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Abstract—In the last years, soundscapes have become one
of the most active topics in Acoustics, providing a holistic
approach to the acoustic environment, which involves human
perception and context. Soundscapes-elicited emotions are central
and substantially subtle and unnoticed (compared to speech or
music). Currently, soundscape emotion recognition is a hot topic
in the literature. We provide an exhaustive variable selection
study (i.e., a selection of the soundscapes indicators) to a well-
known dataset (emo-soundscapes). We consider linear soundscape
emotion models for two soundscapes descriptors: arousal and
valence. Several ranking schemes and procedures for selecting
the number of variables are applied. We have also performed an
alternating optimization scheme for obtaining the best sequences
keeping fixed a certain number of features. Furthermore, we
have designed a novel technique based on Gibbs sampling, which
provides a more complete and clear view of the relevance of each
variable. Finally, we have also compared our results with the
analysis obtained by the classical methods based on p-values. As
a result of our study, we suggest two simple and parsimonious
linear models of only 7 and 16 variables (within the 122 possible
features) for the two outputs (arousal and valence), respectively.
The suggested linear models provide very good and competitive
performance, with R2 > 0.86 and R2 > 0.63 (values obtained
after a cross-validation procedure), respectively.

Index Terms—Soundscape emotion, variable selection, rank-
ing methods, best sequence search, MCMC algorithms, Gibbs
sampling.

I. INTRODUCTION

Environmental noise is one of the most critical risks
for population health and well-being. The World Health
Organization has recently remarked that noise affects at
least 100 million people, only in the European Union
[41]. Generally, sound level monitoring and control are the
common tools for managing the acoustic environment and
sound quality remains dismissed. However, noise abatement
is often unavailable or unsuitable in certain scenarios like
cities, or does not necessarily result in an approving appraisal
of final soundscapes [39]. Hence, “quiet areas” are a new
perspective that focuses on the acoustic quality more than on
the sound level, and which are being even regulated in the
European Union [3].
This vision is limited since it is not accountable for people’s
experiences in different acoustic environments. Soundscapes
provide an alternative and holistic approach assessing human
perception, acoustic environment, and context, beyond the

concept of noise [33]. Thus, this subjective evaluation
depends on physical, psychological, social, and even cultural
estimators and their complex interactions.

In the last years, soundscapes have become one of the
most active topics in Acoustics. In fact, related research
projects and scientific articles grow exponentially [5].
Research requires a sizeable sample of participants in surveys
and a considerable amount of locations. These intensive
and time-consuming resources may limit the soundscape
approach [24]. Soundscape modelling might predict people’s
perception of acoustic environments at lower expenses [20].
In urban planning and environmental acoustics, the procedure
consists of the soundscapes recording, calculation of acoustic
and psychoacoustic indicators of the signals, other context
indicators collection (e.g. visual information [7]), then
ranking of soundscapes audio signals employing emotional
descriptors, and finally, the model can be developed.
Soundscape-elicited emotions are substantially different from
those related to music or speech since are more subtle and
unnoticed. Thus, soundscape emotion recognition (SER)
requires further research to support perception and context
descriptors [12], [25]. Additionally to environmental acoustics
and urban planning, there is an increasing research interest
in SER for certain domains like sound design in films and
digital games [22], or sonification in the Internet of Things
[1]. Soundscapes descriptors are identified with perceived
emotions and SER becomes a relatively new sub-field of
research in affective computing [10]. Rusell’s circumplex
model can be applied to soundscapes [7], [8], [10], [32]
by scaling the perception of soundscapes. Russells affect
representation can be modeled with two main factors: arousal
represents the eventfulness of the acoustic environment,
and valence is the pleasantness ratio. Currently, arousal and
valence are accepted as the principal and sufficient affective
descriptors in research [8], [40], but there are different
proposals to enhance soundscapes emotions evaluation with
additional or different descriptors [4], and even include
emotion appraisal in procedures of the soundscapes standards
[12].

