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                      Probabilistic and Deterministic Approaches  

         to some Problems of Number Theory  
 

         Gregory M.  Sobko 

 

Abstract. I suggest a probabilistic approach that helps to address some classical questions and 

problems of Number Theory, like the Goldbach Conjecture [1], distributions of twin-  

and primes, prime numbers among arithmetic sequences and others.   

The concepts of ‘randomness’ and ‘independence’ relevant to number-theoretic problems are 

discussed here, and the basic concepts of divisibility of natural number are interpreted in terms  

of probability spaces and appropriate probability distributions on classes of congruence.  

I analyze and demonstrate the importance of Zeta probability distribution and prove theorems 

stating the equivalence of probabilistic independence of divisibility of random integers by 

coprime factors, and the fact that random variables with the property of independence of coprime 

factors must have Zeta probability distribution. The idea to use Zeta distribution is motivated by 

the fact that it provides the validity of the probabilistic Cramér’s model for asymptotic prime 

number distribution, in full agreement with the Prime Number Theorem. Multiplicative and 

additive models with recurrent equations for generating sequences of prime numbers are derived 

based on the reduced Sieve of Eratosthenes Algorithm. This allows to interpret such sequences 

as realizations of random walks on set of natural numbers  and on multiplicative semigroups 

 generated by sets of prime numbers , representing paths of stochastic dynamical 

systems. The H. Cramér’s model for probability distribution of primes is modified as a 

generalized predictable non-stationary Bernoulli process with unequally distributed terms that 

are asymptotically pairwise independent. This model is applied then to analyze the sequences  

of primes generated by appropriate random walks. With intense use of Zeta probability 

distribution, it seems possible by using the modified Cramér’s model to approximate probability 

distribution of various arithmetic function.  

Since probabilistic approach meets certain skepticism and even disbelief from a part 

of mathematicians working in traditional manner in Number Theory, I decided to attack  

the problem of Strong Goldbach Conjecture (SGC) from pure deterministic point of view. 
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As a result, I derived a recursive formula           

which generates a sequence of consecutive nonempty Goldbach sets ,  

where  denotes set of all prime numbers. The recursive formula justifies SGC  

by mathematical induction.  Thus, this work represents two independent proofs   

of validity for Strong Goldbach Conjecture. 

 

 

 

“…Mathematics is the art of giving the same name to different things…The only facts 

worthy of our attention are those which introduce order into this complexity and so make 

it accessible to us”. 

                     Henry Poincaré, The Value of Science, Random House, Inc., 2001. 

 

1. Stochastic Predictable Sequences, Prime Numbers  

    and Zeta Probability Distribution 

 

Let  denote the set of natural numbers and  the set of all primes.  Our major assumption follows  

the amazing Cramér’s idea [9] to represent a deterministic sequence of prime numbers as realizations  

of binary random variables in the sequence  with an appropriate choice of their probability 

distributions.  Pursuing this goal, we address two problems:  

1) the choice of an adequate probability distributions  for each ;   

2) stochastic relationship among all in the sequence .  

We need several definitions [7]. 

Definition 1.1 

Let  be  random variables   defined on probablity space     

and   a  generated by all events created by random variables

.    We have:   ,  and for each  random variable 

GkP + 2 ⋅(m− k)( )∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪ = GmP ≠ ∅, m > 3

GmP{ }m≥3
GmP{ }m≥3

! P

ξk ξk( )k∈!

Pk ξk

ξk ξk( )k∈!

νn | n∈!{ } νn :Ω→ N Ω,F ,P( )
Fn =σ ν k |1≤ k ≤ n{ } σ -algebra

ν k |1≤ k ≤ n{ } F1 ⊆!Fn ⊆ Fn+1 ⊆!⊆ F n∈!
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  is  -measurable. Then,  the sequence  is called a stochastic sequence.  

A stochastic sequence is called predictable if for each  there exists 

 such that   is -measurable. A pedictable sequence we can write as .  

Predictability of a stochastic sequence = means that for each  the 

probability distribution  of  given the entire prehistory  is compeletly determined by the 

condition , that is it depends on values taken by some (or all) variables   ,  

where .  So, in terms of conditional probabilities,  

 for all  .     (1.1) 

Notice that general stochastic sequences include classes of sequences of independent  

as well as dependent random variables like martingales, Markov chains, etc. 

A sequence of mutually independent random variables is unpredictable since 

probability distribution of each is determined only by events from and does not  

depend on condition given by ‘previous’ events from . Markov chains and  

martingales are examples of predictable stochastic sequences. 

In Number Theory we are interested in recursively defined sequences of numbers,  

generated by certain recurrent relations, mostly nonlinear. From probabilistic point of view,  

such recurrent relations generate sequences of dependent random variables. The problem  

of dependence of events and random variables in the framework of  Number Theory had  

been dicussed in some detail in the monograph of Mark Kac [4]. As M. Kac underlined  

in [4],  the concept of independence “though  of central importance in probability theory,  

is not a purely mathematical notion”, and it appears quite naturally in Statistical Physics.  

He mentioned that “the rule of multiplication of probabilities of independent events is  

an attempt to formalize this notion and to build a calculus arount it”. By using informal  

language, the concept of independence is stated in [14] as follows: “Two events are said  

to be independent if they have ‘nothing to do’ with each other”. To decide whether a  

‘randomly choosen’ (odd) integer  is a prime number, we subject  to  divisibility  

νn Fn νn ,Fn( )n∈!
νn ,Fn( )n∈! n∈!

k = k(n) < n νn Fk (n) νn ,Fk (n)( )
n∈!

νn ,Fn( )n∈! νn ,Fk (n)( )
n∈!

n∈!

Pn νn Fn−1

Fk (n) ν1,ν2 ,…,ν k (n)

k(n) < n

Pn νn ∈A |Fn{ } = Pn νn ∈A |Fk (n){ } A∈Fn

νn ,Fn( )n∈!
νn Fn

Fk (k < n)

ν > 2 ν
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test, by using the Eratosthenes algorithm. If  event  (‘  divides  ‘) does not  

tell us anything about  event  (‘  divides  ‘) for   , we can say that 

and do not depend on each either logically or statistically, and should be considered  

as independent events for a ‘reasonable’ choice of probability distribution of random  

variable .  Meantime, events are dependent events since they  

exclude each other for , because only one of them holds true at a time.  

More sofisticated example of dependent events represent ,  

which are both true for twin primes, and false otherwise. 

We demonstrate below that with an appropriate choice of probability distribution for random  

variable  events  and  are independent for any choice 

of prime numbers . Such a choice is provided by Zeta probability distribution 

,          (1.2) 

Both dependence and independence of ‘events’ in Number Theory are results of complicated  

recurrent nonlinear relations between terms of numeric sequences,  which can generate  

‘dynamical chaos’, imitating pseudo-randomness in a long run behavior of such deterministic  

sequences. The precise prediction of behavior of terms in the sequences demands for ‘big’  

numbers almost infeasible calculations caused by the expanding memory of prehistory of their 

evolution. To make a study feasible and overcome “the curse of dependence” researchers  

in this area typically suggest heuristic assumptions that terms in   are independent,  

or asymptotically independent, or uncorrelated, or ‘weakly’ dependent, in certain sense.   

                                                                                                                                                           

Proposition 

The basic fact is that the set of prime numbers  is a recursive set [17].  

Proof. 

We can prove this by using an indicator function  of set . We need to show  

that the function  is recursively defined.  

A = p\ν{ } p ν

B = q\ν{ } q ν p ≠ q

A B

ν ν ∈P{ } and (ν +1)∈P{ }
ν > 2

ν ∈P{ } and (ν + 2)∈P{ }

ν A = pi \ν{ } B = pj \ν{ }
pi ≠ pj

P νm = n{ } = n−s

ζ (s)
  (s >1) n∈!

νn( )n∈!

P

IP :!→ 0,1{ } P

IP
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(1) Initial step: let .  

(2) Inductive step: if  is the smallest number such that  for each  

(symbol   means ‘does not divide’), then , otherwise .  

Notice that such number  exists since  is a well-ordered set, so that any nonempty  

subset of  has the least element (the smallest number). 

 (3) Closure step: Only numbers  obtained in steps (1)  

and (2) satisfy condition .   

It holds true that if a function is recursively defined then it is unique [17].   

This means that set  of prime numbers recursively defined above is uniquely defined. 

We can explain the above statement concerning the recursive definition of prime numbers  

as follows.  Occurrence of a prime number  in the sequence of consecutive natural  

numbers  depends on the values of reminders  for all primes  ,  

due to the Sieve of Eratosphenes Algorithm [5]. This requirement can be relaxed:          

we need to consider only divisibility of  by all primes .  

The proof of this statement (attributed to Fibonacci) is given below. 

Lemma 1.1 

A natural number  is prime if and only if  is not divisible by of any prime numbers ,   

оr, equivalently, if  for all primes . 

Proof. 

If we assume that  is a composite number with no primes  that divide , then  should  

be divided by primes  both greater than  , and therefore also divided by their product 

But this would imply that , which is impossible.  This means that if  is not 

divisible by any of prime numbers , then  itself must be a prime number. 

Q.E.D. 

The above discussion implies that sequence of consecutive primes can be considered as  

a realization of a predictable stochastic sequence , where  for all   

IP (2) = 1, IP (3) = 1

n > 3 k ! n k ≤ n

! IP (n) = 1 IP (n) = 0

n N
N

n

IP (n) = 1

P

n = p∈P

n = 2,3,4,…{ } r = mod(n, p) p ≤ n

n p ≤ n

n ≥ 5 n p ≤ n

r = mod(n, p) ≠ 0 p ≤ n

n p ≤ n n n

′p1 and ′p2  n

′p1 ⋅  ′p2 . ′p1 ⋅  ′p2 > n n

p ≤ n n

νn ,Fk (n)( )
n∈!

k(n) = n⎡
⎣

⎤
⎦ n > 3
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( stands for integer part of x). 

One of the most challenging problems of Number Theory is the distribution of primes in the set   

of natural numbers. The sequence of consecutive odd prime numbers  may look  

like a path of sporadic walks  given by a random sequence of natural numbers 

 where randomness of each term  is determined by the choice of elementary  

event  due to a probability distribution  defined by a probability space .   

Primes in   for each  can be represented by the indicator function  

as a sequence of binary-valued variables    

This can be directly observed in the sequence of prime numbers below :             

            

      

Table 1.1                  

    

 

In Number Theory we are interested in recursive sequences of numbers, generated by certain recurrent 

relations, mostly nonlinear.   Let  be a probability space, where  is a set of all  -valued 

sequences,  is a -algebra generated by the algebra of cylinder sets in  , and  is a probability 

measure on . Unsurmountable challenge is to describe probability distributions on a set  

 of all  -valued sequences that include all recursively generated sequences  

of positive integers with all possible dependences between their terms. A sequence of integers in  

x⎡⎣ ⎤⎦

!

(3,5,7,11,…)

ω :!→ P

ω = ν k (ω ) | k ∈!( ) jn

wÎW P Ω,F ,P( )

( )1 2, , ,jw n n n= ! ! ν k = k IP (k) = ξk

ξk =
1, if  ν k (ω ) = k ∈P
0, otherwise

⎧
⎨
⎩⎪

,

100

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97( )

Ω,F ,P( ) Ω !

F σ Ω P

Ω,F( )
Ω = !! ! vk( )k∈!

 The sequence  of sequential primes among natural numbers from 1 to 100    

   represented by values of    such that  : 

0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0  

0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 

    

ξ(n) |1≤ n ≤100( )
n ξk = 1 if k  is prime
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their natural increasing order  is our main concern. 

In the framework of Probability Theory, we consider basic sequences   as realizations  

of -valued random variables traditionally called Bernoulli variables.  

To avoid pure heuristic justification of probabilistic conclusions, we try to conduct our discourse 

entirely in the framework of Probability Theory.  This means that,  prior to discussion of dependence 

issues related to sequences like , we  should introduce random variables 

 with the corresponding probability distribution  defined on -algebra of events 

 (generated in our context by all finite subsets ).  

We assume that a binary-valued sequence , where    

representing primes, is a realization of   a non-stationary sequence of possibly dependent  

Bernoulli variables, by postulating probabilities  

   

                   .              (1.3) 

 

The major challenges in the study of such sequences are evaluation of in (1.3) and analysis  

of dependence of random variables  included in the sequence.  As we mentioned 

above, problem of dependence of events and random variables in the framework of Number  

Theory had been discussed in some detail in the monograph of Mark Kac [4].  

In number of works authors tried to avoid a standard probabilistic approach based on the concept  

of sigma-additive probability measures and the corresponding probability spaces, and considered  

so-called density measures, which are additive but not -additive. The notions of statistical 

(probabilistic) independence and dependence of events have been sometimes confused with  

functional or logical dependence.  Both dependence and independence of “events”  

in Number Theory are results of complicated recursive nonlinear relations between terms of numeric 

sequences, which can generate a ‘dynamical chaos’, imitating pseudo-randomness in the long run 

behavior of purely ‘deterministic’ sequences. The precise prediction of behavior on a ‘long run’  

vk = k k ∈!{ }
ξ(n) | n∈!( )

0,1( )

( )1 2, , ,jw n n n= ! !

ν j :Ω→ ! P σ F

ν j
−1(A) A⊆ !

ξk | k ∈!( ) ξk (ω ) =
1, if  ν k (ω ) = k ∈P
0, otherwise

⎧
⎨
⎩⎪

,

P ξk = 1{ } = Pk , P ξk = 0{ } = Qk = 1− Pk ,  where 0 ≤ Pk ≤1

Pn

ξk | k = 1,2,3,…( )

σ
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for terms in such sequences demanding tremendous calculations requires expanding memory of 

prehistory of their evolution. To make a study feasible and overcome ‘the curse of dependence’,  

a typically suggested heuristic assumption is that terms in are ‘asymptotically independent’,  

or ‘uncorrelated’, or ‘weakly’ dependent in a certain sense.  

In the framework of modified H. Cramér’s model  we show that the sequence of dependent not 

identically distributed random variables  is asymptotically pairwise independent in a sense  

 that we are going to discuss below.   

Surprisingly, in many discussions of probabilistic interpretations of Number Theory problems,  

some authors use ‘by default’ a naive approach as in the following sentence: 

 “Assume that we choose number at random from .  Then  …”.    

The above sentence, due to its ambiguity, raises the following critical comments. 

When one chooses number  ”at random” in the sense of Probability Theory, it is presumed  

that the probability distribution of exists and is known (at least theoretically).  

The formula  cited above tells us that the probability distribution  

is assumed to be uniform on the sequence of integers .  

Here denotes a counting function of number of primes not exceeding . If the 

probability distribution of  is not uniform on the interval of integers  , then, in a 

statistical framework,  can be interpreted not as a probability but rather as an observed relative 

frequency of occurrences of prime numbers in the interval .  

One of goals in our study is to construct a probabilistic model for the “statistical” distribution  

of primes given by the observed frequencies . Notice here the obvious fact that a discrete 

 uniform probability distribution does not exist on an infinite support, that is on infinite subsets  

of  (including  itself).   The following analysis is about divisibility of  by a prime  .  

Denote  a set of all multiples of number . As mentioned above, the probability   

does not exists if  is evenly distributed on . But the problem can be easily resolved if one assigns  

ξk( )k∈!

ξk( )k∈!

X 1 to n Prob(X  is prime)=
π (n)
n

X

X

( )Prob(  is prime) = nX
n

p

{ }1,2,3, ,n!

{ }( ) # |n p p np = Î £P n

X [1,n]= 1,2,…,n{ }
( )n
n

p

[1, ]n

( )n
n

p

N N ν p n£

p ⋅N p P ν ∈ p ⋅!{ }
ν N
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the probability  to the class   of integers in  congruent   

modulo .  There are exactly congruent classes modulo :  

                     ,  

which make a partition of  .  Then, we can define a probability distribution 

  on   such that .   

Then, . By assuming equal probabilities to randomly choose a class of 

congruence for a number  given by for all  , we have  ,  

where . Then, . Considering , we have nothing  

but to assume that random variable  can take any (unknown and unpredictable) value within a 

congruence class .  The value of probability can be different from  if we impose 

some limitations on , say, if we assume that .  For arbitrary  and a given probability  

distribution of , an event  may not belong, in general, to the algebra of events created  

by the partition of  into  congruence classes , therefore, it would be 

impossible, in general, to assign probability to the event , where we denote 

.  Since  is a finite set, we can define a uniform probability  

distribution on this set, but the agreement of uniform distribution with the assumption  

 would depend on the choice of , specifically, on divisibility of . For 

example, if ,  we have .  

For  we have: 

                 , and  

Independence of divisibility of random number  by different primes is determined by  

P ν ∈ p ⋅!{ } Cp,0 = n | n = k ⋅ p,  k ∈!{ } ! 0

p p p

Cp,r = n | n = k ⋅ p + r; 0 ≤ r ≤ p −1; k ∈!∪ 0{ }{ }
!

P Cp,r( ) = qp,r (r = 0,1,2,…, p −1) { },0 ,1 , 1, , ,p p p pC C C -! qp,r = 1
r=0

p−1

∑

P ν ∈ p ⋅!{ } = P Cp,0( ) = qp,0
ν P Cp,r( ) = qp r : 0 ≤ r ≤ p −1 P Cp,r( ) = 1p

Cp,0 = p ⋅! P ν ∈ p ⋅!{ } = P Cp,0( ) = 1p P ν ∈ p ⋅!{ }
ν

p ⋅N P ν ∈ p ⋅!{ } = 1p
ν ν ≤ n n∈!

ν ν ≤ n{ }
N p { }, | 0,1,2, , 1p rC r p= -!

ν ∈Cp,o∩[1,n]{ }
[1,n]= k | k = 1,2,…,n{ } [1, ]n

{ },0
1[1, ]pP C n
p

Ç = n byn p

3 and 20p n= = { }3,0
6 1[1,20] 0.3
20 3

P C Ç = = ¹

3 and 21p n= =

{ }3,0 [1,21] 3,6,9,12,15,18,21C Ç = P C3,0∩[1,21]{ } = 721 =
1
3
≈ 0.333…
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choice of probability distribution of  . As it had been noticed by Mark Kac in [4],  

“primes play a game of chance”. He pointed out to the obvious fact that  to be divisible   

by both different primes  and    is equivalent of being divisible by . This mean  

that if  for any positive integer  , then, since  , we have       

              because  .                              (1.4) 

Mark Kac was not able to establish and use the independence of divisibility events in terms  

 of probability theory since he used a density set functions ,   

 where  , which is not a probability measure as it is additive  

 but not -additive.   

 

Definition. 1.1 

We call a probability distribution  of a random variable  

multiplicative or completely multiplicative if for all  we have: 

   , where ,      (1.5) 

is a multiplicative, or respectively, completely multiplicative function, 

such that  is a convergent series. 

 

As we show below, independence of divisibility of random number  by different primes  

can be guaranteed if  has a multiplicative probability distribution defined above. 

Each prime number determines a partition of the set  into  classes of congruence  

modulo . We show below that a randomly chosen  

value   with multiplicative distribution  is divisible by natural  with probability  .   

For  and  (where  is Zeta function), the probability    

is Zeta probability distribution 

ν

ν
p q p q×

{ },0 1
mP C

m
= m ,0 ,0 ,0p q p qC C C× = Ç

P Cpq,0{ } = P Cp,0{ } ⋅P Cq,0{ } 1 1 1
p q p q

= ×
×

d A( ) = lim
n→∞

A(n)
n

A(n) = A∩[0,n], A⊂ !

σ

Pf  on ! ν

A⊆ !

Pf ν ∈A{ } = 1Z f (n)
n∈A
∑ f :!→ (0,1]

Z = f (n)
n∈!
∑

ν
ν
p ! p

{ },:    ,  where 0,1,2, , 1p rp C r pÎ -!

ν Pf m f (m)

f (n) = 1
ns

 (s >1) Z = ζ (s) ζ (s) Pf  on !
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                                for any choice of    

and random  with Zeta distribution is divisible by a prime number  with probability 

  , so that for each , 

                                                 (1.6) 

Each natural , due to the Fundamental Theorem of Arithmetic, can be represented  

in the unique form 

                                                                                 (1.7) 

where .   

The formula (1.7) is called a canonical representation of , where   

are called multiplicities of prime factors of .    

If is a realization of a random variable , that is  , then (1.7) can be written  

in the form 

                              (1.8) 

as a canonical presentation of a random variable  . Here  . 

 Thus, the probability that does not divide equals   .  

