(3)(q) in red (α = 100, γ = 0.1).

Figure 4: On the left side: Graph of gi,j,v(q) in blue and p(4)(q) in red. On the right side: Graph of

ϕi,j,v(q) in blue and ϕ(4)(q) in red (α = 100, γ = 0.1).

6 The GNC approximation families

The first convex approximation of the consistency term of the energy function related to the

interference level of the verso is expressed by

T (κ)(f, r, q, A) =
n∑
i=1

m∑
j=1

∑
v∈{f,r}

ψ(v)s(i, j)ϕ
(κ)
i,j,v(q), κ = 1, 2, 3, 4. (14)

In this section, we define the following families of functions of convex approximations. Fixed

κ = 1, 2, 3, 4, let

T (κ)
p = p T (κ) + (1− p)T.

12



For p = 1, we get the first convex approximation associated with κ, while for p = 0 we have

the original function T .

7 Experimental results

In this section we compare the experimental results, by using the four different GNC algorithms

proposed in the previous sections. We have assumed two different pairs of original images,

given in Figures 5 and 6. We have used a uniform blur mask of dimension 5× 5, and we have

(a) (b)

Figure 5: First pair of ideal sources

(a) (b)

Figure 6: Second pair of ideal sources

considered the interference levels to be estimated given in the Figure 7. In this figure, if the

interference value of a single pixel is 0, that pixel is presented in black while, if the interference

value is 3 (that is very high), then that pixel is presented in white. The gray pixels represent

interference values between 0 and 3. Note that we have assumed that the ideal interference

levels of the recto and of the verso coincide. Considering the first pair of original sources given

in Figure 5 and the interference levels given by 7, we obtain the data mixtures given in Figure

8. We have tested the four GNC algorithms, assuming the following regularization parameters:

λf = λr = 50, λc = 100.

13



(a) (b) (c)

(d) (e)

Figure 7: Interference levels: (a) q
(1)
f = q

(1)
r ; (b) q

(2)
f = q

(2)
r ; (c) q

(3)
f = q

(3)
r ; (d) q

(4)
f = q

(4)
r ; (e)

q
(5)
f = q

(5)
r .

We have compared the four proposed algorithms in terms of mean square error (MSE) between

the estimate of the obtained interference level and the ideal interference level given in Figure 7.

In Table 1 the errors in terms of MSE obtained by the proposed algorithms, by considering the

pair of original sources presented in Figure 5 and the interference levels q
(i)
f = q

(i)
r , i = 1, . . . , 5,

given in Figure 7. The effectiveness of the algorithm has been tested by using some images,

q
(1)
f q

(1)
r q

(2)
f q

(2)
r q

(3)
f q

(3)
r q

(4)
f q

(4)
r q

(5)
f q

(5)
r

κ = 1 0.05712 0.05332 0.07191 0.08313 0.07980 0.07843 0.08213 0.07920 0.10213 0.09871

κ = 2 0.03575 0.03741 0.03375 0.04121 0.04401 0.03979 0.03142 0.02673 0.03725 0.04165

κ = 3 0.03176 0.04002 0.03723 0.03937 0.04183 0.04272 0.02734 0.02639 0.04128 0.03984

κ = 4 0.02144 0.02347 0.02317 0.02242 0.03143 0.03031 0.00979 0.01127 0.03521 0.03878

Table 1: MSE of the proposed algorithms, using the original sources in Figure 5.

created to highlight the capacity of the algorithm to eliminate the degradations due to the

effect of show-through.

As we see in Table 1, the best algorithm for the first pair of images is that related to the

family of approximations with κ = 4. In Figure 9 there are the interference levels estimated

by the algorithm corresponding with κ = 4.

Considering the second pair of original sources given in Figure 6 and the interference levels

given by 7, and considering a uniform mask of type 5× 5, we obtain the data mixtures given

14



(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 8: (a) Image in Figure 5 (a) with degraded by the interference level in Figure 7 (a);

(b) image in Figure 5 (b) with degraded by the interference level in Figure 7 (a); (c) image

in Figure 5 (a) with degraded by the interference level in Figure 7 (b); (d) image in Figure

5 (b) with degraded by the interference level in Figure 7 (b); (e) image in Figure 5 (a) with

degraded by the interference level in Figure 7 (c); (f) image in Figure 5 (b) with degraded by

the interference level in Figure 7 (c); (g) image in Figure 5 (a) with degraded by the interference

level in Figure 7 (d); (h) image in Figure 5 (b) with degraded by the interference level in Figure

7 (d); (i) image in Figure 5 (a) with degraded by the interference level in Figure 7 (e); (j) image

in Figure 5 (b) with degraded by the interference level in Figure 7 (e)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 9: (a) estimation of q
(1)
f ; (b) estimation of q

(1)
r ; (c) estimation of q

(2)
f ; (d) estimation of

q
(2)
r ; (e) estimation of q

(3)
f ; (f) estimation of q

(3)
r ; (g) estimation of q

(4)
f ; (h) estimation of q

(4)
r ;

(i) estimation of q
(5)
f ; (j) estimation of q

(5)
r .
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in Figure 10. We have tested the four GNC algorithms, using the previous regularization

parameters. In Table 2 the errors in terms of MSE obtained by the proposed algorithms,

by considering the pair of original sources presented in Figure 6 and the interference levels

q
(i)
f = q

(i)
r , i = 1, . . . , 5, given in Figure 7.

q
(1)
f q

(1)
r q

(2)
f q

(2)
r q

(3)
f q

(3)
r q

(4)
f q

(4)
r q

(5)
f q

(5)
r

κ = 1 0.05229 0.04973 0.06127 0.06712 0.09415 0.08174 0.12176 0.13746 0.11288 0.15672

κ = 2 0.03374 0.03019 0.03626 0.03372 0.04791 0.03277 0.03711 0.04424 0.03845 0.04064

κ = 3 0.03147 0.03133 0.03317 0.03533 0.03179 0.03375 0.04176 0.05727 0.03973 0.03927

κ = 4 0.02379 0.02517 0.02433 0.02536 0.01017 0.01752 0.02578 0.03225 0.03320 0.03584

Table 2: MSE of the proposed algorithms, using the original sources in Figure 6.

As we see in Table 2, the best algorithm for the first pair of images is again that related to

the family of approximations with κ = 4. In Figure 11 the interference levels estimated by the

algorithm corresponding with κ = 4.

Conclusions

We have studied the problem of blind separation of the components, in particular concerning

ancient documents corrupted by bleed-through and show-through. Thus, we have dealt with

the problem of studying a regularization technique, which estimates the original sources, the

interference levels and the blur operators. In this paper we have investigated the estimate

of the interference levels, given the original sources and the blur operators. In particular, we

have analyzed various GNC-type algorithms for minimizing the involved energy function. Such

algorithms are different because of the choice of the first convex approximation. By means of

the experimental results, we have determined which algorithm gives more accurated estimates

of the interference levels.
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