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Abstract

We consider the nerve as the elastic string, the left end of which is fixed at
the beginning of the coordinate system, the right end is fixed at point l and mass
m is fixed between the ends of the string. We determine the classical and the
quantum vibration of such system. The quantum motion is obtained by the so-
called non-conventional oscillator quantization method by author. The proposed
model can be also related in the modified form to the problem of the Mössbauer
effect, being the recoilless nuclear resonance fluorescence, which is the resonant and
recoil-free emission and absorption of gamma radiation by atomic nuclei bound in
a solid. (Mössbauer,1958). It is not excluded that our oscillator quantization of the
string can be extended to generate the new way of the string theory of matter and
physiology of nerves.

1 Introduction

A nerve is an enclosed, cable-like bundle of fibers (called axons) in the peripheral
nervous system. A nerve transmits electrical and mechanical impulses. A nerve provides
a common pathway for the electrochemical nerve impulses transmitted along each of the
axons to peripheral organs or, in the case of sensory nerves, from the periphery back to
the central nervous system.

The propagation of the nervous impulse is one of the oldest problems in biophysics.
Luigi Galvani first described the contraction of a frog muscle after connecting two
electrodes to the spine and the leg. He attributed the contraction to some kind of ”animal
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electricity”. In contrast, his contemporary Alessandro Volta was of the opinion that the
pulse propagation is a purely electrical phenomenon (Heimburg, 2005).

In the middle of the 19th century Hermann Helmholtz was the first to measure
the velocity of a nerve pulse quantitatively. In his dissertation Helmholtz found that
the pulse velocity in frog sciatic nerves is about 30 m/s. This occurred practically
simultaneously with his formulation of the first law of thermodynamics. Today, it is
practically unthinkable to find careers that span the whole range from physiology to
theoretical physics (Heimburg, 2005; 2010).

The propagating electrical phenomena in nerves are called ”action potentials”. During
a typical nerve pulse the voltage between the interior and the exterior of a cell changes
locally by about 100 mV. The contemporary view of these phenomena originates from the
model of Alan L. Hodgkin and Andrew F. Huxley from 1952, for which they received the
Nobel Prize in Medicine in 1963.

Nerve signals can not only be triggered by voltage changes. The observed excitability
caused by mechanical stimuli was interpreted by Wilke (Wilke, 1912) that the nervous
impulse cannot just be a purely electrical event. So, we consider here the mathematical
and physical model of nerve which can reflect some new aspects of the nerve motion in
the classical regime and in the quantum regime. We use so called the string model at the
classical motion and at the quantum motion with the defect realized by the interstitial
massive point.

2 Classical string motion

First, let us consider the string, the left end of which is fixed at the beginning of the
coordinate system, the right end is fixed at point l and mass m is fixed interstitially
between the ends of the string. The vibration motion of the string and the massive point
with mass m is the problem of the mathematical physics in case that the tension is linearly
dependent on elongation.

The differential equation of motion of string elements can be derived by the well known
way. We suppose that the string tension force acting on the element dl of the string is
given by the law (Tikhonov et al., 1977):

T (x, t) = ES

(
∂u

∂x

)
, (1)

where E is the modulus of elasticity, S is the cross section of the string. We easily derive
that

T (x+ dx)− T (x) = ES

(
∂u

∂x

)
(x+ dx)− ES

(
∂u

∂x

)
(x) = ESuxxdx. (2)

The mass dm of the element dl is %Sdx, where % is the mass density of the string
matter and the dynamical equilibrium gives

%Sdxutt = ESuxxdx. (3)

Or, after minimal modification we get

1

c2
utt − uxx = 0; c =

(
E

%

)1/2

. (4)
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The last procedure was performed evidently in order to get the wave equation.