In general, the event  in (1.8) means that  divides  but   does not  

divide  :  

 ,     (1.9) 

This shows that each    has a geometric distribution with parameter ,  

Pζ (s) ν = n{ } = n−s

ζ (s)
, n∈!, 1s >

ν p

f ( p) = 1
ps

pÎP

{ } { },0 ,0
1 1 , 1s p s ps sP C P C
p p

n nÎ = Ï = -

n

n = p1
a1 ⋅ p2

a2! pk
ak = pi

ai

i=1

k

∏

p1, p2 ,…, pk  are distinct primes, and a1,a2 ,…,ak are natural numbers

n a1,a2 ,…,ak
n

n n ν(ω ) = n

ν = pα (ν ,p) =
p∈P
∏ pk

α k (ν )

k=1

κ (ν )

∏

ν α (ν , pk ) =α k (ν )

p n Ps α (ν , p) = 0{ } = 1− 1
ps

α (ν , p) = k{ } pk n pk+1

ν

{ } 1 1( , ) 1 , 0,1,2,3,
k

s s sP p k k
p p

a n
æ ö æ ö

= = × - =ç ÷ ç ÷
è ø è ø

!

α ( pj ,ν )
1
ps

⎛
⎝⎜

⎞
⎠⎟
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and we have    .             

 

Sum  counts the total number of prime factors (with their multiplicities)  

in the prime factorization of  . Here are parameters of : 

                 . 

Assume now that there is a vector , which components are  different  

consecutive prime numbers, and we consider a multiplicative semigroup  with unity,  

generated by components of vector   and number .  

For any  we have where . 

Notice that by using computer simulation, we can generate  pseudo-random variables 

 , where each    has a geometric distribution with parameter   

and then, simulate a ‘pseudo-random’ number with .   

Further we consider a multiplicative semigroup  generated by all primes not exceeding  

  , that is . 

 

THEOREM 1.1.  

If  is a multiplicative probability distribution on  and  is a random variable such that 

   where ,  , 

 then  

1)  For any natural  random event  of occurrence of a random number  divisible  

( )
( )2

1 1( , ) ; ( , )
1 1 1 11

s s s

s s s ss

p p pE p Var p
p p p pp

a n a n
- -

- -

æ ö æ ö
= = = = ×ç ÷ ç ÷- - - -è øè ø-

ϕ(ν ) = α (ν , p)
p∈P
∑

( , )p

p

pa nn
Î

=Õ
P

ϕ(ν )

Es ϕ(ν )⎡⎣ ⎤⎦ =
1
ps −1p∈!

∑ ,Vars ϕ(ν )⎡⎣ ⎤⎦ =
ps

ps −1
⎛
⎝⎜

⎞
⎠⎟
⋅ 1
ps −1

⎛
⎝⎜

⎞
⎠⎟p∈!

∑

( )1 2, , , Np p p p=
!

" N

( )S p!

!p 1

n∈S( !p) n = pi
ai

i=1

k

∏ ai > 0 for all i (1≤ i ≤ k), k ≤ N

N

α j =α ( pj ,ν ), 1≤ j ≤ N α ( pj ,ν )
1
ps

⎛
⎝⎜

⎞
⎠⎟

1

j
k

j
j

pan
=

=Õ k = k(ν ) ≤ N

S(PN ) PN

N ∈N PN = p ≤ N | p∈P{ }

Pf ! ν

Pf ν ∈A{ } = 1Z ⋅ f (n)
n∈A
∑ A⊆ ! f :!→ (0,1]

2m ³ E ν
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by   has probability . 

2)  for any two mutually prime numbers  and , random events  and   

of occurrence of  divisible by both  and by , respectively, are -independent events:      

                                     .  

     Since  we have, equivalently, 

   

Proof. 

For we have:   

   since ,        

and .    Then,  implies  

 

Q.E.D.               

The following theorem states that the assumption that the probability distribution   is ‘complete 

multiplicative’ (with an appropriate choice of function ) is  a necessary and sufficient condition for 

such distribution  to be Zeta probability distribution. 

 

THEOREM 1.2. 

Let  be a random variable with values in  that follows probability distribution      

                                       ,                            (1.10) 

where ,    and  is a convergent series. 

The series  takes a form of the ‘Euler product of the series’ [12, p.230]:  

m Pf (E) = Pf (Cm,0 ) = f (m)

m1 m2 E1 E2

ν 1m m2 Pf

Pf (E1∩ E2 ) = Pf (E1) ⋅Pf (E2 )

1 2 1 21 ,0 2 ,0 1 2 ,0, andm m m mE C E C E E C ×= = Ç =

Pf (Cm1,0∩Cm2 ,0 ) = Pf (Cm1,0 ) ⋅Pf (Cm2 ,0 )

m = m1 ⋅m2

Pf Cm,0( ) = 1Z f (m ⋅ k) =
k∈!
∑ 1

Z
f (m) ⋅ f (k) =

k∈!
∑ f (m) = f (m1) ⋅ f (m2 )

1
Z k∈N
∑ f (k) = 1

Pf Cmi ,0( ) = 1
Z k∈N
∑ f (mi ⋅ k) = f (mi ) (i = 1,2) Cm1⋅m2 = Cm1 ∩Cm2

Pf (Cm1,0∩Cm2 ,0 ) = Pf (Cm1⋅m2 ,0 ) = Pf (Cm1,0 ) ⋅Pf (Cm2 ,0 )

Pf  on !

f

Pf

ν !

Pf ν ∈A{ } = 1Z f (n)
n∈A
∑

f :!→ 0,1⎡⎣ ⎤⎦ A⊆ ! Z = f (n)
n=1

∞

∑

Z = f (n)
n=1

∞

∑
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1)   if  in (1.5) is multiplicative, then   ; 

2)   if  in (1.5) is a completely multiplicative function such that , then 

                                ; 

 3)    the probability distribution  is a Riemann Zeta distribution    

       for any choice of .   Further we denote   .                         

Proof. 

1) Let be a semigroup of all integers generated by : . 

Due to the Fundamental Theorem of Arithmetic,  

    

Then, if  is a multiplicative function, we have   

     .             

     2)  In the proof above we have used the multiplicative property of function .  

If  is completely multiplicative, we have .  Then, we can write 

 and the above equality takes a form: 

  

Notice that the right-hand sides of the above equalities are convergent infinite products, since  

the left-hand side is given by the convergent series.   

3)  Notice that for any  we have ,  

where  . 

f Z = f (n)
n=1

∞

∑ = 1+ f ( p)+ f ( p2 )+!⎡⎣ ⎤⎦
p∈P
∏

f 0 < f ( p) <1 for all p∈P

Z = f (n)
n=1

∞

∑ = 1
1− f ( p)p∈P

∏

Pf

Pζ (s) ν = n{ } = n−s

ζ (s)
, n∈!, 1s > Pζ (s) = Ps

S(PN ) PN ∪ 1{ } PN = p | p ≤ N , p∈P{ }

n = pα (n,p)

p∈P*
∏ ,  where α (n, p) ≥ 0,α (n, p) =

aj > 0 if  paj | n and paj+1
! n

0, otherwise

⎧
⎨
⎪

⎩⎪

f

Z = f (n)
n=1

∞

∑ = f ( pα (n,p) )
p∈P
∏⎡
⎣
⎢

⎤

⎦
⎥

n=1

∞

∑ = f ( pk )
k=0

∞

∑⎡
⎣
⎢

⎤

⎦
⎥

p∈P
∏ = 1+ f ( p)+ f ( p2 )+!⎡⎣ ⎤⎦

p∈P
∏

f

f f ( pk ) = f ( p)( )k

1+ f ( p)+ f ( p)( )2 + f ( p)( )3 +!= 1
1− f ( p)

Z =
n=1

∞

∑ f (n) ==
p∈P
∏

k=0

∞

∑ f ( p)( )k⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

p∈P
∏ 1
1− f ( p)

n∈S(PN ) ns = pa(n,p)⋅s
p∈P
∏ = pa( p)⋅s

p∈P
∏

a(n, p) = a( p)∈!∪ 0{ }
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Since   , we have                       

Denote ,  .Then,    

For any natural   we write the event “  divides ”  as   and the opposite event           

“ “ as . The probability that a prime number  divides  is 

 and the probability that  does not divide   is .  The 

probability that the number  divides  and does not divide is given by the formula  

    

Then, by virtue of Theorem 1.1 and the canonical factorization of , we have 

                                 (1.11)     

Summation of both sides of (1.11) results in the formula: 

   , which implies: 

     

                (1.12) 

provided that  is such that the infinite product and the infinite sum in the above formulas are both 

convergent.  Completely multiplicative function  satisfies the functional equation 

, known as one of ‘fundamental’ Cauchy functional equations.  Due to Theorem 3, 

p.41 in [19] for positive , it has the most general solution of the form . Obviously, 

in our context is a completely multiplicative arithmetic function and for this choice  

of    is Zeta function which generates Zeta probability distribution     

0

1 1
11

k

s
k

s
p

p

¥

=

æ ö
= ç ÷

è ø-
å

{ }

( )

0 ( ), ( )
( )

N
N

sk s a p s

k a p p N n Sp N p N

s p p nz
¥

- - × -

= £ Î£ £

é ù= = =ê úë û
å å åÕ ÕP

P

ξ p (ν ) = p
α (ν ,p) ξ = p P ξν ,p = p

α (ν ,p){ } = P ξ = p{ }⎡⎣ ⎤⎦
α (ν ,p)

m m ν E = m \ν{ }
m does not divide ν E = m ! ν{ } p ν

P{p \ν}= f ( p) p ν P{p !ν}= 1− f ( p)

ν kp 1kp +

P pk \ν( )  ∩  pk+1 ! ν( )  { } = f ( p)( )k ⋅ 1− f ( p)( )
n

P ν = n{ } = P pa(n,p) |ν( )  ∩  pa(n,p)+1 ! ν( )  { }
p∈P
∏

= f ( pa(n,p) )( ) ⋅ 1− f ( p)( )⎡
⎣

⎤
⎦

p∈P
∏ = f ( p)⎡⎣ ⎤⎦

a(ν ,p)
⋅ 1− f ( p)⎡⎣ ⎤⎦
p∈P
∏

p∈P
∏

1= P ν = n{ } =
n∈!
∑ 1− f ( p)( )

p∈P
∏ ⋅ f ( p)⎡⎣ ⎤⎦

α (n,p)

p∈P
∏

n∈!
∑

1
1− f ( p)ν∈!

∏ = f ( pα (n,p) ) =
p∈P
∏

ν∈!
∑ f pα (n,p)

p∈P
∏

⎛
⎝⎜

⎞
⎠⎟
=

ν∈!
∑ f (n) = Z

ν∈!
∑

1= P ν = n{ } =
n∈!
∑ 1− f ( p)( )

p∈P
∏ ⋅ f ( p)⎡⎣ ⎤⎦

α (n,p)

p∈P
∏

n∈!
∑

Ps ν = n∈P{ } ′p = p + d p + ′p

f (n)

f :!→ (0,1]

f (x ⋅ y) = f (x) ⋅ f ( y)

x, y f (x) = ec⋅ln x = xc

f (n) = n−s(s >1)

,f Z( f ) = ζ (s)
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                                              . 

Q.E.D. 

 

Remark 1.1.               

The problem with the choice  for  is that it leads to the divergent harmonic series  

.  To avoid the situation with the series divergence, we follow the steps of Euler [3]  

by restricting values of . Zeta function   is well known to be directly  

related to the probability distribution of prime numbers.  This motivates the choice of Zeta  

distribution.  Due to the property of independence of divisibility for Zeta distribution, if   divides , 

then while the quotient   is again distributed over classes of congruence ,   

and so on.  A number   is prime if and only if it does not divide all primes less than or equal  

to :  

                                    (1.13) 

For  we have  . 

In particular,  , and .  

Then, the probability of    is calculated as  

 

  =       

Probability of , due to the canonical presentation (1.8), can be expressed as 

Pζ (s) ν = n{ } = 1
ns ⋅ζ (s)

, n∈!

1( )f n
n

= 1s =

1

1(1)
n n

z
¥

=

=å

  to  1s s >
1

1( ) s
n

s
n

z
¥

=

=å

p n

pn n ¢= ×
p
nn ¢ = p ,p rC

ν = n

n

Ps ν = n∈P{ } = Ps α (ν , p) = 0⎡⎣ ⎤⎦ |ν = n
p≤ n
∩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

pÎP { } ( )( , ) 1 for all 0,1,2,sk s
sP p k p p ka n - -= = × - = !

{ } ( )( , ) 1 1s s
sP p p pa n - -= = × - { }( , ) 0 1 s

sP p pa n -= = -

ν = pj ∈P{ }
P ν = pj{ } = Ps α (ν , p1) = 0,…,α (ν , pj−1) = 0,α (ν , pj ) = 1,α (ν , pj+1) = 0,…{ }

1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ 1−

1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ Ps α (ν , pk ) = 0{ }

k≠ j
∏ = 1

pj
s

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ 1− 1

pj
s

⎛

⎝
⎜

⎞

⎠
⎟

k=1

∞

∏ =
pj
−s

ζ (s)

ν = 1{ }
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 In general, for any natural number  , we have 

 ,  

that is 

                                                                    (1.14) 

Formula (1.14) may provide some probabilistic interpretations of Riemann Zeta function.   

If  has Zeta probability distribution, then the probability that  for certain  results  

in a prime number is evaluated as 

         (1.15) 

   

Notice that formula (1.13) does not provide ‘reasonable’ values of probabilities for specific 

realizations of  . For example, it is not equal to zero for any composite value of , say for 

even .  Actually, as we show further, formula (1.13) gives satisfactory  

predictions of asymptotic values of probability  as .     

Since , we have                

         . 

We compare (Table 3.1) frequency estimate  with probability in (1.13) and with the Cramér’s 

model prediction  ,  though, dependence of probability  on parameter  makes the above  

formulas harder to interpret.  

 

Ps ν = 1{ } = Ps α (1, p) = 0{ }
p∈P
∩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟
= 1
ζ (s)p∈P

∏
1 2

1 2
p mkk k

m
p

n p p p pxn
Î

= = = ×Õ ! !
P

{ }
( , ) ( , )

11 1 1 1 11 1 ( )
n p n p

s s s s s s
p p p

P n s
p p p p n

a a

n z -

Î Î Î

é ùæ ö æ ö æ ö æ ö
= = × - = × - = ×ê úç ÷ ç ÷ ç ÷ ç ÷

ê úè ø è ø è ø è øë û
Õ Õ Õ
P P P

Ps ν = n{ } = n−s

ζ (s)

v v(ω ) ω

Ps ν ∈P{ } = 1
ζ (s)

p−s
p∈P
∑

ν ν
ν

Ps ν = n∈P{ } n→∞

ν ≤ n{ } = ν = i{ }
i=1

n

∪

Ps v ≤ n{ } =
k −s

k=1

n

∑
ζ (s)

  and  Ps ν ∈P( )  ∩  v ≤ n( )  { } = Ps ν = p∈Pn{ } =
p−s

p∈Pn
∑
ζ (s)

,

( )n
n

p

1
lnn sP 1s >
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We know that one can circumvent divergence of   for   by using the analytic 

continuation of  on the complex plane ,  as suggested by B. Riemann.  

Meanwhile, as we have mentioned above, the use of Incomplete Product  

Zeta function (IPZ)  defined as a partial product of ,   ,   

provides another opportunity to deal with the divergence of  for  . 

 

Lemma 1.2 

Let be a semigroup of all integers generated by ,  

. 

Then,  

             . 

Proof. 

Notice that for any  we have , where  . 

Since   , we have . 

Q.E.D.  

 

Lemma 1.2 

If   follows Zeta distribution , then  

.               (1.16) 

Proof. 

By using the recursive property of the sequence of prime numbers  with the  

1

1( ) s
n

s
n

z
¥

=

=å 1s £

ζ (z) !

ζP
N
(s) ( )sz

1( ) 11
N

p N
s

s

p

z
£

=
-

ÕP

1(1) 11p
sp

z
Î

=
-

Õ
P

s = 1

S(PN ) PN ∪ 1{ }
PN = p | p ≤ N , p∈P{ }

( )
( )

N
N

s

n S
s nz -

Î

= åP
P

n∈S(PN ) ns = pα ( p)⋅s
p∈P
∏ α ( p)∈!∪ 0{ }

0

1 1
11

k

s
k

s
p

p

¥

=

æ ö
= ç ÷

è ø-
å

{ }

( )

0 ( ), ( )
( )

N
N

sk s a p s

k a p p N n Sp N p N

s p p nz
¥

- - × -

= £ Î£ £

é ù= = =ê úë û
å å åÕ ÕP

P

ν Ps

Ps ν ∈P{ } = 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟p< ν

∏

p ≤ν
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memory size    and the property of independence of divisibility for Zeta distribution,  

we have   ,  

which means that     is prime if and only if any prime   

does not divide . Formally,   is prime if and only  .   

This implies that if follows Zeta probability distribution then 

                                 . 

Q.E.D. 

 

Lemma 1.3 

Let be a semigroup of all integers generated by ,  

. 

Then,  

             . 

Proof. 

Notice that for any  we have , where  . 

Since   , we have . 

Q.E.D.  

 

2. Multiplicative and Additive Recurrent models for Primes 

 

The famous Harald Cramér’s model [2,3] describes the occurrence of prime numbers  

as a sequence of independent Bernoulli variables with probabilities  

.                (2.1) 

ν

P ν ∈P |ν = n{ } = P ∩
p≤ n

p ! n{ }⎧
⎨
⎩

⎫
⎬
⎭
= Ps p ! n{ }
p≤ n
∏ = 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

ν = n p ≤ n

n ν = n mod( , ) 0 for all primes r n p p n¢ ¢= ¹ £

ν > 5

Ps ν is prime { } = 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟p≤ ν

∏

S(PN ) PN ∪ 1{ }
PN = p | p ≤ N , p∈P{ }

( )
( )

N
N

s

n S
s nz -

Î

= åP
P

n∈S(PN ) ns = pα ( p)⋅s
p∈P
∏ α ( p)∈!∪ 0{ }

0

1 1
11

k

s
k

s
p

p

¥

=

æ ö
= ç ÷

è ø-
å

{ }

( )

0 ( ), ( )
( )

N
N

sk s a p s

k a p p N n Sp N p N

s p p nz
¥

- - × -

= £ Î£ £

é ù= = =ê úë û
å å åÕ ÕP

P

P ξ(n) = 1{ } = 1
lnn

,   P ξ(n) = 0{ } = 1− 1
lnn

,   where n ≥ 2
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Notice that similar to (1.16), formula (2.1) is valuable only asymptotically for distribution  

of primes. In what follows, we provide rigorous arguments in support of Cramér’s  

model, related to the values of probabilities ,  and then analyze dependence  

of  in the sequence .  As we have discussed above, appearance of  

 prime  in the sequence    are dependent events determined by  

the prehistory . Obviously, if  , then   

since  is an even number. Even if we restrict values of  to odd numbers ,  

still divisibility of  by the previously occurred primes would depend on the  

prehistory  Therefore, the sequence of consecutive primes and the corresponding  

Bernoulli variables  cannot be interpreted as occurrence of independent events  

in the sequence, or as a realization of  a Markov chain with a constant size of memory,  

because for each   the size   of the memory  increases in the sequence with .  

We analyze the sequence of prime numbers  by using multiplicative and 

additive models.   In any kind of a model, we will be using the equivalent canonical realizations    

                           so that  .  

The transformations , are   -measurable.  

We define  the transformations by . 

A multiplicative model is based on the canonical representation of primes  [5, p.18]: 

   where       (2.2) 

and is concerned with the questions of divisibility of  integer-valued random variables by integers,   

and with their connection to  Zeta probability distribution: 

   , for any subset .                (2.3) 

For the multiplicative model of the dynamical system representing (2.2),  where , we define     

qn =
1
lnn

ξ(n) ξ(n) | n = 1,2,…( )
n = ν(k) ν(k) = k | k ∈N{ }

F
n
=σ ν(k) |1≤ k ≤ n{ } ν(n) = p∈P ν(n+1) = p +1∉P

p +1 ν(n) 2k +1

ν(2k +1) = n

F
n
.

ξ(n)

ν(k) = n [ ]n F
n

n

ν(k) = p | p∈P,k ∈N{ }

Ω,F ,P( ) = X T ,BT ,PX( ) ν(ω ,t) = ν(t)

θt : X
T → X T , t ∈T BT / BT

θsν(t) = ν(t + s), for  s,t ∈T

n = pα (n,p)
p∈P
∏ α (n, p) =

α p > 0 if p divides n

0,  otherwise

⎧
⎨
⎪

⎩⎪

Ps ν ∈A{ } = 1
ζ (n)

⋅ 1
nsn∈A

∑ A⊆ N

v = n
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,  

where .  

Additive models  are useful in problems related to counting of various types of integers in .   

In additive models dynamical systems are defined by the equations:  

 ; ,  

where definition of the ‘updating’ term determines the specifics of the model, as illustrated 

below.  First, we consider the function , counting the number of primes less than or equal to .  

Second, for all  we consider the number  of Goldbach -primes, or -primes,  

 

which are such primes  that a difference  is again a prime number.  

In the first situation we use  recurrent equations: 

         (2.7) 

It is well-known that the connections between additive and multiplicative properties of numbers  

are extraordinarily complicated, and this leads to various difficult problems in Number Theory.   