Soundscape modelling has been extensively and recently
reviewed in [20]. Soundscapes indicators (i.e. features),
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soundscapes descriptors (i.e. outputs), and employed
predictions models and their performances are presented.
Researchers have been approaching SER from a variety of
perspectives and results are roughly comparable. However, the
published literature shows some trends. Firstly, a large dataset
leads to stable and well-performing models. Indicators that
include psychoacoustic and perceptual information contribute
improving model performance. Finally, non-linear models
(NLMs) seem to result in (slightly) more accurate models
than linear models (LMs). However, NLMs approaches
remain complex and challenging for researchers since the
model development and the hyperparameters tuning might
become demanding. Hence, LMs are usually the preferred
choice although they could be often outperformed by
NLMs strategies. Some of the predictive LMs provide poor
performance (R2 = 0.18) [16], whereas other LMs achieve
very good performance (R2 = 0.9) [6]. On the other hand,
reported NLMs use sophisticated machine learning techniques
such as support vector machines (SVM), artificial neural
networks (ANN), or random forests (RF) to name a few.
They outperform slightly LMs in terms of prediction, e.g.,
regarding scores (R2 = 0.91) [18]. Nevertheless, LMs still
appear as prevalent in this field, while research with NLMs
seems to be just promising, so far.
A wide range of descriptors is modelled by a large array
of indicators in a variety of scenarios. Thus, a general
framework for comparison seems not to be established. One
of the reasons is the scarcity of SER datasets that are publicly
available. Emo-soundscapes (EMO) [10] sets up a free and
available dataset for SER comparison from 2017, which is
focused on arousal and valence. Thus, other researchers have
been exploring EMO as a reference. Firstly, [10] presents
a baseline for EMO based on two independent SVM to
model for arousal and valence, selecting 39 features by a
variance threshold. In [2] a comparison of four LM and
four NLM were explored and feature selection performed a
principal components analysis (PCA) and a univariate linear
regression. Furthermore, a RF model outperformed the rest
of the models with only 25 features. A fine-tuned RF model
with 14 features by a recursive feature elimination method in
[1] overcomes previous RF, and convolutions neural networks
(CNN). Deep learning techniques have been also applied to
SER through CNN and 23 simplified mel-frequency cepstral
coefficients (MFCC) in [31], and the combination with SVM
(Transfer learning) in [11]. Promising results use up to 54
features by heuristic methods despite the limited samples
of EMO. Thus, EMO is the selected dataset to develop this
study since it is a suitable reference.

This article aims at developing well-performing, simple
and interpretable SER models based on LM. Additionally,
this study offers an exhaustive feature selection framework
that helps researchers adjust their model errors with the
features’ importance and their relationships. Namely, we
provide an exhaustive variable selection study for LM,
considering classical and novel methodologies. First of all,
we divide the methods into two main parts: ranking of
variables and selection of the effective number of variables.

This approach yields several benefits: (a) allows a better
understanding of the different techniques, (b) allows the
combination of different ranking and number selection
schemes, and (c) produces a more complete view of the
variable selection problem. We consider five different ranking
methods and also compare the results to the classical ranking
method based on p-values [9], [17]. Moreover, we apply the
best sequence search (keeping fixed the number of variables).
For this purpose, we perform an alternating optimization
method that allows us finding easily (at least) local modes. We
repeat the procedure for several different runs for obtaining
the global mode.
Last but not least, we design a pseudo-target density and a
Gibbs sampling scheme which allows us having a complete
view of the importance of the variables in terms of prediction
error. The results of the Gibbs analysis support and clarify
the results obtained previously by the ranking methods and
the best sequence search. Some other considerations are only
remarked by the Gibbs analysis. This novel technique can
be applied for general variable selection purposes (not just
for the specific database analyzed). The overall study allows
us to propose (a) parsimonious, (b) interpretable and (c)
robust LMs. Namely, we can focus on a few very relevant
variables that are highlighted in all the performed analyses.
We believe that these variables keep their relevance also in
different databases (as also suggested by the cross-validation
results). Moreover, focusing on a few variables helps the
interpretability of the resulting model.
The rest of the work is organized as follows. Section II-A
describes the dataset which is the object of our study. Section
II-B presents some background material describing the LM.
Section III describes the different techniques for ranking
the variables, the algorithm for best sequence search, and
the Gibbs sampling analysis. Then, Section IV shows the
results applied to the EMO database, for the first output
(arousal). Finally, in Section V, we discuss some conclusions.
The results for the second output (valence) are partially
contained in Section V jointly with the final discussion, and
all the rest of the details are given in the Supplementary
material.

II. DATABASE AND MODEL DESCRIPTIONS

A. Dataset Description

This research explores the EMO that might be considered
as the larger publicly available soundscape database with
annotations of emotion labels, and the most bench-marked
up to now [10]. EMO contains 1213 audio clips which are
released under Creative Commons license from the Freesound
collaborative audio platform [13]. The Schafers taxonomy
classifies the selected clips into six categories due to their
generality and simplicity [33]. A crowd-sourcing procedure
provided data annotations of perceived arousal and valence,
by a ranking-based questionnaire of a two clips pairwise
comparison. Eventually, 1182 trusted annotators performed the
required tasks with reasonable inter-subject reliability.
Audio clips are monophonic and the sample rate was 44100
Hz. EMO has employed both YAAFE [30] and MIRToolbox
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[19] for the extraction of 122 normalized audio features,
applying a 23 ms Hanning window with 50% overlapping.
There are three main groups:
• Psychoacoustic features: including loudness, sharpness,

and MFCC estimators (indexed from 24 to 49, and 113,
114, 117, 118, 119).