3 The string motion with the interstitial massive

point

Now, let us consider the string with the point-like mass at coordinate s in the interval
(0, l). Then, the left part string motion of the string be u1(x, t) and the right side of the
string motion is u2(x, t). The corresponding equation of motion of both part of the string
are as follows (Koshlyakov, et al., 1962):

(u1)tt = c2(u1)xx; (0 < x < s), (5a)

(u2)tt = c2(u2)xx; (s < x < l). (5b)

The boundary and interstitial conditions are S = 1:

u1(x = 0) = 0, u2(x = l) = 0. (6)

u1(x = s) = u2(x = s). (7)

The dynamical equation involving interstitial point is with E = %c2:

%c2(u1)x(s)− %c2(u2)x(s) = m(u1)tt(s)−m(u2)tt(s). (8)

Let us look for the solution of the last equation in the form

u1(x, t) = C1 sin
ωx

c
sinωt (9)

u2(x, t) = C2 sin
ω(l − x)

c
sinωt. (10)

We see that the suggested solution is in harmony with the boundary conditions:

u1(x = 0) = 0, u2(x = l) = 0. (11)

After insertion of u1(x, t), u2(x, t) from (9-10) into eqs. (7-8), we get the system of
equations

C1 sin
ωs

c
= C2 sin

ω(l − s)
c

(12)

and

C1%cω cos
ωs

c
− C2%cω cos

ω(l − s)
c

=

C1mω
2 sin

ωs

c
− C2mω

2 sin
ω(l − s)

c
. (13)

In order to get the regular solution, the determinant of the system must be zero. Or,
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∣∣∣∣A B
C D

∣∣∣∣ = 0, (14)

where

A = sin
ωs

c
(15)

B = − sin
ω(l − s)

c
(16)

C = %cω cos
ωs

c
−mω2sin

ωs

c
(17)

D = −%cω cos
ω(l − s)

c
+mω2 sin

ω(l − s)
c

. (18)

It follows from eq. (14) ∣∣∣∣A B
C D

∣∣∣∣ = AD −BC = 0. (19)

Or,

sin
ωs

c

[
−%cω +mω2 tan

ω(l − s)
c

]
+

sin
ω(l − s)

c

[
%cω −mω2 tan

ωs

c

]
= 0, (20)

So, we see, that the determination of the frequency ω involves the transcendent
equation.The solution can be performed graphically, or by computer. Such problem is
the integral part of the university mathematical methods (Arfken, 1967).

Nevertheless, it is evident that the trivial solution is for ω = 0 and for

ωs = πnc, n = 0, 1, 2, ...; ω(l − s) = πkc, k = 0, 1, 2, ..., (21)

which implies that the correspondence between l and k is only for

l

s
=

(k + n)

n
. (22)

The determination of the ω from the transcendent equations[
−%cω +mω2 tan

ω(l − s)
c

]
= 0,

[
%cω −mω2 tan

ωs

c

]
= 0 (23)

is difficult and it can be solved by the appropriate mathematical methods (Arfken, 1967).

4 The un-conventional quantization of the string mo-

tion by harmonic oscillators

The non-relativistic quantization of the equation for the energy of a free particle

p2

2m
= E (24)
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consists in replacing classical quantities by operators. We get the non-relativistic
Schrödinger equation for a free particle. The operator replacings are E → ih̄∂/∂t,
p→ −ih̄∇.

The Schrödinger equation suffers from not being relativistically covariant, meaning it
does not take into account Einstein’s special relativity.

It is natural to perform the special relativity generalization of the energy relation
describing the energy:

E =
√
p2c2 +m2c4. (25)

Then, just inserting the quantum mechanical operators for momentum and energy
yields the equation

ih̄
∂

∂t
=
√

(−ih̄∇)2c2 +m2c4. (26)

This, however, is a cumbersome expression to work with because the differential
operator cannot be evaluated while under the square root sign.

Klein and Gordon instead began with the square of the above identity, i.e. E2 =
p2c2 +m2c4, which, when quantized, gives(

ih̄
∂

∂t

)2

= (−ih̄∇)2c2 +m2c4. (27)

So, we have seen that the quantization of classical mechanics is the simple replacing
classical quantities by operators. We use here the novel quantization method where
classical oscillators forming the classical systems are replaced simply by the quantum
solution of quantum oscillators. The natural step is to apply the method to motion of the
classical string.