We start from the division algorithm [5, p.19].  Given integer  there exists a unique  

pair of integers . In this equation,   

if and only if  divides .  We derive here a recursive formula generating a sequence of prime 

numbers:  For any prime number  and a natural number  , consider  

a function  of residuals (remainders) such that  

where  .  Consider a vector of consecutive prime numbers  

such that  .  Index  determines here the value  for the number  

of primes  less than or equal to  so that . For each coordinate  of  

vector   we determine the residual value    and consider  

vector of residuals .  Notice that, due to the Sieve Algorithm, for an  

integer  to be prime it is necessary and sufficient that all coordinates   of the ‘reduced’  

θ iν = ν(i); ν(0) = 1,θ i+1ν = θ iν ⋅η(i +1)

η(n+1) =  pn+1
αn+1(ν ) (i = 0,1,2,…,κ (ν )−1)

!

θ iν = ν(i) ν(0) = 0,θ i+1ν = θ iν + ξ(i +1)

ξ(n+1)

π (x) x

m ≥ 3 G(2m) m Gm

p 2m− p

π (1) = 0
π (n+1) = π (n)+ ξ(n+1), n∈!
⎧
⎨
⎩

and 0n m >

and such that k r , with 0n mk r r m= + £ £ 0r =

m n

2,3,5,7,! pÎP 2n ³

mod( , )n p r= , 0 ,n m p r r p= × + £ <

m∈!∪ 0{ } ( )1 2( ) , , , kp n p p p=
!

"

1and  k kp n p n+£ > k ( )n kp =

n ( )1 2 ( )( ) , , , np n p p pp=
!

" ip

( )p n! mod( , ), 1,2, , ( ),i ir n p i np= = !

( )1 2 ( )( ) , , , nr n r r rp=
!

"

2n > ir
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vector of residuals  such that  be different from zero.  Thus, the events   

                        are equivalent.  

See calculations below in the Table 2.1. 

 

Table 2.1.  The recursive sequence of primes driven by their residuals 

        

2  1      

3       

       

  

  

6  

  

7 4 
   

8 4 
   

9 4 
   

10 4 
   

11 5 
  

12 5 
   

13 6 
   

      

30 10 
   

31 11 
   

    

We evaluate   assuming that a random integer follows Zeta probability distribution. 

To assign a probability value to a set   (“all multiples of number  ”), we should refer it to the 

( )r n! ( )1 i np£ £

min
i≤π ( ν )

ri | ri = mod(ν , pi ){ } > 0{ }  and ν ∈P{ }

n π (n) !p(n) = p1, p2 ,…, pπ (n)( ) !r (n) = mod n, !p(n)( ) = r1,r2 ,…,rπ (n)( )
( )2 ( )0

2 ( )2,3 ( )1,0

4 2 ( )2,3 ( )0,1

5 3 ( )2,3,5 ( )1,2,0
3 ( )2,3,5 ( )0,0,1

( )2,3,5,7 ( )1,1,2,0

( )2,3,5,7 ( )0,2,3,1

( )2,3,5,7 ( )1,0,4,2

( )2,3,5,7 ( )0,1,0,3

( )2,3,5,7,11 ( )1,2,1,4,0

( )2,3,5,7,11 ( )0,0,2,5,1

( )2,3,5,7,11,13 ( )1,1,3,6,2,0

!
! !

!

( )2,3,5,7,11,13,17,19,23,29 ( )0,0,0,2,8,4,13,11,7,1

( )2,3,5,7,11,13,17,19,23,29,31 ( )1,1,1,3,9,5,14,12,8,2,0

P ν ∈P |ν = n{ } n

m ⋅! m
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class  of integers in  congruent   modulo  so that  .   There are 

exactly  congruent classes modulo :   , which 

make a finite partition of . Then, for each integer  we can define a probability distribution on 

 :   

    and      

Theorem 2.1 

Let  be a random variable with Zeta probability distribution    and  

        (2.8) 

 its canonical rеpresentation.   Then, each  random variable  in (2.8) has   

geometric probability distribution with a parameter  :  

       ,      (2.9) 

We have then, 

                               . 

Variables    are independent  for all primes   as well as factors 

 for all  in the canonical factorization .  

 

Proof. 

Denote  events  and , respectively. 

We have:     

   since . 

Cm,0 = n | n = k ⋅m, k ∈!{ } ! 0 m Cm,0 = m ⋅!

m m Cm,r = n | n = r + k ⋅n, k ∈!∪ 0{ }{ }, 0 ≤ r ≤ m−1

! 1m >

{ },0 ,1 , 1, , ,m m m mC C C -!

P ν ∈Cm,r{ } = qm,r ≥ 0, 0 ≤ r ≤ m−1
1

,
0

1, 2,3,4
m

m r
r
q m

-

=

= =å !

n Ps

ν = pα (ν ,p)
p∈P
∏ = pk

α k (ν )

k=1
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∏

α (ν , p)

1 (0 1)su u
p

= < <

Ps α (ν , p) = a{ } = ua ⋅(1− u) = 1
ps

⎛
⎝⎜

⎞
⎠⎟

a

⋅ 1− 1
ps

⎛
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⎞
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[ ] [ ] 2
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1 1( , 1, ( ,s s su uE p p Var p p p
u u

a n a n- -
= = - = = -

α k (ν ) =α (ν , pk ) pk  (k = 1,2,…,κ (ν ))

pk
α (ν ,pk )   and   pj

α (ν ,p j )  k ≠ j ν =
p∈P
∏pα (ν ,p)

a \ b and a ! b 'a divides b ' 'a doesnot divide b '

Ps pk \ν( )∩ pk+1 ! ν( ){ } = Ps pk \ν{ }− Ps pk+1 \ν{ } pk+1 \ν{ }⊂ pk \ν{ }
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Notice that   

Therefore, 

  . 

Denote  the event  ( ). Then, for  we have    

                          , 

 .       

Similar,  

 . 

If   are co-prime numbers, then  , that is , 

and   , which holds true for any two different primes 

 . This proves independence of  for different primes , 

as well as independence of factors  for all  in the canonical  

factorization .  

Q.E.D. 

 

Theorem 2.2 

Random variables  with Zeta distribution 

 

Ps p
k \ν{ } = Ps ν ∈ pk ⋅N{ } = 1

ζ (s)
⋅ 1

pk ⋅m( )sm∈!
∑ = 1

ps
⎛
⎝⎜

⎞
⎠⎟

k

⋅ 1
ζ (s)

⋅ 1
msm∈!

∑ = 1
ps

⎛
⎝⎜

⎞
⎠⎟

k

.

P pα (ν ,p)) \ν( )∩ p ! ν
pα (ν ,p)

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
= P pα (ν ,p) \ν( )∩ pα (ν ,p)+1 ! ν( ){ } = 1

ps
⎛
⎝⎜

⎞
⎠⎟

α (ν ,p)

⋅ 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟

Em = Cm,0 m\ν{ } 'm divides ν ' 1 2m m m= ×

Pζ (s) Em( ) = Pζ (s) Cm,0( ) = m ⋅ k( )−s
ζ (s)

= 1
msk≥11

∑ k −s

ζ (s)k≥1
∑ = 1

ms
= 1
m1

s ⋅m2
s

( ) ( )
( ) ,0

11 1

1 1 ( 1,2)
( ) ( )i

s s
i

s m s s
k ki i

m k kP C i
s m s mz z z

- -

³ ³

×
= = = =å å

( ) ( )

( ) ( )
1 2

1 2

1 2
( ) ,0

11 1 1 2 1 2

( ) ,0 ( ) ,0

1 1
( ) ( )

s s

s m m s s s s
k k

s m s m

m m k kP C
s s m m m m

P C P C

z

z z

z z

- -

×
³ ³

× ×
= = × =

× ×

= ×

å å

m1 and m2 Cm1⋅m2 ,0 = Cm1 ∩Cm2 Em1⋅m2 = Em1 ∩ Em2

Ps Em1 ∩ Em2( ) = Ps Em1( ) ⋅Ps Em2( )
m1 = p1 and m2 = p2 α ( p,ν ) p

pi
α (ν ,pi )   and   pj

α (ν ,pi )  i ≠ j

ν =
p∈P
∏pα ( p,ν )

ν(i), i = 0,1,2,...

Ps ν(i) = n{ } = n−s

ζ (s)
,  s > 0,   n∈!
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represents a random walk  on a multiplicative semigroup 

  generated by the extended set of primes .  

The walk on is defined recursively as follows:   

   (2.10)  

The sequence  is a finite walk on  with independent  

multiplicative increments  such that  ,  

and ,  where  is the least prime number that divides . 

Proof. 

Formulas (1.7) and (1.9) imply:   

Since and all , due to Theorem 1, are independent random variables each with 

geometric distribution, we have , 

and . 

Thus,  since  . 

Since , where  for all ,  we have:  

Q.E.D 

 

Theorem 2.3 

Let  be the Heaviside function    ,   

ν(i) | 0 ≤ i ≤κ (ν ){ }
S(P∗) P∗ = P∪ 1{ }

P∗

ν(1) = ν(0) ⋅η(1),   where ν(0) = 1,  η(1) = p1
α1(ν )

ν(i +1) = ν(i) ⋅η(i +1),   where  η(i +1) =  pi+1
α i+1(ν ) (i = 0,1,2,…,κ (ν )−1)

⎧
⎨
⎪

⎩⎪

ν(i) | 0 ≤ i ≤κ (ν ){ } S(P∗)

η(i) = pi
α i (ν ) P η(i) = pi

ai{ } = 1
pi
s

⎛

⎝⎜
⎞

⎠⎟

ai

⋅ 1− 1
pi
s

⎛

⎝⎜
⎞

⎠⎟

κ (ν ) ≤ log pmin ν = lnν
ln pmin

pmin ν

ν = pα (ν ,p) =
p∈P
∏ 1

p:α (ν ,p)=0
∏

⎛

⎝⎜
⎞

⎠⎟
⋅ pα (ν ,p)

p:α (ν ,p)>0
∏

⎛

⎝⎜
⎞

⎠⎟
= pi

α i

k=1

κ (ν )

∏

ξ(i) = pi
α i α i =α (ν , pi )

P η(i) = pi
ai{ } = 1

pi
s

⎛

⎝⎜
⎞

⎠⎟

ai

⋅ 1− 1
pi
s

⎛

⎝⎜
⎞

⎠⎟

were i = 1,2,…,n,  so that  ν(n) = η(i)
i=1

n

∏  for all n :  1≤ n ≤κ (ν ) ν(n) = ν  if  n =κ (ν )

P ν = m{ } = 1
pi
s

⎛

⎝⎜
⎞

⎠⎟i=1

κ (m)

∏
α i

⋅ 1− 1
pi
s

⎛

⎝⎜
⎞

⎠⎟i=1

∞

∏ = 1
ms

⋅ 1
ζ (s) m = pi

α i

i=1

κ (m)

∏

m = pi
α i

i=1

κ (m)

∏ ≥ pmin( )κ (m) pmin ≤ pi i :  1≤ i ≤κ (m) κ (m) ≤ log pmin m

h : R→ 0,1{ } h(x) =
1  if x > 0
0 if x ≤ 0
⎧
⎨
⎩

!r (ν ) = r(ν i ) |1≤ i ≤ π ν( )( )
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a vector of residuals   and  = .  

If a random variable  has Zeta probability distribution and ,  then for each    the 

following statements hold true: 

              (2.11) 

    

Proof. 

 Theorem 1 implies 

        

Notice that the event   can be expressed in the form of conditions   

.      (2.12) 

By using the Heaviside function    , we can write the recursive equation  

for  in the form:               

or, equivalently,         

                              (2.13) 

which controls the occurrence of prime numbers in the sequence of all integers 

   For a random number  with Zeta probability distribution, vector  

of residuals  is a vector with independent random  

components   distributed within congruence classes   

for all  . For  to be prime is necessary and sufficient that   

r(ν i ) = mod(ν , pi ), ρ(ν ) = min !r (ν )( ) min
i
r(ν i ) |1≤ i ≤ π ν( )( )

ν ξ(n) = h ρ(n)( ) n∈!

(1) Ps ν ∈P ν = n{ } = Ps h ρ(ν )( ) = 1ν = n{ } = 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

(2) Ps ξ(n+1) = π (n+1)−π (n) = 1{ } = Ps h(ρ(ν ) = 1ν = n+1{ } =
p≤ n+1
∏ 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟

Ps ν ∈P ν = n{ } = Ps {p ! ν}ν = n
p≤ n
∩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= Ps {p ! ν}|ν = n{ } = 1− 1

pi

⎛

⎝⎜
⎞

⎠⎟i=1

π ( n )

∏
p≤ n
∏

p≤ n
∩ {p ! ν}ν = n

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

mod(ν , p) > 0 p∈P,ν = n⎡⎣ ⎤⎦{ }
p≤ n
∩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= {ri > 0}

1≤i≤ π (n)
∩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= min ri 1≤ i ≤ π (n)⎡

⎣⎢
⎤
⎦⎥ > 0{ }

h(x) =
1  if x > 0
0 if x ≤ 0
⎧
⎨
⎩

( )np π (n+1) = π (n)+ h min
p≤ n+1

mod(n+1, p) | p∈P{ }⎛
⎝

⎞
⎠

π (n+1) = π (n)+ h min
i≤ n

ri | ri = mod(n+1, pi ){ }( ) = π (n)+ h min(!r (n+1)( )

n = 3,4,5,6,… n

!r (ν ) = r1(ν ),r2(ν ),…,rκ (ν ) (ν )( )
rk (ν ) = mod(ν , pk ) Cpk ,rk (ν )

k :  1≤ k ≤ π (ν ) n ν
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should not be divisible by all of primes , which means that  

. Denoting ,  

we have: 

            

             ,         (2.14)     

since .   Therefore, by letting  , we obtain 

                                    (2.15) 

Probability of random variable  with Zeta distribution to be a prime number in the interval    

for all   is given by the formulas:    

                      ,    

                            (2.16)  

Examples.  

       with . 

We have:   

  with  

We have: . 

In the above setting, the number  in example 1) represents the path: 

                              

The number  in example 2) represents the path:   

                            

p n£

ρ(ν ) = min ri(ν ) |1≤ i ≤ π ν( ){ } > 0 ξ(n) = h ρ(n)( )  (n = 1,2,3,…)

Ps ξ(n+1) = π (n+1)−π (n) = 1|π (1) = 0{ } = P h(ρ(n+1) = 1{ }

= Ps min (r (n) > 0{ } π (1) = 0{ } =
1

ζ (s)
⋅
p≤ n+1
∏ 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟

1
ζ (s)

=
p≤ n+1
∏ 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟

Ps π (1) = 0{ } = 1
ζ (s)

1s®

Ps ξ(n) = 1π (1) = 0{ }→ 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

ν [2, ]n

n ≥ 5

P ν ∈P ν = n{ } = P h ρ(ν )( ) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

P ξ(n) = 1min(ri |1≤ i ≤ π ( n) > 0{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

1)  ν = 108 = 1⋅22 ⋅33 ⋅50 ⋅70! α (108, p) = 0  for all  p > 3

α (108,2) = 2,α (108,3) = 3;κ (108) = 2

2)  ν=110=2 ⋅30 ⋅5⋅70 ⋅11⋅130 ⋅170! α (110, p) = 0  for p = 3, 7, and all  p >11

α (110,2) = 1,α (110,5) = 1,α (110,11) = 1; κ (110) = 3

0

108 ( )
i

ix
¥

=

=Õ

1→ 22 → 33→ 50 → 70 →!

110 = ξ(i)
i=0

∞

∏
0 0 0 01 2 3 5 7 11 13 17® ® ® ® ® ® ® ®!
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By setting  for all  ,  we can calculate probability   of any given 

value .    

In example 1): 

 

  

In example 2): 

  

 

Notice that, in general, in the formal expression        

the product involves a set of all prime numbers.  In the above expressions  

the ‘probability’  depends on a parameter   

,            (2.17) 

To cope with the divergence of the infinite product  ,                 

we consider    for ,  and define the probability  as a function of parameter .  

Meanwhile, there is another way to cope with divergence of   for .  We can do so by 

introducing a sequence of incomplete (or partial) Riemann Zeta functions. We define the incomplete 

product Zeta function as a partial product in the multiplicative presentation of  for   

P ξ( j) = pj
α j{ } = 1

pj
s

⎛

⎝
⎜

⎞

⎠
⎟

α j

pj ∈P { }P nn =

n∈!

Ps ν = 108{ } = 1
22s

⋅ 1− 1
2s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1
33s

⋅ 1− 1
3s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

7s
⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

11s
⎛
⎝⎜

⎞
⎠⎟
! 1− 1

pj
s

⎛

⎝
⎜

⎞

⎠
⎟!

= 1
22s ⋅33s

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏ = 1
108s

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏

Ps ν = 110{ } = 1
2s

⋅ 1− 1
2s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

3s
⎛
⎝⎜

⎞
⎠⎟
⋅ 1
5s

⋅ 1− 1
5s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

7s
⎛
⎝⎜

⎞
⎠⎟
⋅ 1
11s

⋅ 1− 1
11s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

13s
⎛
⎝⎜

⎞
⎠⎟
! 1− 1

pj
s

⎛

⎝
⎜

⎞

⎠
⎟!

= 1
2s ⋅5s ⋅11s

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏ = 1
110s

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏

Ps ν = n{ } = 1
ns

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏

Ps ν = n{ } s :

{ }
1

1 1 11
( )s s s s

j j

P n
n p n s

n
z

¥

=

æ ö
= = × - =ç ÷ç ÷ ×è ø

Õ n∈!, s >1

1

1 11 1
j pjp p

¥

= Î

æ ö æ ö
- = -ç ÷ ç ÷ç ÷ è øè ø

Õ Õ
P

= ζ (1)

1

1( ) s
n

s
n

z
³

=å 1s > Ps s

1

1( ) s
n

s
n

z
¥

=

=å 1s £

ζPN (s) ζ (s) s ≥1:
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                                                                        (2.18)                                    

Remark 2.1. 

Since  , we have a convergent additive partial presentation of : 

  .        (2.19) 

Here  is a multiplicative semigroup of all integers generated by ,  

where .   Notice that  is an infinite set generated by  

a finite set .  Then, we consider the corresponding probability distribution  , ,  

given by the formula: 

                                      (2.20) 

Since   , we have . 

The probability  of  to be a prime number in the set of numbers , 

generated by primes not exceeding ,   can be calculated by the formula: 

         (2.21) 

The convergence of the infinite series is guaranteed by  

(2.18) and (2.19).  In general, from the probabilistic point of view, every finite path on  

the monoid set. can be identified with a randomly chosen natural number    

by assuming that it has a probability distribution     such that 

1( ) 11
N

p N
s

s

p

z
£

=
-

ÕP

1

1− 1
ps

= 1
ps

⎛
⎝⎜

⎞
⎠⎟k=0

∞

∑
k

ζ (s)

0 ( )
( )

N
N

sk s

k n Sp N

s p nz
¥

- -

= Î£

é ù= =ê úë û
å åÕP

P

( )NS P PN
∗ = { }1N ÈP

{ }| ,N p p N p= £ ÎP P ( )NS P

PN
∗

,s NP 1s >

Ps,N ν = n{ } = 1
ns ⋅ζPN (s)

, n∈S(PN ), s > 0, N ∈!

1

( )

1 1( ) 1
N

N

s s
n Sp N

s
p n

z
-

Î£

æ ö
= - =ç ÷

è ø
åÕP
P

{ },
( )

1
N

s N
n S

P nn
Î

= =å
P

Ps,N n S(PN )

N

{ },
1is prime| ( ) = 11( )

1

N

N

s s

p p N s
s N N s

p N p N
s

p N

p p
P S p

s p
p

n n
z

- -

Î £ -

£ £
-

£

æ ö æ ö
Î = = × -ç ÷ ç ÷

è øè ø
-

å å
å Õ

Õ
P

P

P

( )
( )

N
N

s

n S
z nz -

Î

= åP
P

S P*( ) = ! ν

P ν = n{ }, n∈!,
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  . 

 

 

3. Asymptotics of a generalized Bernoulli process and  

          the Cramér’s model of prime numbers distribution 

 

Definition 3.1 

A sequence of -valued random variables  defined on probability space  

 which terms are not in general independent and identically distributed we call  

a generalized Bernoulli process. We have: 

  . 

Probabilitstic approach to distribution of prime numbers in  is addresed in the Harald Cramér’s  

model [2,3].  The sequence of random variables  on the main probability space ,  

 such that , for some  has realizations resulted in prime numbers: .  

The assignments of probabilities  

        

 in the Cramér’s model was originally motivated by the Prime Number Theorem [10, p.133],  

 

 where the counting function of primes on  is given by the asymptotic formula           

                                               ,   

  which leads to the heuristic assumption about the probability  

        

 The Cramér’s model describes the occurrence of prime numbers as a special case  

{ }
1

1
n
P nn

¥

=

= =å

0,1{ } ξk( )k∈!
Ω,F ,P( )

P ξk (ω ) = 1{ } = Pk ,P ξk (ω ) = 0{ } = Qk , Pk +Qk = 1, k ∈!
!