• Time-domain features: energy, entropy of energy, root
mean square (RMS), or zero-crossing estimators to name
a few (indexed from 1 to 7, and 22, 23, 52, 115, 116).

• Frequency-domain features: Pitch, chromagrams, spec-
tral roll-off and spectral centroid estimators are some of
them (the remainder indexes, i.e., the rest of features).

B. Multiple Linear Regression Model

Let us consider a set of R variables x = [x1, ..., xR]
>

(input vector) and a related variable y (output). In several
real-world applications, we observe a dataset of N pairs
{xn, yn}Nn=1. In this work, we consider the case that R ≤ N .
The relationship between inputs and outputs is then studied.
A linear observation model is usually used,

yn = β0 + β1xn,1 + β2xn,2 + ...βRxn,R + εn, (1)

yn = x>nβ + εn,

where β = [β0, β1, ..., βR]
> is a vector of coefficients and

εn is a Gaussian noise with zero mean and variance σ2
ε , i.e.,

εn ∼ N (ε|0, σ2
ε ). Defining the vectors y = [y1, ..., yN ]> and

ε = [ε1, ..., εN ]>, and the N × (R + 1) design matrix X =
[1,x1, ...,xR] (where 1 = [1, ..., 1]> is a column vector of N
ones), the previous model can be rewritten as

y = Xβ + ε. (2)

The least squares (LS) estimator (which coincides with the
maximum likelihood estimator, in this setting) is

β̂ =
(
X>X

)−1
X>y. (3)

Hence, the vector of output predictions according to the model
is ŷ = Xβ̂ = X

(
X>X

)−1
X>y, and the error vector is

ê = y − ŷ =
(
I−X

(
X>X

)−1
X>
)
y, (4)

where ê = [e1, ..., eN ]>, and I is a N × N unit (diagonal)
matrix. The mean absolute error (MAE) and the mean square
error (MSE) are defined as MAE = 1

N

∑N
n=1 |en| and MSE =

1
N

∑N
n=1 e

2
n, respectively.

III. ROBUST VARIABLE SELECTION ANALYSIS

Variable selection methods are conceptually formed by two
main parts. The first stage consists in ranking the variables for
their importance, measured with some suitable criterion. In a
second stage, based on the previous ranking, a selection of
the number of relevant variables is performed. This last part
can be considered a dimension reduction step, and it is also
strongly connected to the model selection problem in nested
models (in this case, the model selection problem is often
called order selection) [21], [36], [37].
Generally, in the literature, these two stages are jointly pre-
sented within a unique technique, including the second part as

a stopping rule in the raking procedure (e.g., using a threshold
value stopping the rank at some position when the threshold
value is reached) [15]. Here, we describe separately these two
stages: the ranking methods in the next subsection and the
selection of the number of features in Section III-D. Hence,
we can combine different ranking schemes with different
procedures for selecting the number of variables.
In this work, we describe five different ranking methods
(RMs). The first four ranking procedures are based, in a
different way, on the prediction error. To the best of our
knowledge, the procedures RM3 and RM4 described below
present also some degree of novelty. They allow us to perform
a more robust analysis, as discussed in Section IV. As an
additional final check on the obtained results, we also apply a
classical ranking method based on p-values [9], [17].
In Section III-B, we also describe the best sequence search
(keeping fixed M ) and an alternating optimization technique
for obtaining the optimal sequence. Furthermore, we introduce
a target density based on the prediction error, and employ a
Gibbs sampling scheme for drawing samples from it. This
analysis allows to have a complete view of the importance of
the variables.

A. Ranking methods

In this section, we briefly describe the ranking methods
(RMs) that we have applied to our dataset. Some of them are
well-known techniques, whereas others contain some degree
of novelty [15]. We list them below.

RM1 - Forward Selection (FS): adding variables “forward”
minimizing the error. The method starts searching for the
most significant univariable model (in terms of the error in
prediction), i.e., considering the linear regression model in
Eq. (1) with only one component (namely, one column in the
matrix X in Eq. (2)). We repeat then considering a model
with two variables (re-estimating the model for each pair),
including (and keeping) the previously selected variable. We
iterate the procedure until considering a complete model of
R variables. This procedure provides a sequence of included
variables that will be the final ranking.
RM2 - Backward Elimination (BE): removing variables
“backward” minimizing the error. The method starts
considering the complete model. Then, we remove the most
insignificant variable in terms of the error in prediction,
considering models with R − 1 variables (clearly, removing
a different variable and we re-estimate the coefficients for
each model). We repeat the procedure considering always
smaller models and removing one variable at each iteration.
The procedure provides an inverse ranking where the first
variable is the worst one and the last is the best one.
RM3: removing variables maximizing the error. The method
starts again considering the complete model. Then, we remove
one variable and compute the error in prediction. Hence, we
select the best variable, i.e., which (when removed) produces
the higher increase of the error in prediction. This variable
will be the first in our ranking (the most relevant variable).
We repeat the procedure considering the rest of variables.
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RM4: adding variables maximizing the error. Here, we create
a sequence of variables from the worst to the best variable
(i.e., increasing their relevance), starting with a univariable
model as in RM1, but selecting the worst variable (i.e., the
variable which maximizes the prediction error). Then, we
consider a model with two variables (keeping the previous
select one) and select the second variable which maximizes
the prediction error. We repeat the procedure, obtaining a
final inverse ranking of the variable, i.e., the last one will be
the most relevant variable.
RM5 - based on the correlation coefficient: We compute the
Pearson correlation coefficients between one single variable
and the output y. Then we rank the features in decreasing
order according to the module of correlation coefficients.
This procedure is similar to the often so-called univariable
selection [15].