It is well known that harmonic oscillator equation

ẍ+ ω2x = 0; ω =
√
k/m (28a)

has the solution

x(t) = A cos(ωt+ ϕ). (28b)

In case of the quantum mechanical oscillator motion, the solution for the stationary
sates is (Grashin, 1974)

ψn = NnHn exp (−ξ2/2); ξ = x
√
mω/h̄, (29)

where Nn is the normalization constant

Nn =
(
mω

πh̄

)1/4
√

1

2nn!
(30)

and Hn are the Hermite polynomials defined by the following relation

Hn = (−1)neξ
2 dn

dξn
exp (−ξ2/2). (31)

So, the wave function of the one string oscillator of the string with the periodic force
at point c in the form:
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ψi(x, t) = AC1 sin
ω(xi − x)

c
Nni

Hni
; 0 < xi < c (32a)

and

ψi(x, t) = AC2 sin
ω(xi − x)

c
Nni

Hni
; c < xi < l. (32b)

The total wave function of the string system of oscillators is then

Ψ1(x, t) = Π∞
i ψi(x, t) =

Π∞
i AC1sin

ω(xi − x)

c
Nni

Hni
; 0 < xi < c (33a)

and

Ψ2(x, t) = Π∞
i ψi(x, t) =

Π∞
i AC2sin

ω(xi − x)

c
Nni

Hni
; c < x < l. (33b)

So, the quantization of string is possible only if we devide the string into elementary
discrete points supposing that in every point of string X ∈ (0, l), there is a quantum
oscillator with the stationary states described by eq. (32). There is an analogue
representation to eq. (33), which was applied by Feynman for determination of the
quantum theory of the Mössbauer effect (Feynman, 1972).

5 Discussion

This elaborate is the integral part of modeling of signals in nerves (Engelbrecht et
al., 2020). The general starting point is classical equations of mathematical physics
deduced from basic equations describing electrical and mechanical dynamical processes
and heat conduction. The equations used for describing physiological effects are based on
experimentally observed phenomena. Such an approach means the interface of physics,
continuum mechanics, thermodynamics and physiology. The mathematical model is a
system of differential equations united into a whole by coupling forces. The general aim is
to describe fundamental physiological effects as well as leaving the door open for quantum
mechanical modifications.

The present elaborate was inspired by the author diploma work (Pardy, 1965), in
which the interaction of light with the crystal defect was calculated. At this theory the
crystal was replaced by the Euler-Bernoulli linear chain (Landau, et al., 1965) with some
defects.

The proposed model can be also related in the modified form to the problem of the
Mössbauer effect, or, recoilless nuclear resonance fluorescence, which is the resonant and
recoil-free emission and absorption of gamma radiation by atomic nuclei bound in a solid.
(Mössbauer,1958). In this effect, a narrow resonance for nuclear gamma emission and
absorption results from the momentum of recoil transited to a surrounding crystal lattice
and not to the emitting or absorbing nucleus alone. No gamma energy is lost. Emission
and absorption occur at the same energy, resulting in strong, resonant absorption.
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The generalization of our continual model can be performed in such a way that
we replace one massive point m by the massive points m1,m2,m3, ... mk at points
s1, s2, s3, .... sk and solve the adequate system of differential equations.

The string theory can be extended to the quark-quark interaction by the string
potential, defined as the quark mass correction to the string potential, which was
performed by Lambiase and Nesterenko (1996). The calculation of the interquark
potential generated by a string with massive ends was performed by Nesterenko and
Pirozhenko (1997), and others. The propagation of a pulse in the real strings and rods
which can be applied to the two-quark system as pion and so on, was calculated by author
(Pardy, 2005). So, it is not excluded that our oscillator quantization of the string can be
extended to generate the new way of the string theory of matter and physiology of nerves.
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