ν k( )k∈! Ω,F ,P( )
νn :Ω→ N ω ∈Ω ν k (ω ) = n∈P

P ν k (ω ) = n∈P{ } = P ξ(n) = 1{ } = 1
lnn

, P ν k (ω ) = n∉P{ } = P ξ(n) = 0{ } = 1− 1
lnn

,

!

π (x) = 1
p∈P∩[2,x]
∑ ∼ Li(x) = dt

ln t2

x

∫

P p∈[x −1,x]{ } ∼ dt
ln tx−1

x

∫ ∼
1
ln x
.
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 of a Bernoulli process given by a sequence of independent Bernoulli variables   

 with probabilities        

                                   

 or equivalently,   

                         , .   

   

The above formulas (2.1) and (2.16) , due to the Merten’s 1st and 2nd theorems [9, p.22],   

have the asymptotic expression: 

,              (3.1)   

where   .   In both models A and B we consider all values of   

in (3.1) by choosing an arbitrary large natural . As we pointed above, the Cramér’s assumption  

about independence of terms in the sequence   is not accurate for any finite  

subset of  . The more adequate approach would be to consider the sequence of consecutive primes 

represented by and , respectively, as  stochastic predictable sequences of 

dependent random variables.    

Actually the sequence of random variables in the updated Cramér’s model is asymptotically Bernoullian  

(and asymptotically pairwise independent) in a sense of Definition 3.1 given below.  Meanwhile,   

the demand  for idependence of terms in the sequence  and in could be  be relaxed  

for the Cramér’s model, due to the version of the Central Limit Theorem (CLT) for dependent   

random variables in sequences with a sort of  ‘asymptotically forgetful memory’ [ 7 ]. This version  

of  CLT tracks back to the S.N. Bernstein’s ideas [ 22 ].  One of the most general forms of the Central 

Limit Theoems for dependent variables has been proved for sequences of random walks on 

differentiable manifolds and Lie groups by the author [24,25]. 

Never the less, in what follows we use the assumption of independent terms in sequences of random 

variables  as the most adequate for the goals of this article and apply here the classical form  

ξ(n) | n∈!( ), where ξ(n) = ξ(νn ),

P νn ∈P{ } = 1
lnn

,   P νn ∉P{ } = 1− 1
lnn

,

P ξ(n) = 1{ } = 1
lnn

,   P ξ(n) = 0{ } = 1− 1
lnn

where n ≥ 2

P ξ(n) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ ≈ e−γ

1
2
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

c
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1.12292 18968c
eg

= » n > N

N

ξ(n) | n = 1,2,…( )
N

νn( )n∈! ξ(n) | n = 1,2,…( )

νn( )n∈! ξ(n)( )n∈!

ν k{ }k∈!
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of the CLT [23]. 

Let discuss now, following M. Loèv [18], asymptotic behavior of  generalized Bernoulli processes.    

We have for  mathematical expectation  and variance  

 

Denote   Then .   Since  , we have      

.  Then,    

and .  

This implies:  

=  ,         (3.2) 

where  .   

 

If terms in  are pairwise independent, then   

and , which implies  . 

Thus,  can be viewed as a cummulative measure of pairwise independence of terms in  

Bernoulli process .  Denote: 

      .   

 Notice that 

                               where  .       

We consider below a slightly different measure  that shows how close a Bernoulli process  

 is to a classical Bernoulli sequence of independent equally distributed random variables. 

ξk E ξk{ } = Pk V ξk{ } = Pk ⋅Qk

Xn =
1
n

ξn.
k=1

n

∑ E Xn{ } = 1n Pk
k=1

n

∑ ξk( )2 = ξk

E ξk( )2{ } = E ξk{ }, E ξk ⋅ξl{ } = P ξk ⋅ξl = 1{ } = Pkl E Xn{ }( )2 = 1n2 Pk
2 + 2 Pk ⋅Pl

1≤k<l<]≤n
∑

k=1

n

∑
⎛

⎝⎜
⎞

⎠⎟

E Xn( )2{ } = 1n2 k=1

n

∑Pk + 2
k<l
∑Pkl

⎛

⎝⎜
⎞

⎠⎟

V Xn{ } = E (Xn )
2{ }− E Xn{ }( )2 1

n2
PkQk + 2

1≤k<l≤n
∑ (Pkl − Pk ⋅Pl )

k=1

n

∑⎛⎝⎜
⎞
⎠⎟
= 1
n2

V (ξk )+ Dn
k=1

n

∑

Dn =
2
n2 1≤k<l≤n

∑ (Pkl − Pk ⋅Pl ) =
n(n−1)
2n2

2
n(n−1)

Pkl −
2

n(n−1)
Pk ⋅Pl

1≤k<l≤n
∑

1≤k<l≤n
∑⎛

⎝⎜
⎞
⎠⎟

ξ(n)( )n∈! Pkl = E ξk ⋅ξl{ } = E ξk{ } ⋅E ξl{ } = Pk ⋅Pl
Dn = 0 V Xn{ } = 1

n2
V ξk{ }

k=1

n

∑

Dn

ξ(n)( )n∈!
P1(n)=

1
n

Pk
k=1

n

∑ and P2(n) =
2

n(n−1)
Pkl

1≤k<l≤n
∑

Dn =
n−1
2n

P2 − P1,2( ) P12 =
2

n(n−1)
Pk ⋅Pl

1≤k<l≤n
∑

dn

ξ(n)( )n∈!
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Then,   and    

Since  = ,  we have     

                                                       (3.3) 

where  .   

In the classical Bernoulli scheme witn independent identically distributed terms   

we have , due to independence  

and equal distribution of terms in the sequence ,  so that .   

This implies  and .   

This means that the value of  is a measure of a deviation of the sequence  

from a classical Bernoulli scheme with identically distributed terms. 

Definition 3.1 

We call a sequence of -valued random variables defined on probability space  

 asymptotically pairwise Bernoullian if  as . This means  

that for sufficiently large  variables  are asymptotically independent for all . 

 

Lemma 3.1 

For asymptotically Bernoullian sequence we have   so that    

                          as  . 

Proof. 

Due to (3.2),  .    

E Xn( )2{ } = 1n2 Pk + 2 Pkl
k<l
∑

k=1

n

∑⎛⎝⎜
⎞
⎠⎟
=
P1 − P2
n

+ P2 E Xn{ }( )2 = P1( )2

V Xn{ } = E (Xn )
2{ }− E Xn{ }( )2 P1 − P2

n
+ P2 − P1( )2

V Xn( ) = P1 − P2n
+ P2 − P1( )2 = P1 − P2n

+ dn

dn = P2 − P1( )2

ξk( )k∈!
Pkl = E ξk ⋅ξl{ } = P ξk ⋅ξl = 1{ } = P ξk = 1{ } ⋅P ξl = 1{ } = Pk ⋅Pl = P2

ξk( )k∈! dn = P2 − P1( )2 = P2 − P2 = 0

dn = 0 V Xn{ } = 1
n2

V ξk{ }
k=1

n

∑

dn ξk( )k∈!

ξn( )n∈! 0,1{ }
Ω,F ,P( ) max

N<k<l
Pkl − Pk ⋅Pl → 0 N→∞

N ξk ,ξl l > k > N

ξn( )n∈! Dn → 0

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ → 0 n→∞

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ = Dn
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Since ,   and  ,    

we have .  

This implies . 

Q.E.D. 

Keeping in mind approximation (3.1),  we restrict the sequence by considering  its  ‘tail’ 

of the original seqience for sufficiently large .   

Theorem 3.1 

The sequence in the modified Cramér’s model is asymptotically pairwise Bernoullian, 

 that is  , where , ,  

 and      as  for all .               (3.4) 

Proof.   

 Indeed, , . Then, since   

for all  ,  we have  and   as  . 

This implies  for all .                    

Q.E.D.  

 

In the Cramér’s model represents the number of primes among  terrms  

in the interval  of the sequence and  is a relative freqiency  

of primes for these terms.  predicted by the improved model based on Zeta probability distribution.  

Dn =
2
n2

Pkl − Pk ⋅Pl( )
k<l≤n
∑ Pkl − Pk ⋅Pl( )

k<l≤n
∑ ≤ n(n−1)

2
max
N<k<l

Pkl − Pk ⋅Pl

Dn ≤
2
n2

⋅ n(n−1)
2

⋅ max
N<k<l

Pkl − Pk ⋅Pl → 0

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ → 0

ξk( )k∈! ξk( )k>N
N

ξk( )k∈!
max
N<k<l

Pkl − Pk ⋅Pl = O
1
lnN

⎛
⎝⎜

⎞
⎠⎟

P ξk = 1{ } = Pk P ξk ⋅ξl = 1{ } = Pkl

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ = O 1
lnN

⎛
⎝⎜

⎞
⎠⎟

Dn = O
1
lnN

⎛
⎝⎜

⎞
⎠⎟

n > N

P ξk = 1{ } = Pk P ξk ⋅ξl = 1{ } = Pkl Pkl − Pk ⋅Pl < Pk ≤
1
lnN

N < k < l ≤ n max
N<k<l

Pkl − Pk ⋅Pl ≤
c
lnN

→ 0 Dn = O
1
lnN

⎛
⎝⎜

⎞
⎠⎟

N→∞

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ = O 1
lnN

⎛
⎝⎜

⎞
⎠⎟

n > N

π N n( ) = ξ(k)
k=N

N+n

∑ n

(N ,N + n] π N (n)
n

= 1
n

ξ(k) =
π̂ N (n)
nk=N

N+n

∑
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In the Table 4 below, we demonstrate how well       approximates relative frequencies  

of primes   in the Zeta distribution model for   as   increses from to . 

 

 

 

Table 3.1.  Comparison of probabilities  and 

                                frequencies   of primes in intervals   

 

 

 

 

 

  

  0.33333333 0.400000 00 

 0.22857143 0.25000000 

 0.15285215 0.16800000 

 0.12031729 0.12290000 

 0.09621491 0.09592000 

 0.08096526 0.07849800 

 0.06957939 0.06645790 

 0.06088469 0.05761455 

 0.05416682 0.05084753 

 

 

Consider now the Generalized Law of Large Numbers for a general Bernoulli 

process as it stated in [18] and apply it then to Zeta distribution model for . 

Theorem 3.2 

E π (n)
n

⎧
⎨
⎩

⎫
⎬
⎭

π (n)
n

ξk( )k≥3 n 101 109

P ν ∈P ν = n{ }
π (n)
n

[1, ]n

Natural n
P ν ∈P ν = n{ } = 1− 1

p
⎛
⎝⎜

⎞
⎠⎟p≤ n

∏
( )n
n

p

101

102

103

104

105

106

107

108

109

ξk( )k∈!
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Let   and   be a relative freqiency of primes the interval 

.  Then, the Generalized Law of Large Numbers holds true: 

                .      (3.5) 

 If  ,   

then the Generalized Strong Law of Large Numbers holds true: 

                        (3.6) 

Proof.   

Due to [25], we apply the following Propositions: 

1. Generalized Bernoulli Theorem that for every :    

holds true for a Bernoulli process if and only if .  

2. Generalized Strong form of Bernoulli Theorem that   

holds true if   .    

We show here that these propositions asymptotically hold true for tails . 

 For tail in the framework of Cramér’s model we have: 

, 

 

Then,                    

Notice that      implies  . 

ξ(k) =
1 if  k ∈P
0 otherwise
⎧
⎨
⎩

π̂ N (n)
n

= 1
n

ξ(k)
k=N+1

N+n

∑

[N ,N + n]

P
π̂ N (n)
n

− E
π̂ N (n)
n

⎧
⎨
⎩

⎫
⎬
⎭
> ε

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
→ 0 as N ,n→∞

dn.N = 2
n(n−1)

P (k ∈P)∩ (l ∈P){ }− 1
n

P k ∈P{ }
k=N

N+n

∑⎛
⎝⎜

⎞
⎠⎟N≤k<l≤N+n

∑
2

= O 1
n

⎛
⎝⎜

⎞
⎠⎟

P
π̂ N (n)
n

− E
π̂ N (n)
n

⎧
⎨
⎩

⎫
⎬
⎭
→ 0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 1 as  N ,n→∞

ε > 0 P Xn − E Xn{ } > ε{ }→ 0

ξk( )k∈! dn = P2 − P1( )2
→ 0 as n→∞

P Xn − E Xn{ } → 0{ }→1

dn = O
1
n

⎛
⎝⎜

⎞
⎠⎟

ξk( )k≥N
ξk( )k≥N

P1,N (n) = E
π̂ N (n)
n

⎧
⎨
⎩

⎫
⎬
⎭
= 1
n

E ξ(k){ } = 1n P k ∈P{ }
k=N+1

N+n

∑
k=N+1

N+n

∑ = 1
n

1
ln kk=N+1

N+n

∑ ∼
dt
ln tN

N+n

∫ = Li(N + n)− Li(N )

P2,N (n) =
2

n(n−1)
E ξ(k) ⋅ξ(l){ }

N≤k<l≤N+n
∑ = 2

n(n−1)
P (k ∈P)∩ (l ∈P){ } ⋅

N≤k<l≤N+n
∑

dn.N = 2
n(n−1)

P (k ∈P)∩ (l ∈P){ }− 1
n

P k ∈P{ }
k=N

N+n

∑⎛
⎝⎜

⎞
⎠⎟N≤k<l≤N+n

∑
2

dn.N ≤ max
N≤k<l≤N+n

P (k ∈P)∩ (l ∈P){ }( ) < 1
lnN

dn,N → 0 as n,N→∞
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This implies .  

Then,  and (9) holds true. 

In addition, if , , then (10) holds true. 

Q.E.D. 

 

4. Additive Walks and Distribution of Twin- and - Primes 

             

Abstract. Some classical questions and problems of Number Theory are addressed here from an 

entirely probabilistic point of view. With certain intense use of Zeta probability distribution, we 

approached some of old classical problems in Number Theory like the Twin Primes problem (the last 

generalized to the -primes distribution problem for consecutive prime numbers), and the distribution 

of prime numbers among arithmetic sequences. A list of variety of problems in Number Theory related 

to the gaps between consecutive primes is given in [1]. In this work sequences of natural numbers are 

considered as realizations of paths of multiplicative random walks with independent increments 

(generated by random variables ν followed Zeta distribution), while prime-valued sequences are 

represented as realizations of additive random walks with asymptotically independent increments. We 

denote here  set of natural numbers and set of prime numbers. Better foundations for the Cramer’s 

model in this work is provided by considering the sequence of (0,1) - valued random 

variables  as generalized predictable non-stationary Bernoulli process.  

          

  

  

  

  

  

  

  

dn,N → 0  as  N ,n→∞

P
π̂ N (n)
n

− E
π̂ N (n)
n

⎧
⎨
⎩

⎫
⎬
⎭
> ε

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= O 1

lnN
⎛
⎝⎜

⎞
⎠⎟
as n,N→∞

dn,N = O 1
n

⎛
⎝⎜

⎞
⎠⎟
as n,N→∞

d

d

! P

ξ(νn )( )n∈N

ξ(νn ) =
1 if νn ∈P 

0 otherwise

⎧
⎨
⎩⎪



 
 

 38 

     “Using randomness to study certainty may seem somewhat surprising.  

              It is, however, one of the deepest contributions of our century to mathematics  

              in general and to the theory of numbers in particular.”    

                       Gérald Tenenbaum, Michel Mendès France, 

                       The Prime Numbers and Their Distribution. AMS, 2000. 

 
Consider, as an example, an additive rule to generate stochastic or deterministic sequences  

of positive integers:  

        ,          (1) 

        where   for all         

The recursively generated sequence (1) represents obviously sums of consecutive prime numbers.  

This approach leads to ‘additive models’ of random walks in the study of prime numbers distribution.  

Though the sequence  generated recursively is deterministic, each jump of the  

‘walk’ (1) can result either in a prime  or in  (if  is a composite number),  

where that jumps that are differences (‘gaps’)  between consecutive primes  

look very sporadic and hard to predict. It is well known that the gaps between two consecutive  

primes can be as small as 2 (for twin primes) or arbitrary big (see the table below).  

Indeed, in the sequence of  consecutive integers  each integer   

is divisible by , and therefore this sequence does not include primes. This means that there are 

consecutive prime numbers  such that  , which implies  

that  .  

The next definition is a generalization of the notion of twin primes. 

 

Definition 1 

We call prime numbers  consecutive if there is no prime   between them (that is no prime such 

that  ). A prime number  we call -prime if  are consecutive primes and .  

 

ν(1) = 0,ν(k +1) = ν(k)+ ξ(k +1)

ξ(k) =
k if k ∈P
0 otherwise
⎧
⎨
⎩

k = 1,2,3…

( ) ( 1,2, , )k kn = !

ν(k) = pk ∈P 0 k

ξ(k +1) = pk+1 − pk

pk ≥ 3 and pk+1

n−1 n! +  k | 2 ≤ k ≤ n{ } n! +  k

k

pi  and pi+1 pi < n! +  2 and  pi+1 > n! +  n

Δ pi = pi+1 − pi ≥ n

p < ′p q q

p < q < ′p p d p, ′p ′p = p + d
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Notice that the number  for a  is called a “gap between two successive 

primes” (see the article “Prime gap” in [8]). 

For example,  is a 2-prime, if and only if  are twin primes, since for  twin primes 

are automatically consecutive. Let us denote 

,  the set of  -primes (that is prime numbers

. 

For example, ; the set of twin primes is .   

One of famous conjectures is that the set  of twin primes is infinite [1]. 

 

Table 1. -primes for , among all primes  

 3 5 11 17 29 41 59 71 101 107 137 149 179 191 197 

  7 13 19 37 43 67 79 97 103 109 127 163 193 

  23 31 47 53 61 73 83 131 151 157 167 173 

 
 

Notice that   for all odd  and the first conjecture is that   

for all even values of . Obviously, and . 

This implies that   makes a partition of the set of primes. 

This means that any prime number  is a  for an appropriate . Indeed, due to the Euclid 

theorem, there are infinitely many prime numbers, therefore for any prime   there exist the next  

(that is consecutive) prime , where , and   .   

The second conjectire is that every is an infinte set for all even values of .   

 

Lemma 1 

For a positive even integer  and a prime number ,  we have   

d = pi+1 − pi = gi d-prime pi

p p and p + 2 p ≥ 3

p and p + 2

DPd = p | p and p + d  are consecutive primes { } d

p such that p and p + d  are consecutive primes)

DP1 = 2{ } DP2 = 3,5,11,17,29,41,...{ }
DP2

d d = 2,4,6 p < 200

DP2

DP4

DP6

DPd =∅ d >1 DPd ≠ ∅

d ≥ 2 DPd ∩ DP ′d =∅ for all d ≠ ′d DP1∪ DPd
even d=2

∞

∪
⎡

⎣
⎢

⎤

⎦
⎥ = P

DPd{ }d∈2!
p d-prime d

p

′p = p + d d = ′p − p p∈DPd

DPd d ≥ 2

d p  such that  p > d p∈DPd
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if and only if  , where  is an odd number such that  

and .  

  Proof. 

Let  be two consecutive prime numbers, that is  and .  We have 

then, 

 , 

where  .  Then,  implies  . 

Since  , we should have  and .  

Thus, where   

Q.E.D. 

 

Remark 1 

Since for each even number  the finite number of congruence classes  

make a partition of the infinite set of all primes , then, due to the ‘pigeonhole principle’, at least  

one of classes  must contain infinitely many prime numbers.  

Prime numbers populate the sets   not evenly for different even integers ,  

as illustrated by the histogram below for . Computer calculations show so far that the most 

frequent value of consecutive prime gaps is . This can be claimed as another unproven  

conjecture. 

According to the Prime Number Theorem [10, p.133], the counting function of primes on   

is given by the asymptotic formula 

                              (2) 

 

This leads to the heuristic assumption about the probability       

                                

p∈Cd ,r  and (p + d)∈Cd ,r r 1≤ r ≤ d −1

p = k ⋅d + r,  p + d = k +1( ) ⋅d + r

pi and  pi+1 pi ∈DdP pi+1 = pi + d ∈P

pi = ki ⋅d + ri ,  pi+1 = ki+1 ⋅d + ri+1

1≤ ri ≤ d −1, 1≤ ri+1 ≤ d −1 pi+1 = pi + d Δ pi = ki+1 − ki( ) ⋅d + ri+1 − ri( ) = d
ri+1 − ri < d ri+1 = ri = r ki+1 − ki = 1

pi = ki ⋅d + r,  pi+1 = ki +1( ) ⋅d + r r  is an odd number and r ≥1.

d Cd ,r ∩P |1< even r < d −1{ }
P

Cd ,r

DPd ,N = DPd ∩[2,N ] d

N = 109

d = 6

!