The joint use of these different ranking procedures allows
to perform a robust analysis, obtaining a more complete
view of our variable selection problem. Indeed, some ranking
methods, although yield sequences far from the smallest
possible error, detect relevant variables that appear also by the
Gibbs sampling analysis (described below). More specifically,
although we will see that RM1 and RM2 provide the best
performance in terms of prediction error, but the results of
RM3, RM4 and RM5, reveal other important aspects shown
by the rest of our analyses below. Moreover, for completing
our view, we will also apply a classical ranking method based
on p-values [9], [17], and show the results in Table V.

B. Best sequence search

Let us define the vector of M different indices

vM = [k1, ..., kM ], M ≤ R,

where ki ∈ {1, 2, ..., R} but ki 6= kj for i 6= j. Considering
only the variables {v1, ..., vM} in vM , we can build a smaller
N × (M + 1) design matrix VM = [1,xk1 , ...,xkM ], and
consider a smaller (M + 1)× 1 vector of coefficients β̂M =
[β̂1, ..., β̂M+1]

>, which is obtained as

β̂M =
(
V>MVM

)−1
V>My. (5)

Moreover, we define the cost function

C(vM ) = ||y − ŷ||αp ,
= ||y −VM β̂M ||αp , (6)

where || · ||p is the Lp norm with p > 0 and α > 0. Note
that C(vM ) is defined in the discrete space of M possible
different indices. We desire to find the vector of indices such
that

v∗M = argmin
v
C(vM ).

Note that an exhaustive search is only possible when
M is small (typically it is suitable only for M ≤ 4).
Moreover, a random search in the entire space (as with a
simulated annealing approach [23]) can be very costly and
to reach the global minimum (or a “good” local minimum)
is very difficult. For this reason, we employ an alternating

optimization approach that, at least, ensures a fast convergence
to a local minimum. Furthermore, we perform the alternating
optimization scheme several times (500 runs) with different
initializations, and compare the minimum obtained at each run
[23]. We finally consider the solution v̂M with the smallest
associate cost value C(v̂M ), i.e., v̂M is our estimator v∗M .
Below, we describe the alternating optimization method.

Alternating optimization. Choose M < R + 1, a maximum
number of iterations Titer ≥ 1, and start with v

(0)
M .

For t = 1, ..., Titer (or until convergence) repeat:
1) For j = 1, ...,M :

a) Keeping fixed the rest of M − 1 variable, work
only on the j-th variable, i.e., given

bj = [k
(t)
1 , k

(t)
2 , ...k

(t)
j−1, kj , k

(t−1)
j+1 ..., k

(t−1)
M ],

find
k∗j = argmin

v
C(bj).

The optimization above can be solved in an exhaus-
tive way since it is a one-dimensional problem.

b) Set k(t)j = k∗j , and

bj+1 = [k
(t)
1 , k

(t)
2 , ...k

(t)
j−1, k

(t)
j , kj+1, k

(t−1)
j+2 ..., k

(t−1)
M ].

2) Set
v
(t)
M = bM , and b1 = v

(t)
M .

C. A Gibbs sampling approach

We generalize the optimization scheme considering a
Markov Chain Monte Carlo (MCMC) sampling approach.
More specifically, we consider a Gibbs sampler which is
the counterpart of the alternating optimization in the Monte
Carlo sampling world [23]. The sampling approach (applied
in this context) can provide the probability that each variable
is contained in the best subset of M elements. Let us recall
the vector of M different elements

vM = [v1, ..., vM ],

where vi ∈ {1, 2, ..., R} but vi 6= vj for i 6= j. In this section,
we consider the target density

p(vM ) ∝ exp (−ηC(vM )) , η > 0,

where C(vM ) is the cost function previously considered in
Eq. (6). The constant η can be used and set to provide a
tempering effect [21], [23], [27]. The variables that belong to
sequences with smaller errors acquire more value according
to p(vM ). Thus, by drawing samples from p(vM ), we can
obtain the proportion of times that a feature provides a
sequence with yields a small error. This is a very important
information that helps us to yield a more robust analysis, in
the sense that we can avoid overfitting at this specific set
of data. The overfitting can occur performing the variable
selection only considering the best sequence, for instance.