π (x) = 1
p∈P∩[2,x]
∑ ∼ Li(x) = dt

ln t2

x

∫

P p∈[x −1,x]{ } ∼ dt
ln tx−1

x

∫ ∼
1
ln x
.
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According to the Cramér’s model, occurrences of primes in  are represented by the sequence  

of independent Bernoulli variables  such that   and 

   for all .           (3)           

   

Remark 2 

As we know, the sequence of primes is deterministic and is recursively determined by the 

corresponding vectors of residual 

  ,  . 

Therefore, in contrast to the Cramér’s model, the terms of a more adequate sequence  

of random variables  should be considered as dependent, since 

the value of  depends on values of . Moreover, each must be  

equal to  for all even . Indeed, any prime  is an odd number, and all primes, except  

for , belong to the set of odd numbers (that is to the congruence class of ).   

Dependence of terms  though is not very restrictive because, due to our results in section3, 

Cramér’s model is asymptotically Bernoullian, so that pairwise dependence of terms  

in the sequence vanishes as . 

Denote  number of  in the interval  .   

Given a prime number , the corresponding vector of residuals   must have all 

non-zero components   and obviously the complete vector of residuals 

 has also all non-zero components.  

One of quite reasonable questions is how frequently -primes may occur among all prime numbers. 

 

!

ξn{ }n≥3 ξn =
1 if n∈P
0 otherwise
⎧
⎨
⎩

P ξn = 1{ } = 1
lnn

,   P ξn = 0{ } = 1− 1
lnn

n∈!∩ n ≥ 3{ }

pn{ }n∈!

!r (n) = r1,r2 ,...,rπ n( )
⎛
⎝⎜

⎞
⎠⎟ where  ri = mod(n, pi ), i = 1,2,...,π n( )

ξn{ }n≥3
ξn

!
ξ (n) = ξ1,ξ2 ,...,ξπ n( )

⎛
⎝⎜

⎞
⎠⎟ ξn

0 n p > 2

p1 = 2 C2,1 !

ξn

ξn{ }n≥3 n→∞

π d (x) = 1= I[2,x]( p)
p∈DPd
∑

DPd∩[2,x]
∑ d-primes [2,x]

p !r ( p) = r1,r2 ,…,rπ p( )
⎛
⎝⎜

⎞
⎠⎟

ri = mod( p, pi ),  0 ≤ i ≤ π p( )
!
R = r1,r2 ,…,rπ p( ) −1( )

d



 
 

 42 

We can evaluate the empirical probability of -primes by the relative frequency: 

                                       (4) 

Denote    .      Then  , 

 where  are consecutive prime numbers.  

Thus,  

                           .                       (5) 

Assuming the Cramer’s assumption of independence of consecutive primes,  

we have: 

      

Then,   .   

Following the Cramér’s model assumption:  , we obtain 

 

                            (6) 

 

Denoting   , we write the function  in (6) as 

                         (7) 

 

Thus, mathematical expectation and variance of given   can be approximated  

d

P ν  is a d-prime| ν ∈P∩ 2,x⎡⎣ ⎤⎦{ } ≈ π d (x)
π (x)

ξd (n) =
1 if  n is  d-prime
0,   otherwise
⎧
⎨
⎩

π d (x) = ξd (n)
n≤x
∑

ξd (ν ) = 1  if  ν = pi  and ν + d = pi+1

π d (ν + d) = π d (ν )+ ξd (ν )  (i = 1,2,…)

P ξd (ν ) = 1{ } = P ν  and ν + d  are consecutive primes{ }
= P ν  and ν + d  are prime numbers with no primes in the open interval v,v + d( ){ }
= P ν ∈P{ } ⋅P

i=1

d−1

∩ (ν + i)∉P{ }⎧
⎨
⎩

⎫
⎬
⎭
⋅P (ν + d)∈P{ }

P (ν + i)∉P{ }
i=1

d−1

∩
⎧
⎨
⎩

⎫
⎬
⎭
= 1− P (ν + i)∈P{ }( )

i=1

d−1

∏

P ν ∈P | v = n{ } = 1
lnn

P ξd (ν ) = 1| v = n{ } = 1
lnn( ) ⋅ ln(n+ d)( ) ⋅ 1− 1

ln(n+ i)
⎛
⎝⎜

⎞
⎠⎟i=1

d−1

∏ = Ψ(n,d)

φ(n,d) = 1− 1
ln(n+ i)

⎛
⎝⎜

⎞
⎠⎟i=1

d−1

∏ Ψ(n,d)

Ψ(n,d) = φ(n,d)
ln(n) ⋅ ln(n+ d)

ξd (ν ) ν = n
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 as   .    

 This implies: 

 

                                   (8) 

 

Using (6.6 and 6.7), we can approximate the mathematical expectation and variance of  in the 

integral form: 

                                                (9) 

 

The comparison of   

is given in the tables below computed for  and  changing  

in steps:  . 

 

 

 

 

E ξd (ν )}|ν = n{ } = Ψ(n,d), Var ξd (ν )}|ν = n{ } = Ψ(n,d) ⋅ 1−Ψ(n,d)( )

E π d (x){ } = E ξd (ν )}|ν = n{ } = Ψ(n,d)
n≤x
∑

n≤x
∑

Var π d (x){ } = Var ξd (ν )}|ν = n{ } = Ψ(n,d)
n≤x
∑

n≤x
∑ ⋅ 1−Ψ(n,d)( )

ξd (ν )

E π d (x){ } =
n≤x
∑Ψ(n,d) ∼ φ(t,d)

ln(t) ⋅ ln(t + d)2

x

∫ dt

Var π d (x){ } ∼ φ(t,d)
ln(t) ⋅ ln(t + d)

⋅ 1− φ(t,d)
ln(t) ⋅ ln(t + d)

⎛
⎝⎜

⎞
⎠⎟2

x

∫ dt

π d (x) distribution with its mathematical expectation Eπ d (x) 

d = 2,4,6,8,10,12 x

101,102,…,  108
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The quality of prediction of  is given by the measure of 

relative error  as illustrated by the table below. 

 

 

 

 

 

                            Number π d (x) of d-primes for p ≤ x

      d:       2           4            6          8         10         12         14         16
x :

102            8           7            7          1           0           0           0           0

103         35         40          44        15         16           7           7           0

104        205       202        299      101       119       105         54         33

105      1224     1215      1940      773       916       964       484       339

106      8169     8143    13549    5569     7079     8005     4233     2881

107    58980   58621    99987  42352   54431   65513   35394   25099

108  440312 440257 768752 334180 430016 538382 293201 215804

        Expectation  Eπ d (x) of  numbers of d-primes for p ≤ x
x :
     d :    2             4          6             8           10        12         14         16

102              5          5           5           1          0           0            0           0

103           27        32         36         13         13          6            6           0

104         177       175       261         88       104        92          47         29

105       1100     1093     1748       697       827       871       437       307

106       7510     7487   12464     5124     6515     7371     3898     2653

107     55001   54667   93255   39505   50776   61125   33026   23422

108   414685 414638 724062 314770 405047 507165 276210 203311

π d (x) by its expectation Eπ d (x)

Rd (x) =
π d (x)− Eπ d (x)

Eπ d (x)
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             Relative errors εd (x) =
π d (x)− Eπ d (x)

Eπ d (x)

    d :    2       4       6        8        10      12       14      16
x :     

102  0.628 0.445 0.344 0.284   NaN   NaN   NaN   NaN

103 0.284 0.238 0.219 0.191 0.196 0.198 0.196   NaN

104  0.160 0.155 0.147 0.144 0.144 0.138 0.141 0.134

105  0.112 0.112 0.110 0.108 0.108 0.107 0.107 0.106

106  0.088 0.088 0.087 0.087 0.086 0.086 0.086 0.086

107  0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072

108  0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.061
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Theorem 6.1 

For each even value of   there are infinitely many consecutive prime numbers with a gap equal to 

 (so that every  is an infinte set for all even values of ) . 

Proof. 

This statement could be proved by using the equivalence:    

 

Indeed, if we assume that there exists  such that  for all  , then  

becomes constant for sufficiently large values of  . But this contradicts the above equivalence since 

function  is strictly increasing for all  due to its derivative 

for all even  and . 

Q.E.D. 

 

 
 References to section 4. 

 
[1]. Richard K. Guy, Unsolved Problems in Number Theory, 2nd Edition. Springer-Verlag, 1994. 

 

 

d ≥ 2

d DPd d ≥ 2

E π d (x){ } =
n≤x
∑Ψ(n,d) ∼ φ(t,d)

ln(t) ⋅ ln(t + d)2

x

∫ dt   as x→∞.

xmax π d (x) = π d (xmax ) x ≥ xmax π d (x)

x

F(x) = φ(t,d)
ln(t) ⋅ ln(t + d)2

x

∫ dt x > 2

′F (x) = φ(x,d)
ln(x) ⋅ ln(x + d)

> 0 d ≥ 2 x > 2
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5.  Probabilistic proof of Strong Goldbach Conjecture 

 

According to the conjecture stated by Goldbach in his letter to Euler in 1742, “every even number 

 is the sum of two odd primes” [1]. Regardless numerous attempts to prove the statement, 

supported in our days by computer calculations up to  , it remains unproven till now.   

In this part we try to solve the ‘puzzle’ in the framework of Probability Theory, by using  

the modified Cramér’s probabilistic model for distribution of primes in the sequence of natural  

numbers . Strong Goldbach Conjecture (SGC), as one of the oldest notoriously known  

problems in Number Theory, raises a question, why it seems so difficult to decide whether  

the equation 

            (1) 

where and are prime numbers, has at least one solution for each even number . 

Indeed, occurrences of primes look very sporadic, so this is hard to oversee all possible   

partitions for even numbers, like , especially for ‘big’ values of .  

One of ideas to solve such a combinatorial problem is to apply methods of Probability Theory. 

The first obstacle in probabilistic approach is assumed ‘randomness’ of occurrences of prime  

numbers, the second – ‘independence’ of their occurrences. From point of view probabilistic  

modeling, a sequence of natural numbers may be considered as realizations of a series  

of independent trials, each of which results either in a prime number or in a composite number, 

occurring with certain probabilities. Assume that a randomly dropped point  on a set of natural 

numbers appears as a prime number with probability , and as a composite  

number with probability .  Then, we are interested in an appropriate  

choice of function  that provides correct asymptotic behavior for occurrence of primes  

in the sequence of natural numbers. Notice that every integer solution in primes  

to the equation (1) must satisfy the inequalities: .  

For each integer  we can populate interval of integers  by randomly and 

independently chosen numbers  that belong to this interval, in a hope that a pair 

would satisfy the equation (1), if such a pair exists.  

2m ≥ 6

4×1018

!

p + ′p = 2m

p ′p 2m ≥ 6

( p, ′p ) p + ′p = 2m m

ν !

P ν = n∈P{ } = g(n)
P ν = n∉P{ } = 1− g(n)

g(n)

(n, ′n )

3≤ n ≤ ′n ≤ 2m− 3

m ≥ 3 Im =[3,2m− 3]

(ν , ′ν ) = (n, ′n )

(n, ′n ) = ( p, ′p )∈Im
2∩P2
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Observe that if in the first throw realization  in occurs as a prime number with  

probability , then, independently, in the second throw realization  in   

may also occur as a prime number with probability . Therefore, given independent  

throws of random points in , probability that both numbers  and  

occur as primes is equal to the product  of probabilities. 

A well-known serious objection to this approach in solving SGC problem, pointed out by  

Hardy and Littlewood [26], is that ‘randomly chosen’ primes in a pair such that  

, must be dependent random variables. This means that, given ,  

the choice of prime number in the equation (1) is completely determined by the choice  

of , which should occur with the same probability as .  

Meanwhile, our probabilistic assumption is that each occurrence of a pair of primes  

is a realization of an independent trial , in which the value of sum  is unknown  

in advance. We are interested in an outcome which results in , if it occurs. 

 In the Hardy-Littlewood objection, instead of independently ‘rolling’ two ‘dice’ at a time  

for a pair of integer outcome , it is ‘rolled’ just one ‘die’, since the sum   

is assumed to be known in advance.  

The correct resolution of this issue should be based on a reasonable definition of probability space 

(a set of all possible elementary outcomes) of the ‘game’, generating pairs of prime 

numbers. The key point is that  and are considered as independent random variables in a pair  

, and among their realizations we are interested in those which satisfy the equation (1).  

If there exists a pair with probability distribution that guarantees for every  occurrence  

of pairs satisfying (1), then we can say that SGC is confirmed. It is an objective of this part  

of the paper. 

 

Definition 1 

Prime numbers  we call - primes if there exist an even number   

such that . The set of all -primes for a given  we denote . 

For each natural   we define Goldbach function  as a number of primes solving  

ν = n Im

g(n) ′ν = ′n Im

g( ′n )

ν  and ′ν Im ν = n

′ν = ′n =2m− k g(k) ⋅ g(2m− k)

(ν , ′ν ) = ( p, ′p )

p + ′p = 2m m

′p

p ′p

( p, ′p )

(ν , ′ν ) ν + ′ν

p + ′p = 2m

(n, ′n ) p + ′p = 2m

Ω =Ων × Ω ′ν

ν ′ν

(ν , ′ν ) (n, ′n )

(ν , ′ν ) m ≥ 3

( p, ′p )

p∈P, ′p ∈P Gm 2m ≥ 6

2m = p + ′p Gm m GmP

m ≥ 3 G(2m)
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the equation . Thus, , where  is a number of elements  

in a finite set . As we have pointed above, we have  for each . 

 

In the context of the Strong Goldbach conjecture (SGC) we are interested in evaluation   

of  for all even numbers  in the form , . 

Evaluation of  for each natural  is a difficult combinatorial problem.  

Calculations show that Goldbach function  asymptotically increases as  increases  

(though not in a monotonic way) and becomes larger for the larger values of   

(see Table 4.2 and Figure 4.3), but so far there is no conclusive statements regarding behavior  

of  as . Examples of sets  for  with the corresponding  

values of  are given in the following table. 

 

   

       Table 1.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The idea of probabilistic approach in this context is based on presentation of a naturally ordered 

2m = p + ′p G(2m) = GmP | A |

A GmP ⊆ Im =[3,2m− 3] m ≥ 3

G(2m) 2m 2m = p + ′p ,  where  (p, ′p )∈P2 m ≥ 3

G(2m) m ≥ 3

G(2m) m

m

G(2m) m→∞ GmP 2m = 10, 102, 103

G(2m)

          

 

                                         

Gm - primes in sets GmP and  Goldbach function values
2m                              GmP    sets                               G(2m)
10          3  5  7                                                                  3
100        3  11  17  29  41  47  53  59  71  83  89  97      12
1000      3   17   23   29   47   53   59   71  89  113  
           137  173  179  191  227  239  257  281 317  
           347 353  359  383  401  431  443  479  491  
           509  521  557  569  599  617  641  647  653   
           683  719  743  761  773  809  821  827  863  
           887  911  929  941  947  953  971  977  983  
           997                                                                       56
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sequence  of prime numbers as realizations  of independent random variables in the 

sequence  such that  .  

There are two requirements for adequate presentation of primes by a sequence of random  

variables  in an appropriate probabilistic model: 

1) the choice of probability values  should provide an accurate asymptotic approximation to   

the actual distribution of prime numbers in  for large values of   (that is as ). 

Meanwhile, a probabilistic model is not designed to guarantee ‘intuitively correct’ assignments  

of probability  to concrete values of each natural number .  

2) the joint probability distribution of random variables in the sequence should objectively 

reproduce dependence (correlation) in occurrence of primes in if such probabilistic dependence 

exists, especially as . 

To address the conditions mentioned above, we consider two options for the sequence : 

A. The Cramér’s model for occurrences of prime numbers in the sequence of independent random 

variables .  

Recall that in the Cramér’s model we consider the sequence of prime numbers as realizations  

of independent random variables  on a probability space , such that  

                                          (4.1) 

Here   is an indicator function for primes in sequence   

of realizations of random variables .  

B. Zeta probability distribution model considers occurrences of prime numbers in the sequence of 

independent random variables , where each integer  is a realization    

           of random variable  on a probability space ,  following Zeta  

pi( )i∈! ν k (ω ) = n

ν k( )k∈! P ν k = k ∈P{ } = g(k),   P ν k = k ∉P{ } = 1− g(k)

ν k( )k∈!
g(n)

N n n→∞

P ν k (ω ) = n∈P{ } n∈!

ν k( )k∈!
pi( )i∈!

ν k = n→∞

ν k( )k∈!

ν k( )k∈!

ν k , k ∈N, Ω,F ,P( )

P ξ(k) = 1{ } = P ν k = k ∈P{ } = g(k) = 1
ln(k)

,

P ξ(k) = 0{ } = P ν k = k ∉P{ } = 1− g(k) = 1− 1
ln(k)

ξ(k) =
1, if  ν k (ω ) = k ∈P
0, otherwise

⎧
⎨
⎩⎪

,

k = ν k (ω ) ν k , k ∈N

ν k( )k∈! n k = ν k (ω )

ν k (ω ) Ω,F ,P( )
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probability distribution     

                                 ,                    (4.2) 

As stated in Theorem 2.3 (formula 2.11), 

                                   (4.3) 

Remark 1 

In both models A and B we consider sample spaces  for sequences of random variables  

as , respectively, and  sample spaces for the corresponding  -valued sequences   

as  .  In both models, each -algebra  of events is generated by all finite subsets  

of the corresponding sample space . 

 

This allows us to think of each pair  taken from sequence  , as of  a pair  

of independent random variables with probabilities given in (4.1) or (4.3). Since the sequences 

in  both Cramér’s model and Zeta distribution model are assumed to consist of independent terms , 

pairs  inherit the same property of independence for their terms. Notice that both models 

asymptotically agree with each other as stated below in Lemma 4.3. 

 

Remark 4.2 

As we mentioned above, realization of sums  may cause certain confusion related to 

possible dependence of events . The problem of dependence for primes in the 

equation  allegedly undermines ‘heuristic justification’ of  “a very crude probabilistic 

argument” [see the article ‘Goldbach conjecture’, Wikipedia]  for evaluation of probability for  

a ‘random’ pair  as      

        . 

Ps ν k = k{ } = k
−s

ζ (s)
, s >1

Ps ξ(k) = 1{ } = Ps ν k = k ∈P{ } = Pk = 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟p≤ k

∏

Ps ξ(k) = 0{ } = Ps ν k = k ∉P{ } = Qk = 1− 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟p≤ k

∏

Ω ν k( )k∈N
Ω = NN 1,0( ) ξ(n){ }n∈!
Ω = 1,0{ }N σ F

Ω

(ν k , ′ν l ) ν k( )k∈!
ν k( )k∈N
ν k

(ν k , ′ν l )

ν k + ′ν l = 2m

{ν k ∈P} and { ′ν l ∈P}

ν k + ′ν l = 2m

(ν k , ′ν l )

P {ν k = k}∩{ ′ν2m−k = 2m− k}{ } = P {ν k = k}{ } ⋅P {ν2m−k = 2m− k}{ }
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This situation has been addressed in 1923 by Hardy and Littlewood in their Hardy – Littlewood prime 

tuple conjecture [26].  Meanwhile, the dependence of variables should be considered in the 

framework of choice for an appropriate probability space for pairs  .  

Our approach surmounts this obstacle: every integer  is considered as a realization    

of a random variable  that follows Zeta probability distribution on  probability space : 

                                                      

We assume that random variables in the sequence are independent. 

Actually,   are terms of the sequence of independent variables   

with realizations  and . To evaluate , define an indicator function: 

                        (4.4)                                 

Then, . Consider integers  and in the given interval    

as realizations   and  of random variables  

on probability space , which follow probability distribution according to Cramér’s  

model A or to the model of Zeta probability distribution B. 

Realizations and  are determined by the choice of elementary events 

 from the set  of all elementary events. The choice of Zeta distribution is motivated,  

 by the fact that, due to Theorems 2.1, 2.2, 2.3 and Lemmas 4.1 and 4.3, it provides 

 the validity of the probabilistic Cramér’s model for asymptotic prime number distribution,  

in a full agreement with the Prime Number Theorem. This is especially important for SGC since  

we are interested in the asymptotic behavior of  as .   

 By substituting  and  into each deterministic indicator function ,  

we obtain ‘randomization’ of these functions.  Thus, each of the ‘randomized’ functions 

 takes values  with probabilities, respectively equal to 

                     and      

ν k  and ′ν l  

ν k , ′ν l( )
n n = νn(ω )

νn(ω ) Ω,F ,P( )

Ps νn = n{ } = n−s

ζ (s)
, s >1.