A Gibbs sampling algorithm is a type of Markov Chain
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Monte Carlo (MCMC) method for drawing samples from
general distribution as p(vM ) above [26], [28], [29]. An
MCMC algorithm generates a Markov chain with invariant
density exactly the target density, that in our case is p(vM ). A
Gibbs sampler works one dimension at time [23], simplifying
the multivariate sampling problem drawing from simpler one-
dimensional densities. Before describing the Gibbs sampling
method, we have to recall that the j-th full-conditional density
is

pj(vj |v1, ..., vj−1, vj+1, ..., vM )

∝ p(vM ) = p(v1, ..., vj−1, vj , vj+1, ..., vM ), (7)

where all the variables are fixed with the exception of vj ,
and the normalizing constant is p(v1, ..., vj−1, vj+1, ..., vM )
that does not depend on vj . For simplicity, we use the more
compact notation

pj(vj |v1, ..., vj−1, vj+1, ..., vM ) = pj(vj |v1:j−1, vj+1:M ),

for denoting the j-th full-conditional density. A detailed
description of the Gibbs sampling algorithm is given below.

Gibbs sampler. Choose M < R, a maximum number
of iterations Titer ≥ 1, and start with v

(0)
M .

For t = 1, . . . , Titer:

1) For j = 1, . . . ,M :

a) Draw v
(t)
j ∼ pj

(
vj | v(t)1:j−1, v

(t−1)
j+1:M

)
.

2) Set v(t)
M =

[
v
(t)
1 , v

(t)
2 , . . . , v

(t)
M

]
.

D. Selection of the number of relevant variables

Several selection procedures (also denoted as stopping rules
during the ranking process) can be applied. Clearly, a naive
method could be just to set a threshold value (or a percentage)
for the prediction error, or by a simple visual inspection of
the error curve, i.e., the so-called elbow method [36], [38].
In the classical variables selection analysis, practitioners and
researchers often consider statistical tests (e.g., F-test and
t-test), employed sequentially to decide whether individual
variables should be included in the model, and a stopping rule
based on p-values [9], [17].
Other approaches rely on the so called information criteria
methods [21], [37], which are based on the following cost
function

C(M) = −2 log p(y|β̂M )︸ ︷︷ ︸
fitting

+ 2ηM︸ ︷︷ ︸
penalization

, (8)

where η > 0 is a constant that specifies the criterion. The
first term is a fitting term (based on the maximum likelihood
value), whereas the second term is a penalty for the model
complexity. The expression (8) encompasses several well-
known information criteria proposed in the literature and
shown in Table I, which differ for the choice of η [21], [37].

Table I: Different information criterion for model selection (N
number of data).

Criterion Choice of η

Bayesian-Schwarz information criterion (BIC) [34] (logN)/2
Akaike information criterion (AIC) [35] 1

Hannan-Quinn information criterion (HQIC) [14] log(log(N))

IV. RESULTS FOR THE OUTPUT 1 - AROUSAL

In this section, we provide a detailed description of the
results obtained for the first output “arousal”. For the lack
of space, we also give the suggested LM and provide other
comments for the second output “valence” at the beginning of
Section V. The detailed description of the result analysis of the
second output is given in the Supplementary Material.

A. Results of the Ranking Methods

Figure 1 shows the MAE in the estimation of the first
output considering models with M ≤ 122 variables. The
variables are ordered according to the different ranking
criteria. At each M , we consider the first M variables in each
ranking and compute the MAE. Clearly, when M = 122 (i.e.,
we are using all the variables) all the curves reach the same
point. The black solid line corresponds to the MAE curves
without ordering the variables (i.e., keeping the order in the
data matrix). Note that, even in this curve with unordered
variables, we can observe the importance of the variables
“12-th chromagram standard deviation” (indexed as 112),
“loudness mean” (indexed as 113) and “loudness standard
deviation” (indexed as 114). Indeed, there is a relevant drop
in MAE at the variable 112, the decrease continues with the
variable 113, and the derivative seems to be null after the
variable 114. Moreover, even in this curve with unordered
variables, we can observe in Figure 1(a) that there is already
an elbow within the interval between the 15-th variable and
the 20-th variable [38].
The cyan and blue solid lines correspond to RM1 and RM2
which provides the best results in terms of MAE. Namely,
RM1 and RM2 provide two orders of variables which produce
the fastest decays in terms of MAE. Figure 1(b) provides the
same information of Figure 1(a) but in log-log-scale. Both
curves, corresponding to RM1 and RM2, seem to present a
clear elbow between the 7-th and 8-th ordered variables.
The curves corresponding to RM3, RM4, RM5 are depicted
with dashed lines. Although these rankings do not achieve the
best results in this figure, they provide interesting information
regarding the importance of the variables, as we discussed
below. For instance, note that the error with RM4 has a big
drop (reaching the best performance given by RM2) when the
third variable is considered, which is feature 1. This feature
appears in 8-th position of RM5 but is not considered relevant
by RM1, RM2, RM3 and by the best sequence search, as we
will see later on. Moreover, the Gibbs analysis confirms its
relevance (as we will see below).

The rankings of the variables obtained by RM1, RM2,
RM3, RM4, RM5, from the first one to the 20-th one are
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given in Table II. We highlight with boxes the variables that
are within the most important twenty variables in all the
ranking methods; these variables are five and are labeled as:

113 (“loudness mean”),
114 (“loudness standard deviation”),
14 (“spread mean”),
13 (“centroid standard deviation”),
and 3 (“decrease slope mean”),

although, variable 3 is never contained within the most im-
portant ten variables within the different rankings. This is
also remarked by Table III where we construct a global
ranking (GR) considering the positions of each variable in the
intermediate rankings RM1, RM2, RM3, RM4 and RM5. For
building the GR, we consider the intermediate rankings with
equal value and assign to each of the first variables a score of
122, to the second variable a score of 121, to the third variable
a score of 120 and so on until assigning to the last variable a
score of 1. The global score is obtained by summing all the
intermediate scores. In Table III, we show a normalized score
dividing the actual score by the maximum possible global
score, that is 122 · 5 = 610. This maximum global score
is achieved by the variable indexed as 113 (indeed, it has a
normalized score of 1). By the GR appears even more clear
that

113, 114, and 14,

are the three most important features (shown in decreasing
order of importance) for the first output “arousal”. Moreover,
from Tables II-III, we can see that the variables

4 (“maximum fluctuation”),
56 (“pitch standard deviation”),
8 (“roll-off mean”),
115 (“energy mean”),

deserve a special mention as well, since they are out from the
first best 20 variables only in one ranking. The variable 4 is out
of the first 20 best variables only in RM4 (where is in position
21). The feature 56 is out of the first 20 best variables only
in RM4 (where is in position 22). The feature 8 is out of the
first 20 best variables only in RM5 (where is in position 21).
The variable 115 is within the first 10 best variables, except
for the RM4 where takes the position 86. Hence, removing
RM4, the 115-th variable seems even more relevant that 3-th
variable and even better than 8-th variable (it would have the
position 4 in the GR, do not considering RM4). Furthermore,
other variables deserve a mention, for instance,

1 (“RMS mean”),
20 (“flatness mean”),
and 18 (“kurtosis mean”).

As we previously stated, the variable 1 does not appear in the
first best 20 variables on the GR, but is the third variable by
RM4 and is in position 8 by RM5. Moreover, the variable 1
appears as a particularly relevant in the Gibbs sampling study
(see below). The variable 20 appears in position 4 and 6 in

the ranking by RM3 and RM5, respectively. Again, as variable
1, the feature 20 seems to have some relevance as shown by
the Gibbs analysis below. Finally, the variable 18 appears in
position 9 and 5 in the ranking by RM2 and RM3, respectively.

B. Results of the best sequence search

In Table IV, we can observe the best sequences for M =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, obtained with the alternative
optimization procedure (after 103 independent runs with dif-
ferent random initializations). All the best sequences are given
just in ascending order of the labels. Indeed, unlike with the
Gibbs approach, we cannot discriminate among the variables
within a best sequence.
In Table IV, each new entry in the best sequence (as M grows
- with respect to the previous shorter sequence), is highlighted
with a box. We remark especially the best sequence with
M = 7, i.e.,

4, (“maximum fluctuation”),
8 (“roll-off mean”),
14 (“spread mean”),
56 (“pitch standard deviation”), (9)
113 (“loudness mean”),
114 (“loudness standard deviation”),
and 115 (“energy mean”),

(shown here in ascending order of the labels).

They exactly coincide with the ranking given by RM2 of the
first seven most important variables, i.e.,

113, 14, 8, 114, 115 , 56, and 4, (10)
(shown here in decreasing order of importance by RM2),

where we have highlighted the feature 115 for comparing
below with the results of the GR. In the best sequence of 8
features in Table IV contains the first most important variables
of RM2. Note also that the sequence of the seven most relevant
features obtained by the GR, in Table III, is

113, 114, 14, 8, 13 , 4, and 56, (11)
(shown in decreasing order of importance by GR),

where we can find all the elements of the best sequence in
Eq. (9) with exception of the feature 115 (“energy mean”),
replaced by the feature 13 (which represents the “centroid
standard deviation”). However, as we have already remarked
above, the variable 115 is penalized by the its bad position in
RM3. Removing the ranking of RM3, the feature 115 would
be in the fourth position of the GR. Note also that the feature
115 appears in all the best sequences for M ≥ 5. This confirms
that a more fair position for the feature 115 in a GR would
be around fourth and fifth position. The variable 13 appears,
in a stable way, for the best sequences with M ≥ 11 (its first
appearance is for M = 6, but then disappears until M = 11).
The fact that the feature 115 is more important than the feature
13 is also confirmed the Gibbs analysis (see below).
From Table IV, we can also observe that the variables 56
(“pitch standard deviation”) and 4 (“maximum fluctuation”)
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(a) MAE versus M , ordering the variables.
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(b) The same of Figure (a) but in log-log scale.