ν k( )k∈N
ν k and ′ν l ν k( )k∈N

n = νn(ω ) ′n = ′ν ′n (ω ) G(2m)

γ m(n, ′n ) =
1 if  n∈P and ′n = 2m− n∈P
0, otherwise
⎧
⎨
⎩

G(2m) = γ m(n,2m− n)
n=3

2m−3

∑ n ′n [3,2m− 3]

n = νn(ω ) ′n = ′ν ′n (ω ) νn(ω ) and ′ν ′n (ω )

Ω,F ,P( )

n = νn(ω ) ′n = ′ν ′n (ω )

ω ∈Ω Ω

G(2m) m→∞

n = νmk (ω ) ′n = ′ν ′n (ω ) γ m(n)

γ m(n, ′n ) = γ m(νn(ω ), ′ν ′n (ω )) 1 or 0

P γ (n, ′n ) = 1{ } = P νn(ω ) = n∈GmP and ν ′n (ω ) = ′n = 2m− n∈GmP{ }
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The combinations of   values of , occurred  for  all  in the interval ,  

determines the counts of  prime numbers in each set .  We have then,  where 

.  We summarize this in the following Lemma 

 

Lemma 4.1 

The Goldbach function  , , represents a realization of random variable 

  as a sum of   independent Bernoulian random variables 

              (4.3) 

where ,   and   .  

Let be a subgsequence of the sequence of independent variables  

with on a probability space  that follows  

Zeta probability distribution     

                                .                 

Then,      

          

Proof. 

Independence of terms in the sequence implies 

                    

P γ (n, ′n ) = 0{ } = P νn(ω ) = n∉P or ′ν ′n (ω ) = ′n = 2m− n∉P{ }

1 or 0 γ n, ′n( ) n, ′n 3≤ n ≤ 2m− 3

GmP 2m = ν k + ′v2m−k

νmk ∈P,  ′ν2m−k ∈P

G(2m) m ≥ 3

G(2m,
!νm ) 2m−5

G 2m,
!νm(ω )( ) = γ (k,2m− k)

k=3

2m−3

∑

!νm = νm,n( )
3≤n≤2m−3

γ (n, ′n ) =
1 if νn = n∈P and ′ν ′n = ′n = 2m− n∈P 

0 otherwise

⎧
⎨
⎩⎪

!νm = νm,n( )
3≤n≤2m−3

ν k( )k∈N
P ξ(νn ) = 1{ } = P νn = n∈P{ } Ω,F ,P( )

Ps νn = n{ } = n−s

ζ (s)
, s >1

P γ (νn , ′ν2m−n ) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ ⋅ 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ 2m−n

∏

ξ(νmk )( )3≤k≤2m−k
P γ (νn , ′ν2m−n ) = 1{ } = P ν k (ω ) = n∈P and ν ′k (ω ) = 2m− n∈P{ }
= P ν k (ω ) = n∈P{ } ⋅P ′ν2m−n(ω ) = 2m− n∈P{ }
= P ξ(n) = 1{ } ⋅P ξ(2m− n) = 1{ }
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Due to (2.11) and (4.5), ,  and . 

Thus, we have    

Q.E.D.   

  

Denote  and   

Notice that the defined above function  is a monotonically decreasing function  .  

The following Lemma adresses the behavior of  for  . 

Defining  as above in (4.4), we write  

                                                           (4.4) 

Lemma 4.2  

Let   be a monotonically decreasing function  of  natural  where 

 . Then  gets its minimum value on  at , 

that is . 

Proof. 

For  we have since . 

Similarly, for   have  since . 

The statement folows from the decreasing behavior of function . 

Q.E.D. 

 

Lemma 4.2 implies the inequality  

                 (4.5) 

for functions    and   

 

 

P ξ(n) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ P ξ(2m− n) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ 2m−n

∏

P ξ(n) = 1{ } ⋅P ξ(2m− n) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ ⋅ 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ 2m−n

∏

g(n) = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ β(m,n) = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ ⋅ 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ 2m−n

∏ = g(n) ⋅ g(2m− n)

g(n) g :!→ (0,1)

β(m,n) 3≤ n ≤ 2m

γ n, ′n( )

G(2m,
!νm ) = γ (k,2m− k)

k=3

2m−3

∑

g :[a,2m]→ (0,1) n

a ≤ n ≤ 2m β(m,n) = g(n) ⋅ g(2m− n) [a,2m] n = m

min
a≤n≤2m

g(n) ⋅ g(2m− n)⎡⎣ ⎤⎦ = g
2(m)

n ≤ m g(n) ⋅ g(2m− n) ≥ g(m) ⋅ g(m) 2m− n≥ m  for  n ≤ m

n ≥ m g(n) ⋅ g(2m− n) ≥ g(m) ⋅ g(m) 2m− n≤ m  for  n ≥ m

g(n)

β(m,n) ≥ β(m,m) for m,n such that 3≤ n ≤ 2m− n

g(n) = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ β(m,n) = g(n) ⋅ g(2m− n)



 
 

 56 

Lemma 4.3. 

Both models A and B are asymptotically equivalent, that is   , 

where . 

Proof. 

Validity of the choice of probabilities in the Cramer’s model (A) and in Zeta probability model (B) 

 is supported by formula the (2.11) in Theorem 2.3, and by Merten’s 2nd theorem (‘Merten’s Formula’) 

[9, p.21-22].  Indeed, by using (2.11) and the Merten’s 2-nd theorem (30), we have:  

                      (4.6) 

where    and   is Euler’s constant. 

 
Then, we have  . This implies . 

Q.E.D. 

 

Due to (4.5, 4.6), we can evaluate 

                                        (4.7) 

for  with an certain choice of a constant .   Then,  (4.7)  implies 

 for  an appropriate choice of constant  . 

Some authors assume the  constant  in (4.6) appears as a correcting coefficient for the Cramér’s 

model as a compensation for possible pairwise dependence of prime occurences ignored in the model.  

Then, since   and  , we have the 

following expressions for expectation and a variance, respectively: 

PA ξ(n){ } ∼ PB ξ(n){ } as n→∞

PA ξ(n) = 1{ } = 1
lnn

, PB ξ(n) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

    PB ξ(n) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ ∼
e−γ

1
2
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

c
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1.12292 18968c
eg

= » γ = lim 1
k
− lnn

k=1

n

∑⎛⎝⎜
⎞
⎠⎟

n→n

≈ 0.577215664

PA ξ(n) = 1{ } = E ξ(n){ } ∼ c
ln(n)

PA ξ(n){ } ∼ PB ξ(n){ } as n→∞

β(m,n) = c2 ⋅ 1
ln(n)

⋅ 1
ln(2m− n)

⋅ 1+ C
ln(n)

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ 1+

C
ln(2m− n)

⎡

⎣
⎢

⎤

⎦
⎥

3≤ n ≤ 2m− 3 C > 0

β(m,m) = ′C
ln2(m)

1+ ′C
ln(m)

⎡

⎣
⎢

⎤

⎦
⎥

2

′C > 0

c = 2
eγ

E γ (νn , ′ν2m−n ){ } = β(m,n) E G(2m,
!νm ){ } = E γ (νn , ′ν2m−n ){ }

n=3

2m−3

∑
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            ,                    (4.8)     

Due to independence of  , we have         

                                  (4.9) 

 

Notice that we use the approximations (4.6),  (4.7) to prove the following  

Theorem 4.1 related to the Goldbach Conjecture. 

 

Figure 4.1 below illustrates growth of functions   

for .   

 

 

       
                                 Figure 4.1 

 

 

 

E G(2m,
!νm ){ } =

n=3

2⋅m−3

∑β(m,n) ∼
3

2m−3

∫ β(m,t)dt

νmn  in  
!νm = νmn( )3≤n≤m−3

Var G(2m,
!νm ){ } = Var γ m(νn , ′ν2m−n ){ }

n=3

2m−3

∑

= β(m,n) ⋅(1− β(m,n)⎡⎣ ⎤⎦
n=3

2⋅m−3

∑ ∼ β(m,t) ⋅ 1− β(m,t)( )dt
3

2m−3

∫

E G(2m,
!νm ){ }

m = 10,102,103,104,105,106,107
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Remark 4.3 

Notice meanwhile that the Goldbach function is not monotonic  

as ilustrated below in the domain  in  Figure 4.2. 

                           

         
 

     Figure 4.2 

 

 

 

  

 

The Goldbach Conjecture for large values of can be stated in the form: probability

 for all  as   . Assumption that  

for some arbitrary large value of  contradicts to stochastic behavior of  when  increases, 

as demonstrated in the following theorem. 

 

 

G(2m)

3≤ m ≤ 5000

P G(2m,
!νmi ) = γ m(vn , ′v2m−n )

i=3

2m−3

∑ > 0
⎧
⎨
⎩

⎫
⎬
⎭
→1 m ≥ M M→∞ G(2m,

!νm ) = 0

m G(2m,
!νm ) m
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Theorem 4.1 

Let  be a set of all -primes, that is prime numbers  such that 

.  Let each random variable  in the sequence of independent random  

variables  follow Zeta probability distribution:  and  

is a subsequence of the sequence of primes such that   

,  where  .  

Then  is a sequence of independent Bernoulli variables and the randomized  

Goldbach function  has the following properties: 

(1)   

(2)     . 

(3)        

  

Proof. 

Independence of the Bernoulli variables in the set  follows from the assumed 

independence of  in the sequence .  This implies:    

         . 

Due to Lemma 4.1 and (4.5),  for an appropriate choice  

of constant  .    From this follows   and 

GmP for  m ≥ 3 G p, ′p ∈P

p + ′p = 2m ν k

ν k( )k∈P P ν k = n{ } = n−s

ζ (s)
  (s >1)

!νm = ν k( )3≤k≤2m−3 ν k( )k∈P

γ (νn , ′ν2m−n ) =
1 if νn = n∈P and ν ′n = ′n = (2m− n)∈P
0 otherwise

⎧
⎨
⎩⎪

n, ′n ∈[3,2m− 3]

γ (νn , ′ν2m−n )( )3≤n≤2m−3
G(2m,

!νm ) = γ (νn , ′ν2m−n )
n=3

2m−3

∑

P G(2m,
!νm ) = 0{ } = P γ (νn , ′ν2m−n ) = 0{ }

n=3

2m−3

∩
⎧
⎨
⎩

⎫
⎬
⎭
→ 0 as  m→∞.

P G(2m,
!νm ) = 0{ } < e

−C⋅ 2m−5
ln2 (m)

m=3

∞

∑
m=3

∞

∑ < ∞ C>0( )

lim
M→∞

P G(2m,
!νm ) =|GmP |  > 0{ }

m=M

∞

∩
⎧
⎨
⎩

⎫
⎬
⎭
→1 

γ m(νmi ) | 3≤ i ≤ 2m− 3{ }
ν k

!νm = ν k( )3≤k≤2m−3

P G(2m,
!νm ) = 0{ } = P γ m(νn , ′ν2m−n ) = 0{ }

n=3

2m−3

∩
⎧
⎨
⎩

⎫
⎬
⎭
= P γ m(νn , ′ν2m−n ) = 0{ } = 1− β(m,n)⎡⎣ ⎤⎦

n=3

2m−3

∏
i=3

2m−3

∏

β(m,n) ≥ β(m,m) ∼ C
(lnm)2

1+ C
lnm

⎡

⎣
⎢

⎤

⎦
⎥

2

C > 0 1− β(m,n) ≤1− β(m,m)
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This proves that .  

A critical question for the Goldbach Conjecture can be stated as follows: 

is this true that for ‘sufficiently large’ values of   the probability   

that all sets  are not empty is equal to : 

   . 

Consider the probability of the opposite event:   and prove that 

. 

This is a probability that for sufficiently large value of  there exists at least one value  

of  such that the set is empty.  

We have:  (by the limit test). 

Then, , 

due to convergence of the series . 

Q.E.D. 

 

There is another way to evaluate the probability  .  

Denote   where  and  . 

 

P G(2m,
!νm ) = 0{ } ≤ 1− C

(lnm)2 ⋅ 1+ C
lnm

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n=3

2m−3

∏  = 1− C
(lnm)2 ⋅ 1+ C

lnm
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2m−5

∼ e
− 2m−5
D(m)

where  D(m) = C
(lnm)2 ⋅ 1+ C

lnm
⎛
⎝⎜

⎞
⎠⎟

2

and    e
− 2m−5
D(m) → 0  as  m→∞.

P G(2m,
!νm ) > 0{ }→1 as m→∞

m such that m > M ≥ 3

GmP 1

P G(2m,
!νm ) =|GmP |  > 0{ }

m=M

∞

∩
⎧
⎨
⎩

⎫
⎬
⎭
→1 as M→∞

P G(2m,
!νm ){ } = 0

m=M

∞

∪
⎧
⎨
⎩

⎫
⎬
⎭

P G(2m,
!νm ){ } = 0

m=M

∞

∪
⎧
⎨
⎩

⎫
⎬
⎭
→ 0 as M→∞

M

m ≥ M GmP

P G(2m,
!νm ) = 0{ }

m=3

∞

∪
⎧
⎨
⎩

⎫
⎬
⎭
≤ P G(2m,

"νm ) = 0{ } < e
− 2m−5
D(m)

m=3

∞

∑
m=3

∞

∑ < ∞

P G(2m,
!νm ){ } = 0

m=M

∞

∪
⎧
⎨
⎩

⎫
⎬
⎭
≤ P G(2m,

"νm ) = 0{ }
m=M

∞

∑ → 0  as M→∞

m=3

∞

∑P G(2m, !νm ) = 0{ }

P GmP <1{ }
Ym = Yn,2m−n

n=3

2m−3

∑ Yn ′n = γ n ′n − E γ n ′n{ } γ n, ′n = γ m(νn , ′ν ′n ) for each n (3≤ n ≤ 2m− 3)
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Theorem 4.2 

 Let  be a set of all – primes, that is prime numbers  such that .  

Let each random variable  in the sequence follows Zeta probability distribution:  

.  Consider  as a subsequence of such that   

.   

We have  , where . 

  Then, for  we have for  

                       

where   and  or, equivalently,    

                       

 

Proof. 

We have: 

. 

since  due to Lemma 4.2. 

Denoting  , we write . 

Then, ,    

,  

where  . 

GmP for  m ≥ 3 Gm p, ′p ∈P p + ′p = 2m

ν k ν k( )k∈!

P ν k = n{ } = n−s

ζ (s)
  (s >1)

!νm = ν k( )3≤k≤2m−3 ν k( )k∈!

γ m(νn , ′ν ′n ) =
1 if νn = n∈P and  ′νn = ′n = 2m− n∈P 

0 otherwise

⎧
⎨
⎩⎪

 

Yn ′n = γ n ′n − E γ n ′n{ } = γ n ′n − β(m,n) E γ n ′n{ } = β(m,n)

Xm =
Ym − E Ym{ }
Var Ym{ }

=
G(2m,

!νm )− E G(2m,
!νm ){ }

Var G(2m,
!νm ){ }

m→∞

P G(2m,
!νm ) <1{ } = P Xm < xcr (m){ }→ 1

2π
e
−1

2
t2

dt
−∞

xcr (m)

∫ ,   

 xcr (m) =
1− E G(2m,

!νm ){ }
Var G(2m,

!νm ){ }
→−∞ lim

m→∞
P G(2m, !vm ) <1{ } = 0

lim
m→∞

P GmP ≥1{ } = lim
m→∞

P G(2m, !vm ) ≥1{ } = 1

Var Yn,2m−n{ } =Var γ n,2m−n{ } = β(m,n) ⋅ 1− β(m,n)( ) ≥ β(m,m) ⋅ 1− β(m,n)( ) ≥ β(m,m) ⋅ 1− β(m,3)( )
β(m,n) ≥ β(m,m) for all n: 3≤ n ≤ 2m− 3

Ym = Yn,2m−n
n=3

2m−3

∑ Var Ym{ } =Var G(2m, !νm ){ } = Var Yn,m−n{ }
n=3

2m−3

∑

E Yn,2m−n{ } = E γ n,2m−n − β(m,n){ } ≤ 1+ β(m,n)( )≤ 2

β3,mn = E Yn,2m−n
3{ } = E γ n,2m−n − β(m,n)

3{ } = pmn ⋅qmn ⋅( pmn2 + qmn
2 ) ≤ pmn ⋅qmn =σ mn

2

pmn = E γ n,2m−n{ } = β(m,n), qmn = 1− pmn ,σ mn
2 =Var γ n,2m−n{ } = pmn ⋅qmn
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Then,  ,  . 

Due to (4.7), we have  .    

This implies:    

so that .  

All terms in the sum are uniformly bounded 

 ( and )  and centered, because ,  

so that .  We have also  .   Since ,  

this implies the sufficient Liapunov condition  

          

                      

 

for Central Limit Theorem (called in this situation Bounded Liapunov Theorem [ 18], [23]) 

for the sequence of normed and centered variables , such that .      

 This guarantees the uniform convergence of probability distribution function    

to the standard normal probability distribution . 

Recall that     

where  ,  .  

Then, we have 

E Ym{ } = 0 Var Ym{ } = Var Yn,2m−n{ }
n=3

2m−3

∑ = σ n,2m−n
2

n=3

2m−3

∑ = β(m,n) ⋅ 1− β(n,m)( )⎡⎣ ⎤⎦
n=3

2m−3

∑ =σ m
2

β(m,m) = ′C
ln2(m)

1+ ′C
ln(m)

⎡

⎣
⎢

⎤

⎦
⎥

2

σ m
2 =Var Ym{ } = σ k ,2m−k

2

k=3

2m−3

∑ ≥ 2m−5( ) ⋅β(m,m) ⋅ 1− 1
ln2 3

⎛
⎝⎜

⎞
⎠⎟
→ ∞ as m→∞

σ m
2 =Var Ym{ }→∞ as m→∞

Yn,2m−n = γ n,2m−n − pmn Ym = Yn,2m−n
n=1

2m−5

∑

Yn,2m−n ≤1 for all m n Yn,2m−n = γ n,2m−n − E γ n,2m−n{ } = γ n,2m−n − pmn
E Ym{ } = 0 β3,mn = E Ymn

3{ } ≤σ mn
2 σ m

2 =Var Ym{ }→∞ as m→∞

1
σ m

3 E Ymk
3{ }

k=3

2m−3

∑ = 1
σ m

3 β3,mk
k=3

2m−3

∑ ≤ 1
σ m

3 σ mk
2 =

σ m
2

σ m
3

k=3

2m−3

∑ = 1
σ m

→ 0 as  m→∞

Xm =
Ym
σ m

E Xm{ } = 0,Var Xm{ } = 1

FXm (x) of Xm

1
2π

e
−1
2
t2

dt
−∞

x

∫

Xm =
Ym − E Ym{ }
Var Ym{ }

=
G(2m,

!νm )− E G(2m,
!νm ){ }

Var G(2m,
!νm ){ }

E G(2m,
!νm ){ } =

n=3

m−3

∑E γ m(νm,n ){ } G(2m,
!νm ) = γ m(νmi )

i=3

2m−3

∑
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.  

 

Since  ,  we have . 

This implies , which means that 

                                . 

Q.E.D. 

 

 

The values of    and  for  are given in the following table. 

   

 

 

 

 

 

 

 

 

P G(2m,
!νm ) <1{ } = P Xm < xcr (m){ } ≈ 1

2π
e
−1

2
t2

dt
−∞

xcr (m)

∫ ,   

where  xcr (m) =
1− E G(2m,

!νm ){ }
Var G(2m,

!νm ){ }
=

1− pmk
k=3

3m−3

∑
σ m

1
σ m

pmk
k=3

2m−3

∑ ≥ 1
σ m

pmk
k=3

2m−3

∑ qmk =
σ m

2

σ m

=σ m →∞  as  m→∞  xcr (m)→−∞ as  m→∞

lim
m→∞

P G(2m, !vm ) <1{ } = 0
lim
m→∞

P GmP ≥1{ } = lim
m→∞

P G(2m, !vm ) ≥1{ } = 1

P GmP <1{ } xcr (m) m = 103,104,…,108

       

  -6.866973 -16.130926 -40.343498 -105.469447 -284.348502 -783.836910 

   
      

   

       m 103 104 105 106 107 108

x
cr
(m)

P G(2m) <1{ } 3.278916 ×10−12 7.734173× 10−59 0.0000000 0.0000000 0.0000000 0.0000000
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 6. A recursive algorithm generating the sequence of consecutive Goldbach sets  
    

                                                          Abstract   

                                                 

A Recursive Algorithm described here generates consecutive sequences of Goldbach sets    

               ,  where  

toward the proof of the Strong Goldbach Conjecture. This approach is grounded in the fundamental  

principle of mathematical induction and uses rather elementary set-theoretical technique.  

I tried to follow the idea of Martin Aigner and Günter M. Ziegler [10] to make the content  

accessible to the readers with their background only in the basics of discrete mathematics. 

The main idea is to develop a recursive algorithm toward building the sequence of consecutive 

 Goldbach sets  representing  solutions to the system of Goldbach equations       

                     in the intervals , . 