Figure 1: MAE versus M obtained ordering the variables according to the different rankings (for the output 1 - arousal). At
each M , we consider the first M variables in each ranking and compute the MAE. Clearly, when M = 122 (i.e., we are using
all the variables) all the curves reach the same point. The black solid line corresponds to the MAE curves without ordering
the variables.

Table II: Results of the ranking methods - output 1.

Meth. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RM1 113 39 14 8 4 56 115 114 16 13 37 77 43 107 55 3 11 88 38 48

RM2 113 14 8 114 115 56 4 43 18 13 107 55 11 88 77 38 3 59 81 78

RM3 113 114 14 20 18 119 13 12 9 8 21 3 15 56 88 4 7 65 38 39

RM4 113 114 1 115 50 116 2 51 14 20 119 12 8 13 9 21 117 18 15 3

RM5 113 114 14 116 2 20 51 1 115 50 13 9 3 21 4 122 29 56 31 23

Table III: Possible GR - output 1.

GR: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Variable: 113 114 14 8 13 4 56 3 88 15 115 38 23 20 21 39 18 37 48 117

RM1: 1 8 3 4 10 5 6 16 18 25 7 19 24 30 58 2 88 11 20 31
RM2: 1 4 2 3 10 7 6 17 14 24 5 16 23 75 28 56 9 57 21 25
RM3: 1 2 3 10 7 16 14 12 15 13 82 19 24 4 11 20 5 29 43 21
RM4: 1 2 9 13 14 21 22 20 23 19 4 24 25 10 16 28 18 26 39 17
RM5: 1 2 3 21 11 15 18 13 23 25 9 31 20 6 14 27 22 33 38 81

N. Score: 1 0.98 0.97 0.92 0.92 0.90 0.90 0.88 0.85 0.83 0.83 0.83 0.82 0.80 0.80 0.79 0.77 0.75 0.74 0.72

seem to be even more relevant than the feature 13, appearing
permanently in all the best sequences with M ≥ 5 and
M ≥ 7, respectively (the first appearance of the variable
4 is for M = 4). The features 8 (“roll-off mean”) and 14
(“spread mean”) appear firstly with M = 3, 4 but permanently
only with M ≥ 7. The variable 113 appears for all the best
sequences with M ≥ 1, confirming that is the most important
feature. The feature 114 appears permanently with M ≥ 4.
In best sequence with M = 2, we have the variable 39 (that
represents the “3rd MFCC standard deviation”): this feature
appears in the 16-th position of GR, and the second position
in RM1. However, the variable 39 is not included in any of
the best sequences with M > 2.
It is important to observe that the results obtained with

different methodologies are coherent, and are also verified and
clarified (in some cases) by the Gibbs analysis, as we will see
below. Finally, in Figure 2(a), we can see the decay of the
MAE as M grows according to the best sequences. We can
see that RM1 and RM2 provide MAEs very close to the MAE
of the best sequences.

C. Gibbs sampling analysis

In the Gibbs sampling analysis, the sequences of length
M , vM = [v1, ..., vM ] (with vi ∈ {1, 2, ..., R + 1}, vi 6= vj
for i 6= j), are weighted according to error C(vM ) or, more
specifically, according to

p(vM ) ∝ exp (−ηC(vM )) , η > 0. (12)
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Table IV: Best Sequences - Output 1

M Labels of the features in the best sequence
1 113
2 39 113

3 8 14 113

4 4 8 14 113

5 10 56 113 114 115

6 10 13 56 113 114 115

7 4 8 14 56 113 114 115

8 4 8 14 43 56 113 114 115

9 4 8 14 16 43 56 113 114 115

10 4 8 14 16 43 56 107 113 114 115

11 4 8 13 14 16 43 56 107 113 114 115

12 4 8 13 14 16 43 55 56 107 113 114 115
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Figure 2: (a) MAE versus M obtained ordering the variables according to RM1, RM2 and the best sequence search (Output
1). (b) The connections among the variables with the Pearson correlation coefficient ρ such that |ρ| ≥ 0.95.