Validity of the algorithm follows from the proved here recursive formula 

                            ,  

given the inductive assumption that for all , where ,   

and  is a set of all odd prime numbers. We establish a definite connection between the 

Goldbach function  and some invariant properties for Diophantine variety  

of Goldbach sets. 

 

 

 

 

 

 

 

 

GkP | 3≤ k ≤ m{ } GkP = n, ′n | n∈P, ′n = 2 ⋅ k − n∈P{ }

GkP | 3≤ k ≤ m{ }
x + y = 2 ⋅ k | 3≤ k ≤ m{ } Ik = [3,2 ⋅ k − 3] 3≤ k ≤ m

GkP + 2 ⋅(m− k)( )∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪ = GmP ≠ ∅

GkP ≠ ∅ k :3≤ k < m Sm = Im∩P

P

G(2m)
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“The most interesting facts are those which can be used several times, 

those which have a chance of recurring ...”  

                                    (Henry Poincaré, The Value of Science) 

  

   1. Shift invariance of Goldbach Set. 
 

We approach here one of old classical problems in Number Theory known as the strong  

form of Goldbach Conjecture (SGC) [1, 5]. According to the conjecture stated by Goldbach  

in his letter to Euler in 1742, “every even number  is the sum of two odd primes” [1].  

Regardless numerous attempts to prove the statement, supported in our days by computer calculations 

up to ,  it remains unproven till now.   

Let  be a set of natural numbers, and  a set of odd primes (all prime numbers excluding ).  

The Goldbach’s Conjecture (GC), as one of the oldest and notoriously known unsolved problems in 

Number theory, raises a question why it seems so difficult to decide whether the equation 

                                                                                         (*) 

, has at least one solution for each even number . Indeed, 

occurrences of primes look very sporadic, so that it is hard to predict, that there exists a pair of primes 

 related by the equation (*), especially for ‘big’ values of .   

Notice that every solution   in primes to the equation , must satisfy 

condition:  .  

We call a prime number  a - prime (Goldbach prime) if  is also a prime number.   

Then, denote  as set of all - primes, and call  Goldbach set.  

The number of elements in set , denoted , is called Goldbach function. 

 Obviously, for all  we have .   A set   is empty if   

for some  - primes do not exist. Goldbach function  counts the number  

of solutions to the equation      

     ,        (1) 

 

2m ≥ 6

4×1018

! P 2

p + ′p = 2m,

where pand ′p are prime numbers 2m ≥ 6

p, ′p( ) m

(n, ′n ) = ( p, ′p ) p + ′p = 2m

(n, ′n )∈[3,2m− 3]2

p Gm ′p = 2m− p

GmP Gm GmP

GmP G(2m)

m ≥ 3 GmP ⊂ Im = [3,2 ⋅m− 3] GmP

m ≥ 3 Gm G(2m)

n+ ′n = 2m n, ′n( )∈P2
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where  are prime numbers,  is any integer  .  

Obviously, any pair of primes greater then 2 solves (1) for  . 

Due to infinity of , this implies that the Goldbach function has . 

The Strong Goldbach Conjecture states that , so that every set  

is nonempty set for all . Calculations show that  increases with , 

though  is not a monotonically increasing function (Fig.1) 

                            

                              Goldbach function   (Fig.1) 

                            

We observe that each pair  which solves (1) must belong to a set ,  

where =  .  Since  is prime, if  , 

the pair  solves (1), so that the prime , and we need to consider  

the case . In general, if is a prime number such that ,  

then . 

Consider a shift mapping of an interval of integers  given by the formula   

                                              .       (2) 

Denote  an algebra of all subsets of the interval . 

n  and  ′n m m ≥ 3

p, ′p( ) 2m = p + ′p

P limsupG(2m) = ∞

minG(2m) = 1 GmP

m ≥ 3 max
m≤M

G(2m) M

G(2m)

G(2 ⋅m)  for  m = 3,4,…,1000

n, ′n( ) [3,2m− 3]2 = Im
2

Im = [3,2m− 3] {3,4,…,2m− 3} 3 ′n = 2 ⋅m− 3( )∈P
3,2 ⋅n− 3( ) 2 ⋅m− 3( )∈GmP
2 ⋅m− 3( )∉P p 2 ⋅m− p( )∈P

2 ⋅m− p( )∈GmP
θm : Im → Im

θm(n) = 2m− n

Fm Im = [3,2m− 3]
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Obviously, is one-to-one and has an inverse  , so that for all   

we have .  Denote . 

Obviously,  is idempotent:  (an identical map), that is . 

Indeed, . 

Let  denote a set of prime numbers in the interval of integers ,  

that is ,  and its complement in  so that 

 .  While  stands for the set of primes in  ,  

  is  the set of composite numbers in .   

We denote . 

The Strong Goldbach Conjecture asserts that for any  the set  is not empty: 

       . 

 

Lemma 1.  

Golbach sets on intervals are - shift invariant: . 

Proof. 

Notice that the sets  are invariant sets of the map  

 since for all  we have  , 

due to . -invariance of  also follows directly from the equalities 

             . 

Q.E.D. 

 

In what follows we need several recursively derived formulas. 

 

 

 

 

θm θm
−1 A∈Fm

θm(A)∈Fm ,θm
−1(A)∈Fm Im

− = [3,m−1], Im
0 = m{ }, Im+ = [m+1,2m− 3]

θm θm
2 = id θm

−1 = θm

θm
2 (n) = θm(θm(n)) = θm 2 ⋅m− n( ) = 2m− (2m− n) = n

Sm Im = [3,2m− 3]

Sm = Im∩P Sm
c = Im! Sm Im

Im = Sm∪ Sm
c , Sm∩ Sm

c =∅ Sm Im

Sm
c Im

θm(Sm ) = 2 ⋅m− Sm = ′n | ′n = 2 ⋅m− n,n∈Sm{ }
m ≥ 3 GmP

GmP = n, ′n | n∈P, ′n = (2m− n)∈P{ } = (2m− Sm )∩ Sm = θm(Sm )∩ Sm ≠ ∅

GmP Im θm θm(GmP) = GmP

Im , m{ }, 3,2 ⋅m− 3{ }  and θm(Sm )∩ Sm

θm : Im → Im n∈Im θm n,θm(n){ }( ) = θm(n),θn
2(n){ } = θm(n),n{ }

θm
2 = id θm GmP

θm GmP( ) = θm Sm∩θm(Sm )( ) = θm(Sm )∩θm
2 (Sm ) = θm(Sm )∩ Sm = GmP
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Lemma 2. 

1) , where      (3) 

2)      (4) 

 3)       (5) 

 4)       (6) 

Proof.  

1)  We observe that   

       so that .   

 2)         

       , 

      Thus,  . 

 3)   , 

       . 

  4)   

           , and  , that is 

           

Q.E.D. 

Notice that (5) implies that if , then and .  

In case when , we have   since .  

Thus, we need to consider the case . Observe that ,  

Im = Im−1∪ 2m− 4,2m− 3{ } Im = [3,2m− 3]

Sm = Sm−1 ∪ P∩ 2m− 3{ }( ) = Sm−1 ∪ 2m− 3{ } if  (2m - 3)∈P
Sm−1  if  (2m - 3)∉P

⎧
⎨
⎪

⎩⎪

θm(Sm ) =
θm Sm−1( )∪ 3{ }  if  2m− 3{ }∈P
θm Sm−1( )  if  2m− 3{ }∉P
⎧
⎨
⎪

⎩⎪

GmP =
θm(Sm )∩ Sm = θm Sm−1( )∩ Sm−1 ∪ 3{ }   if  (2m - 3)∈P
θm(Sm )∩ Sm = θm Sm−1( )∩ Sm−1  if  (2m−1)∉P

⎧
⎨
⎪

⎩⎪

Im−1 = [3,2 ⋅(m−1)− 3]= [3,2 ⋅m−5]

Im = [3,2m− 3]= Im−1∪ 2m− 4,2m− 3{ }
2m− 4,2m− 3{ }∩P( ) = 2m− 3{ }∩P( ) implies
Sm = Im∩P = Im−1∩P( )∪ 2m− 4,2m− 3{ }∩P( ) = Sm−1∪ P∩ 2m− 3{ }( )

Sm = Im∩P = Sm−1 ∪ 2m− 3{ }  if  (2m− 3)∈P  and Sm = Sm−1  otherwise

θm(Sm ) = θm Sm−1( )∪θm 2m− 3{ }∩P( ) = θm Sm−1( )∪ 3{ }  if  2m− 3{ }∈P
θm Sm−1( )  if  2m− 3{ }∉P
⎧
⎨
⎪

⎩⎪

since θm(2m− 3) = 2 ⋅m− (2m− 3) = 3

GmP = θm(Sm )∩ Sm = θm(Sm−1)∪ 3{ }( )∩ Sm−1 = θm(Sm−1)∩ Sm−1( )∪ 3{ }  

 if  (2m - 3)∈P GmP = θm(Sm−1)∩ Sm−1   if  (2m− 3)∉P

GmP =
θm Sm−1( )∩ Sm−1   if  (2m - 3)∉P

θm Sm−1( )∩ Sm−1( )∪ 3{ }  if  (2m− 3)∈P

⎧
⎨
⎪

⎩⎪

(2m− 3)∉P Sm = Sm−1 GmP=θm(Sm−1)∩ Sm−1

(2 ⋅m− 3)∈P GmP ≠ ∅ (2m− 3)∈P , so that  3+ (2m− 3) = 2m

(2m− 3)∉P θm(Sm−1) = θm−1(Sm−1)+ 2
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due to (7) in Lemma 3 below. This implies . If , 

 

then and  . Assuming now that  is a twin prime, that is  , we 

have that   implies .  

See in what follows the more detailed discussion and definitions of sets of twin primes   

and  related to the Goldbach Conjecture. 

The next Lemma concerns some properties of the shift transformation  

Lemma 3. 

Consider a shift transformation . 

Then, for any subset  and integer the following properties of  hold true:  

                                   (7)    

Proof. 

           

Q.E.D.   

    

   2. Twin primes, -primes and Goldbach sets. 

 

Let  stand for a set of all twin primes and consider   

for each .  Thus, if for some  , then  . 

Lemma 3 implies that if for a prime  there exists a twin prime ,  

then .  This shows some connection between the Twin Prime Conjecture  

and the Strong Goldbach Conjecture (SGC), and, moreover, between the Prime Conjecture 

(de Polignac Conjecture (1849)) and SGC, as we observe below. This also shows how nonempty 

Goldbach sets can propagate further with increasing values of . 

 

GmP= θm−1(Sm−1)+ 2( )∩ Sm−1 p∈Gm−1P ≠ ∅

p∈Sm−1 p∈θm−1(Sm−1) p ( p + 2)∈Sm = Sm−1

Gm−1P ≠ ∅ GmP= θm−1(Sm−1)+ 2( )∩ Sm−1 ≠∅
T1P

t-primes TtP

θm   (m ≥ 3)

θm :  Z→ Z such that θm(n) = 2 ⋅m− n,   where n∈N,  m∈! (m ≥ 3)

A⊆ Z t ∈! θm

     θm+t (A) = θm(A)+ 2 ⋅ t
     θm(A) = θm−t (A)+ 2 ⋅ t

θm+t (A) = 2 ⋅(m+ t)− A = 2 ⋅m− A+ 2 ⋅ t = θm(A)+ 2 ⋅ t
θm(A) = 2 ⋅m− A = 2 ⋅(m− t)− A+ 2 ⋅ t = θm−t (A)+ 2 ⋅ t

t

T1P = p | p∈P and (p + 2)∈P{ } GkP∩T1P

k (3≤ k ≤ m) k (3≤ k ≤ m) GkP∩T1P ≠ ∅ Gk+1P ≠ ∅

p∈GkP ( p + 2)∈P

p + 2( )∈Gk+1P
t-

GkP k
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Definition. 

Denote, in general, by a set of -primes for some , that is   

. Notice that ,     

where  stands for the set of all odd prime numbers. Consider examples below: 

,  ,  , and so on. 

Propagation of nonempty  for all   is based on the following observations.   

 

Lemma 4. 

Let  and . There exist   and  (  )  

such that , and . This implies that there exists  (  )  

such that  and . 

Proof. 

Let , . Thanks to the Bertrand’s postulate [4], there exists a prime  between 

integers . This implies that there exists  such that this prime  

can be expressed in the form , where .  

Indeed, we can take . Then,  implies 

 that  and . 

Since  and  ,  we have   

and .                      

Q.E.D.  

 

 

This shows how nonempty Goldbach sets ,   have been generated: 

, 

 

TtP (t ∈!) t t ∈N

TtP = p | p∈P and (p + 2 ⋅ t)∈P{ } TiP = T0P = P
t=0

∞

∪

P

3,5,11,17,29,41{ }⊂ T1P 3,7,13,19,37,43{ }⊂ T2P 5,7,11,17,23,31,37,41{ }⊂ T3P
GkP k ≥ 3

p∈GkP ≠ ∅ p ≤ k q∈P (q > p) t ∈! 1≤ t < k −1

q = p + 2 ⋅ t ∈P p∈TtP t ∈! 1≤ t < k −1

p∈GkP∩TtP ≠ ∅ q = ( p + 2 ⋅ t)∈Gk+tP ≠ ∅

p∈GkP p ≤ k q

k  and 2 ⋅ k (k > 3) t ∈! q

q = ( p + 2 ⋅ t)∈P 1≤ t < k −1

t = q − p
2

,  so that q = p + 2 ⋅ t ∈P p∈GkP

p +θk ( p) = 2 ⋅ k ( p + 2 ⋅ t)+θk ( p) = 2 ⋅ k + 2 ⋅ t = 2 ⋅(k + t)

q = p + 2 ⋅ t ∈P θk ( p)∈GkP p∈GkP∩TtP ≠ ∅

q = ( p + 2 ⋅ t)∈Gk+tP ≠ ∅

G3P,G4P,G5P,… G12P …

G3P = 3{ },G4P = 3,3+ 2{ },G5P = 3,5,5+ 2{ },G6P = 5,5+ 2{ }
G7P = 3,7,7 + 4{ }, G8P = 3,5,11,11+ 2{ },G9P = 5,7,11,11+ 2{ },
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Let , so that there exist  and , where .  

Assume that  is prime and  such that . 

This implies that . 

Since both are primes and , we have   

belong to . For instance, if for some  we have , 

then, due to Lemma 4,  .  Consider   , that is we start from .  

Then,  and . Thus, we have ,   

where .  

Then, due to Lemma 4, for each  there exists such that ,  

which implies . This means that the occurrence of a -prime in a non-empty  

set  implies that  is necessarily non-empty. This provides proliferation  

of non-empty sets   steps forward, so that  is not empty for any .  

Starting from   the ‘wave’ of  propagates forward  

recursively as  without gaps, supported by the existence of such . 

Observe that each pair of primes   such that ,  and , 

generates a nonempty set ,  where  and  is  a -prime in . 

Notice that each prime number in  for  is a -prime for an appropriate value  

of .  Our goal is to demonstrate that we can build a nonempty Goldbach set   

for every ,  given a sequence of nonempty Goldbach sets , by using  

assumption of mathematical induction.  We need the following simple Lemmas. 

 

G10P = 3,7,13,13+ 4{ },G11P = 3,11,17,17 + 2{ },G12P = 5,7,11,13,17 + 2{ }…

GkP ≠ ∅ p∈GkP ′p = θk ( p)∈GkP ′p = θk ( p) = 2 ⋅ k − p

q q > p q = p + 2 ⋅ t, where t = q − p
2

q +θk ( p) = p + 2 ⋅ t( )+θk ( p) = p +θk ( p)( )+ 2 ⋅ t = 2 ⋅(k + t)
q and θk ( p) q +θk ( p) = 2 ⋅(k + t) q and θk ( p)

Gk+tP ≠ ∅ k (3≤ k ≤ m) Gk−1P∩T2P ≠ ∅

Gk+1P ≠ ∅ p = 3 and q = 5 G3P = 3{ }

t = 5− 3
2

= 1 θ3(3) = 3 q +θk ( p) = 5+ 3= 2 ⋅(3+1) = 8

3 and 5 both belong to G3+1P = G4 = 3,5{ }
GkP ≠ ∅ t ∈! GkP∩TtP ≠ ∅

Gk+tP ≠ ∅ t

GkP Gk+tP

GkP t Gk+tP k

k = 3 and t = 1 Gk -primes

k→∞ t-primes

( p,q) p∈GkP q > p q∈Sm = Im∩P

Gk+tP t = q − p
2

p t GkP

GmP m ≥ 3 t

t GmP

m > 3 GkP{ }3≤k≤m−1
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Lemma 5. 

Let , where .  

For any primes and there exists  such that both  belong to . 

Proof.  

Indeed, take . Then,  and ,  since .  

Notice that we can choose  and any prime  in .  Obviously, . 

Q.E.D.  

 

Lemma 6.  

For all  we have  

.      (8) 

Proof. 

For any , due to Lemma 4, there exists  such that , so that . 

And vice versa, if , then  for some , so that . 

Q.E.D. 

 

The following statement concerns a recurrent formula that generates an infinite sequence  

of nonempty Goldbach sets  for all . 

 

Theorem 1. 

Let  for all .  If , then . 

Otherwise, if , we have , due to Lemma 2.  

Then, for any  the following equality holds true:    

                 (9) 

 

 

Sm = Im∩P Im = [3,2 ⋅m− 3]

p∈Sm q∈Sm k ≤ m p and q GkP

k = p + q
2

p∈GkP q∈GkP p + q = 2 ⋅ k ≤ 2 ⋅m

p = 3 q ≥ 3 Sm GkP ⊆ Sm

m ≥ 3

Sm = GkP =
k=3

m

∪ G (m)P

p∈Sm k ≤ m p∈GkP p∈G (m)P

p∈G (m)P p∈GkP k ≤ m p∈Sm

GmP m ≥ 3

GkP ≠ ∅ k :3≤ k ≤ m−1 2 ⋅m− 3∈P 2 ⋅m− 3∈GmP ≠ ∅

2 ⋅m− 3≠GmP Sm = Sm−1
m ≥ 3

GkP + 2 ⋅(m− k)( )∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪ = GmP =∅
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Proof. 

Denote .  

Then,   . 

Consider  . 

Indeed, due to Lemma 1 about - shift invariance of , we have . 

 

Equality  implies that       

               . 

According to equality   (see formula (8) in Lemma 6) we find     

.  Then,   implies .  Hence 

                 . 

We have , due to the assumption of mathematical 

induction.  Then, from  it follows . 

Q.E.D. 

 

The recursive formula (9) in Theorem 1 proves the Strong Goldbach Conjecture. 

Lemma 4 and Theorem 1 show a definite connecion between the number of solutions to the Goldbach 

equation in the intervals  and the number of   

in sets .  We discuss this in what follows. 

 

 

Ak ,m = GkP + 2 ⋅(m− k)( )

GkP + 2 ⋅(m− k)( )∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪ = Ak ,m∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪ = Ak ,m
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm

θm(Ak ,m ) = 2 ⋅m− Ak ,m = 2 ⋅m−GkP − 2 ⋅(m− k) = 2 ⋅ k −GkP = θk (GkP) = GkP

θm GkP θk (GkP) = GkP

θm(Ak ,m ) = GkP

θm Ak ,m
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm

⎛

⎝⎜
⎞

⎠⎟
= θm(Ak ,m )

k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩θm(Sm ) = GkP

k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩θm(Sm )

Sm = GkP =
k=3

m

∪ G (m)P

Sm−1 = GkP
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
= G (m−1)P 2 ⋅m− 3≠GmP Sm = Sm−1

θm Ak ,m
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm

⎛

⎝⎜
⎞

⎠⎟
= GkP

k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩θm(Sm ) = Sm∩θm(Sm ) = GmP

Ak ,m
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm−1 = G

(m−1)P∩Sm−1 =G
(m−1)P ≠ ∅

Ak ,m
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm−1 ≠ ∅ θm Ak ,m

k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm

⎛

⎝⎜
⎞

⎠⎟
= GmP ≠ ∅

p + ′p = 2 ⋅m Im = [3,2 ⋅m− 3] t-primes

GkP for k :3≤ k < m
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                                    3. Diophantine variety of Goldbach sets. 
 

A seqience of Goldbach sets   represents  solutions to the system  

of Goldbach equations  in the intervals   .  

This system is an algebraic variety given by linear equations  ,  

which solutions (if exist) are pairs of prime numbers . 

 Geometrically, each Goldbach set   is a sequence of points with coordinates 

 on the segment of a straight line given by  , , 

symmetrically located on the line with respect to a point , due to invariance 

 , where . See below Fig. 1 and 2 representing  

Diophantine geometry of Goldbach sets, where dots are points with coordinates 

 on the corresponding lines. These dots are solutions to the Goldbach equations 

 . The theorem below answers the question how many solutions are  

in each Golbach set. 

 

Theorem 2. 

The number of solutions to the Goldbach equation  in primes , 

where  and  is not prime, in each inerval  is equal to the number  

of  in the set  such that . We have then, . 

Proof. 

Consider a quadratic polynomial  for  and . 

Let a pair of primes  be a solution to the Goldbach equation  in the  

interval .   Obviously, for  , the pair of prime numbers  

GkP | 3≤ k ≤ m{ }
x + y = 2 ⋅ k | 3≤ k ≤ m{ } Ik = [3,2 ⋅ k − 3]

x + y = 2 ⋅ k 3≤ k ≤ m( )
p, ′p( )∈P2

GkP

p, ′p( )∈P2 x + y = 2 ⋅ k (x, y)∈[0,2 ⋅ k]

(k,k)

θk GkP( ) = GkP θk (x) = 2k − x = y

p, ′p( )∈P2

x + y = 2 ⋅ k 3≤ k ≤ m( )

p + ′p = 2 ⋅m ( p, ′p )∈P2

p < m m Im = [3,2 ⋅m− 3]

t-primes GmP t = ′p − p
2

p = m− t, ′p = m+ t

Pm(x) = x
2 + 2 ⋅m ⋅ x + c m, c x ∈Z

( p, ′p ) p + ′p = 2 ⋅m

Im = [3,2 ⋅m− 3] c = p ⋅ ′p
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are roots of the polynomial . 

Discriminant of  is , where  is a nonnegative integer. 

Observe that   implies .   

Since are not equal prime numbers, the equation  

for an integer  and  implies: , so that 

 . This means that  is a , where .  

Therefore, we have as many solutions  to the equation   

as there are ,  , in the set . Assume now that  , ,  

where  and  is an unknown integer.   Q.E.D. 

 

For   the polynomial takes a form: . 

Its discrimimant is . 

The solutions to the equation  are , where . 

For instance, let . Then,  has 2 roots: 

, but they do not belong to . Meanwhile, for   

and   we have  with roots , 

so that  and .  Notice that are not coprime numbers,  

while  are all coprime.   

Denote .  Then, . The equation.     

                        

has the following different sets of solutions:  and  .  

Since we are solving equation in primes within interval ,  

the solutions are restricted to the set  . Therefore, in interval equations 

p, ′p( )∈P2 Pm(x) = x
2 − 2 ⋅m ⋅ x + p ⋅ ′p = x − p( ) ⋅ x − ′p( )

Pm(x) D = 4 ⋅(m2 − p ⋅ ′p ) = 4 ⋅ t2 t

m2 − p ⋅ ′p( ) = t2 (m− t) ⋅(m+ t) = p ⋅ ′p

p and ′p (m− t) ⋅(m+ t) = p ⋅ ′p

t p ≤ ′p m− t = p and m+ t = ′p

t = ′p − p
2

and  ′p = p + 2 ⋅ t p∈GmP t-prime inGmP t = ′p − p
2

( p, ′p )∈P2 Pm(x) = x
2 + 2 ⋅m ⋅ x + p ⋅ ′p

t-primes t = ′p − p
2

GmP 2 ⋅m = p + q c = p ⋅q

p∈P q = 2 ⋅m− p

p∈GmP Pm(x) Pm(x) = x
2 + 2 ⋅m ⋅ x + p ⋅(2 ⋅m− p)

Dm = 4 ⋅ m
2 − p ⋅(2 ⋅m− p)( ) = 4 ⋅ m2 − 2 ⋅m ⋅ p + p2( ) = 4 ⋅ m− p( )2

Pm(x) = 0 x1,2 = m± (m− p) x1 = p, x2 = 2 ⋅m− p

m = 9, c = 45 P9(x) = x
2 −18x + 45

x1 = 3∈P, x2 = 2 ⋅9− 3= 15∉P G9P m = 9

c = 65 P9(x) = x
2 −18x + 65 x1 = 5∈P, x2 = 2 ⋅9−5= 13∈P

5∈G9P  13∈G9P 3,θ9(3) = 15 and 2 ⋅9 = 18

5, θ9(5) = 13 and 2 ⋅9 = 18

[x]p = mod(x, p) [Pm(x)]p = [x]p
2 − [2 ⋅m]p ⋅[x]p

[Pm(x)]p = [x]p
2 − [2 ⋅m]p ⋅[x]p = [x]p ⋅ [x]p − [2 ⋅m]p( ) = 0

[x]p = 0 [x]p = [2 ⋅m]p

Pm(x) = 0 Im = [3,2 ⋅m− 3]

Sm = Im∩P Im
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 and  have  solutions: , and . 

 

Example 1. 

 

       ,   

 7 13 17 23 29 37 43 

 89 83 79 73 67 59 53 

 41 35 31 25 19 11 5 

 

 

 

Diophantine Geometry of Goldbach Sets (Fig.2)       

      (Fig.1) 

                      
   

[x]p = 0 [x]p = [2 ⋅m]p x1 = p < m x2 = 2 ⋅m− p > m

G48P= 7, 13, 17, 23, 29, 37, 43, 53, 59, 67, 73, 79, 83, 89{ } m = 48

p = m− t

′p = m+ t

t

GkP  (k = 3,4,…,50)
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   (Fig.3) 

    
                   

                 Every dot in the above figure denotes a point with coordinates   

                   such that   on the line , where . 

    

 

 

 

                          4. Recursive Algorithm generating the infinite sequence  

                          of nonempty Goldbach sets   for all natural . 

 

We apply now one of the most fundamental and simple proof techniques in mathematics 

known as mathematical induction [3]. Let  denote a statement about a natural  

number , and let be a fixed number.  A proof that is true for all  by  

GkP (k = 3,4,…,40)

p, ′p( )
p + ′p = 2 ⋅ k x + y = 2 ⋅ k 3≤ k ≤ m

GmP ≠ ∅ m ≥ 3

Prop(m)

m m0 Prop(m) m ≥ m0
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induction requires two steps: 

Basis step: Verify that is true. 

Induction step: Assuming that is true for all such that  , 

verify that is true. 

 

Theorem 3. 

: For all integer , the set  of solutions to the equation ,   

 , in prime numbers is not empty: .  

The can be equivalently stated as:   for all integers . 

Proof. 

(1) Basic step.  

As we know [2], is true for all  up to .  

Let  Then . 

(2) Induction step. 

Assume that  for all integer -1.  

Let . We denote:  and . 

In Lemma 2 we proved (3) that

In thе case  , the formula (5) implies . 

We can also confirm in this case directly that , because   

Consider now a general situation, which includes the case .   

This part of the proof consists of two steps.  

On the first step we prove that  by applying 

shift transformation to both sides of the above equation and by using the property of 

- invariance of Goldbach sets  for all . 

Prop(m0 )

Prop(k) k k :m0 < k ≤ m

Prop(m+1)

Prop(m) m ≥ 3 GmP n+ ′n = 2m

n, ′n( )∈P2 GmP ≠ ∅

Prop(m) GmP = θm(Sm )∩ Sm ≠ ∅ m ≥ 3

Prop(m) m M = 4 ⋅1018

m0 = 3. 2 ⋅3= 6 = 3+ 3

GkP = θk (Sk )∩ Sk ≠ ∅ k :m0 ≤ k ≤ m

k = m Im = [3,2 ⋅m− 3] Sm = Im∩P

Sm =
Sm−1 ∪ 2m− 3{ } if  (2m - 3)∈P
Sm−1  if  (2m - 3)∉P

⎧
⎨
⎪

⎩⎪

(2 ⋅m− 3)∈P GmP=θm(Sm−1)∩ Sm−1 ≠ ∅

GmP ≠ ∅ 3+ (2 ⋅m− 3) = 2 ⋅m

(2 ⋅m− 3)∉P

GmP = GkP + 2 ⋅(m− k)( )∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪

θm

θm GmP m ≥ 3
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Next, we observe that if . Then, due to Lemma 6, we obtain 

                                         . 

 On the second step we show that the set  is not empty. 

This follows from the induction assumption  for all .  

Finally, Theorem 1 states the recursive formula for nonempty Goldbach sets: 

                                      .          (10) 

This formula allows to write a computer program to generate recursively potentially  

infinite sequence of Goldbach sets .        

Q.E.D.   

See in APPENDIX the text of R-script GenGS.R and data lists of the calculated   

for . An example below illustrates the above statement with some computer calculations.  

In this example we consider sets .   

Notice that many of those sets can be calculated based on the rule that if a prime   

has a twin prime , that is  and , then . 

For example, terms in  are calculated with this rule by using terms in . 

Meanwhile, terms in  are calculated by using terms in  for  based on the general rule:  

if , then  implies   

(Lemma 4):  . 

The calculations below illustrate thе conclusion of the Theorem 1 (see the data referred in Example 2). 

We would like to verify that , by using that . Consider 

. If we choose  it would not work with , because 

. We try then .  

We have  and . Then,   

should belong (due to Lemma 3) to . Therefore,  .  

Sm = Sm−1 (2 ⋅m− 3) ≠ P

GmP ⊆ Sm = Sm−1 = GkP = G
(m−1)P

k=3

m−1

∪

GkP + 2 ⋅(m− k)∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪

GkP ≠ ∅ k (3≤ k < m)

GkP + 2 ⋅(m− k)( )∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪ = GmP ≠ ∅ (m = 3,4,5,…)

GmP for all m ≥ 3

GkP

k :3≤ k ≤ m

GmP = θm(Sm )∩ Sm  for m  from 105  to 110

p∈GkP

( p + 2)∈P t = 1 p∈T1P p + 2( )∈Gk+1P
G106P G105P

G110P G108P t = 2

p < k   and  p∈GkP∩TtP p∈P and p + 2 ⋅ t ∈P ( p + 2 ⋅ t)∈Gk+tP

23+197 = (19+ 2 ⋅2)+197 = 220 = 2 ⋅110,  since 19+197 = 216 = 2 ⋅108

G110P ≠ ∅ GkP ≠ ∅ for all k ≤110

G110P (m = 110, 2 ⋅m = 220) t = 1 G109P

G109P∩T1S109 =∅ G108P and t = 2

G108P∩T2S108 ≠ ∅ p = 19∈G108P∩T2S108 p + 2 ⋅ t = 19+ 2 ⋅2 = 23

G110P 2 ⋅110− 23= 197∈G110P
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Thus, we have  , which means that . Notice that in this instance  

, which allows us to establish that  

, by using the fact that . 

 

Example 2. 

                             

Thus, we can predict that without explicit calculation of this set, just by using the previously 

calculated sets  By using the algorithm described in Lemma 5, we find that 

, but , since, for instance, , 

and . 

 

 

 

 

 

 

 

 

 

23+197 = 2 ⋅110 G110P ≠ ∅

k = 109, k +1− t = 109+1− 2 = 108 and  (k +1− t)+ t = 108+ 2 = 110

G(k+1−t )+t = G110P ≠ ∅ G108P∩T2S108 ≠ ∅

                  Sets GmP = θm(Sm )∩ Sm  for  m from 105 to 110

 G105P =
11  13  17  19  29  31  37  43  47  53  59  61  71  73  
79  83  97 101103107 109 113 127 131 137 139149 
151 157 163 167 173 179 181 191 193 197 199

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

  G106P = 13  19  31  61  73 103 109 139 151 181 193 199{ }   

  G107P = 3  17  23  41  47  83 101 107 113 131 167 173 191 197 211{ }   

 G108P =
 5  17  19  23  37  43  53  59  67  79  89 103 107 109
 113 127 137 149 157 163 173 179 193 197 199 211 

⎧
⎨
⎩

⎫
⎬
⎭

 

 G109P = 7  19  37  61  67  79 109 139 151 157 181 199 211{ }
 G110P =

23  29  41  47  53  71  83  89 107 113
131 137 149 167 173 179 191 197
⎧
⎨
⎩

⎫
⎬
⎭

 

G110P ≠ ∅

G109P,G108P,G107P,…

G109P∩T1P =∅ G108P∩T2P ≠ ∅ 19∈G108P∩T2P

19+ 2 ⋅2 = 23∈G110P
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 Conclusion 

By using probabilitic approach I have proved that . 

This means that probability that for sufficiently large value of  there exists at least one value  

of  such that the set is empty, tends to zero. Equivalently,  it is proved that 

                                 . 

To support the probabilistic conclusions, I developed a recursive deterministic algorithm,  

which gives constructive means to build infinite sequence of consecutive nonempty  

Goldbach sets . 

I tried to follow the ‘natural logic’ of the problem, by being more exploratory rather than  

artificially creative and used a computer as my permanent companion and advisor.  

As to simplicity of the used methods, I recall to the point the well-known Poincaré  

Recurrence Theorem [7], which proof takes only a few lines of the text and uses mainly  

elementary set-theoretical operations. Meanwhile the significance of the Poincaré  

Recurrence Theorem can be hardly overestimated. Notice, by the way, that the proof  

of the famous Poincaré recurrence theorem is not constructive, since it does not provide  

an algorithm to establish a number  of iterations, after which the recurrence occurs.  

The Poincaré theorem states only that such number  exists. Meanwhile the statement  

of Theorem 1 above is quite constructive since it leads to the recursive formula (9)  

(see the computed examples of Goldbach set sequences and the text of R script in Appendix),  

which allows potentially unlimited computation of consecutive nonempty Goldbach sets 

 for any . This means that Strong Goldbach Conjecture holds true. 

  

I would like to express here my acknowledgement to the peer reviewer Dr. Dmitry Kleinbock  

for reading the probabilistic part of the paper and especially for his critical and thoughtful  

comments to my probabilistic proof of Strong Goldbach Conjecture [9].  

The spirit of friendly interaction in our numerous discussions was very crucial for me. 

 

 

P G(2m,
!νm ){ } = 0

m=M

∞

∪
⎧
⎨
⎩

⎫
⎬
⎭
→ 0 as M→∞

M

m ≥ M GmP

lim
m→∞

P GmP > 0{ } = lim
m→∞

P G(2m, !vm ) > 0{ } = 1

GmP for all m ≥ 3

n

n

GkP | 3≤ k ≤ m{ } m ≥ 3
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                                            APPENDIX 

 

                 The text of R-script for computer realization of Recursive Algorithm 

                       generating sequences of Goldbach sets for  

 

    

                     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              

 

 

 

GkP k = 3,4,5,…,m

# Function GenGS(M1,M2) recursively generates a sequence of Goldbach sets    
# G(m) where M1 <= m <= M2, for an natural M1, M2 such that 5 < M1 < M2.  
# Here each G(m) is calculated by using the function 
# GenG(m) and the function supply:  GenGS(M1,M2) = sapply(M1:M2,GenG) 
# Function GenG(m) generates sets G(m) of Goldbach primes such that  
# p + p' = 2m (3 <= m <= 2m-3) for each natural m (3 <= m <= 2m-3).  
# This function is based on formula (9) from Theorem 1: 
# G(m) includes each p + 2t if p is a t-prime in the Goldbach set G(k)  
# (3 <= k <= m-1) for t = m-k. 
# Thus, G(m) is a inion of subsets tG(k) of t-primes in G(K) such that 
# tG(k) = {p + 2t| p is in G(k), p + 2t is prime for each t = m - k}. 
# Notice that G(m) is recursively generated from the Goldbach sets G(k),   
# where 3 < k <= m-1, starting from G(3) = {3} (3+3=6).  
# This is confirming non-emptiness of Goldbach sets G(m) for all natural  
# m = 3,4, 5... (the Goldbach Conjucture)  
# by the principle of mathematical induction. 
# Needed packages: 'numbers' and 'sets'. 
# Created by GMS 
# Date: 06.30.21. 
# 
GenGS <- function (M1,M2) { 
  Gen_GS <- sapply(M1:M2, GenG) 
  return(Gen_GS) 
} 
#source('~/Documents/R/Number Theory/GenGS.R') 

GenG <- function(m) { 
 if (isPrime(2*m-3)){Gm <- 3 }  
  else {  Gm <- NULL 
  } 
  for (k in (3: m-1)) { 
    Gk <- Gm(k) 
    t <- m - k 
    tGk <- Gk + 2*t 
    pr_tGk <- tGk[isPrime(tGk)] 
    Gm <- union(Gm, pr_tGk) 
}  
  return(sort(Gm)) 
} 
 
#source('~/Documents/R/Number Theory/GenG.R') 
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                                     Data lists of calculated  for  

  

3 3 

4 3 5 

5 3 5 7 

6 5 7 

7 3  7 11 

8 3  5 11 13 

9 5  7  11 13 

10 3  7 13 17 

11 3  5 11 17 19 

12 5 7 11 13 17 19 

13 3 7 13 19 23 

14 5 11 17 23 

15 7 11 13 17 19 23 

16 3 13 19 29 

17 3 5 11 17 23 29 31 

18 5 7 13 19 23 29 31 

19 7 19 31 

20 3 11 17 23 29 37 

21 5 11 13 19 23 29 31 37 

22 3 7 13 31 37 41 

23 3 5 17 23 29 41 43 

24 5 7 11 17 19 29 31 37 41 43 

25 3 7 13 19 31 37 43 47 

26 5 11 23 29 41 47 

27 7 11 13 17 23 31 37 41 43 47 

28 3 13 19 37 43 53 

29 5 11 17 29 41 47 53 

 

GkP k = 3,4,5,…,m

m Goldbach sets GmP (m = 3,4,5,…,43)
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30 7 13 17 19 23 29 31 37 41 43 47 53 

31 3 19 31 43 59 

32 3 5 11 17 23 41 47 53 59 61 

33 5 7 13 19 23 29 37 43 47 53 59 61 

34 7 31 37 61 

35 3 11 17 23 29 41 47 53 59 67 

36 5 11 13 19 29 31 41 43 53 59 61 67 

37 3 7 13 31 37 43 61 67 71 

38 3 5 17 23 29 47 53 59 71 73  

39 5 7 11 17 19 31 37 41 47 59 61 71 73 

40 7 13 19 37 43 61 67 73 

41 3 11 23 29 41 53 59 71 79 

42 5 11 13 17 23 31 37 41 43 47 53 61 67 71 73 79 

43 3 7 13 19 43 67 73 79 83 

 

  

100 3 7 19 37 43 61 73 97 103 127 139 157 163 181 193 197 

101 3 5 11 23 29 53 71 87 101 113 149 173 179 191 197 199 

102 5 7 11 13 23 31 37 41 47 53 67 73 97 101 103 107 131 137 151 157 163 167 173 191 

193 197 199 

103 7 13 43 67 79 97 103 109 127 139 163 193 199 

104 11 17 29 41 59 71 101 107 137 149 167 179 191 197 

105 11  13  17  19  29  31  37  43  47  53  59  61  71  73  79  83  97 101 103 107 109 113 

127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 

106 13 19 31 61 73 103 109 139 151 181 193 199 

107 3 17 23 41 47 83 101 107 113 131 167 173 191 197 211 

108 5 17 19 23 37 43 53 59 67 79 103 107 109 113 127 137 149 157 163 173 179 193  

197 199 211 

109 7 19 37 61 67 79 109 139 151 157 181 199 211 

110 23 29 41 53 71 83 89 107 113 131 137 149 167 173 179 191 197 

m Goldbach sets GmP (m = 100,101,…,128)
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111 11  23  29  31  41  43  59  71  73  83 109 113 139 149 151 163 179 181 191 

193 199 211 

112 13  31  43  61  67  73  97 127 151 157 163 181 193 211 

113 3  29  47  53  59  89 113 137 167 173 179 197 223 

114 5  17  29  31  37  47  61  71  79  89  97 101 127 131 139 149 157 167 181 191 197 199 

211 223 

115 3   7 19  31  37  67  73  79 103 127 151 157 163 193 199 211 223 227 

116 3  5  41  53  59  83 101 131 149 173 179 191 227 229 

117 5   7  11  23  37  41  43  53  61  67  71  83  97 103 107 127 131 137 151 163 167 173 

181 191193 197 211 223 227 229 

118 3   7  13  37  43  73  79  97 109 127 139 157 163 193 199 223 229 233 

119 5  11  41  47  59  71  89 101 107 131 137 149 167 179 191 197 227 233 

120 7  11  13  17  29  41  43  47  59  61  67  73  83  89 101 103 109 113 127 131 137 139 

151 157 167 173 179 181 193 197 199 211 223 227 229 233 

121 3  13  19  31  43  61  79 103 139 163 181 199 211 223 229 239 

122 3   5  11  17  47  53  71 107 113 131 137 173 191 197 227 233 239 241 

123 5   7  13  17  19  23  47  53  67  73  79  83  89  97 107 109 137 139 149 157 163 167 

173 179193 199 223 227 229 233 239 241 

124 7  19  37  67  97 109 139 151 181 211 229 241 

125 11  17  23  53  59  71  83 101 113 137 149 167 179 191 197 227 233 239 

126 11  13  19  23  29  41  53  59  61  71  73  79  89 101 103 113 139 149 151 163 173 179 

181 191193 199 211 223 229 233 239 241 

127 3  13  31  43  61  73  97 103 127 151 157 181 193 211 223 241 251 

128 5  17  23  29  59  83  89 107 149 167 173 197 227 233 239 251 
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