In our simulation, we set η = 100. Moreover, for defining
C(·), we consider the L1 norm (and α = 1). The variables
that belongs to sequences with smaller errors acquire more
weight/importance. In some sense, the Gibbs analysis provides
the probability that a feature provides a sequence of small
error. In Figure 3, we show the results of Gibbs sampling
analysis for M ∈ {2, 6, 10, 20}. The dashed line depicts the
equiprobability (uniform) distribution with probability 1/122.
Clearly, probabilities bigger than 1/122 denote the most
important variables.
We can observe that the results are coherent with the previous
results above. For instance, the variable 113 is clear the most
important and also the features 114, 4, 115, 56, 8 are quite
relevant. The Gibbs analysis also confirms that the feature 39
seems relevant for small M but, as M grows, the importance
of this feature disappears.
However, by the Gibbs analysis, we can obtain more interest-
ing information. The features 4 and 56 are quite relevant even

from small values of M , confirming also the results of the best
sequence search. The features 14 seems to have a relevance
very similar to 114 (confirming the results of the GR). As we
have also previously stated, the Gibbs analysis clearly shows
that the variable 115 is the fourth most important feature (as
we expect after a care look of the rankings). Surprisingly, the
feature 1 seems to be equally relevant than the feature 115:
we provide an explanation below. The variable 13 seems also
to be some relevance by the Gibbs analysis specially as M
grows. However, as we expected for the previous study, its
relevance is moderate.
Furthermore, we can also observe the importance of other
variables whose relevance was not clear from the previous
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analysis above. This is the case of the following features:

1, (“RMS mean”),
20, (“flatness mean”),
50, (“flux mean”),
16, (“skewness mean”),
and 22 (“entropy mean”).

The feature 1 deserves some specific comments (see below).
The feature 20 is in 14-th position of the GR, in the fourth
position of RM3, in the 10-th position of RM4, and in the
6-th position of RM5. The variable 50 appears also in the
fifth position of RM4, and in the 10-th position of RM5. The
variable 16 appears in the best sequences for M ≥ 9 and in
9-th position of RM1. The feature 22 has not been detected by
the previous studies: it does not appear either in the rankings,
or in the best sequence search (at least for M ≤ 12 as in Table
IV).
About the feature 1. Recall that the variable 1 (“RMS mean”)
does not appear in the first best 20 variables on the GR, but is
the third most important variable by RM4 and is in position 8-
th by RM5. It is important to note that the feature 1 seems very
important after Gibbs sampling study. The variable 1 seems to
have equal importance than the feature 115, obtaining virtually
the same probabilities. A correlation study between pairs of
variable reveals that the features 1 and 115 have a very high
Pearson correlation coefficient (greater than 0.95), as shown
in Figure 2(b). Moreover, Figure 2(b) shows there is a strong
correlations among the features 1, 50 and 115 (forming a
triangle in the figure).
Comparison RM2 and BS with M = 12. The best sequence
for M = 12 is

4 (“maximum fluctuation”),
8 (“roll-off mean”),
13 (“centroid standard deviation”),
14 (“spread mean”),

16 (“skewness mean”),
43 (“7th MFCC stand. deviation”),
55 (“pitch mean”),
56 (“pitch standard deviation”),
107 (“7th chromagram stand. deviation”),
113 (“loudness mean”),
114 (“loudness standard deviation”),
and 115 (“energy mean”),

and the first better variables for RM2 are

113, 14, 8, 114, 115, 56, 4, 43, 18 , 13, 107, and 55,

(ordered by RM2).

They differ only for the variables 16 (“skewness mean”) and
18 (“kurtosis mean”). After the Gibbs analysis, the feature
16 seems slightly more relevant than 18. See, e.g., Fig. 3(d).
However, following the Gibbs analysis, other variables could
provide a more robust results, for instance, the features 20
(“flatness mean”), 22 (“entropy mean”) or 50 (“flux mean”).

D. Summary for the output 1 - Arousal

Here, we classify the features into four different classes:
very relevant (Level 1), relevant (Level 2), and relevant but
maybe only for the specific dataset (Level 3), and the rest of
variables belong to the class non-relevant (Level 4).
Level 1. After all the studies, we can assert at least 7 variables
are very relevant:

113, 114, 14, 115, 4, 8, and 56, (ordered by Gibbs analysis),

which are shown in decreasing order of importance consider-
ing the Gibbs sampling analysis. This is also the best sequence
for M = 7, as shown in Table IV and includes also the first 7
elements in the ranking obtained by RM2 but with a different
order,

113, 14, 8, 114, 115, 56, and 4 (ordered by RM2).

With the exception of the feature 115, the rest of variables are
also contained in the first 7 positions of the GR in Table III,
that is

113, 114, 14, 8, 13 (instead of 115), 4, and 56,

(ordered by GR).

Level 2. Other important variables are

1, 22, 20, 50, 13, 16, and 3 (ordered by Gibbs analysis),

but the features 1 (“RMS mean”) and 50 (“flux mean”) are
highly correlated to the variable 115 (“energy mean”), as
shown by Figure 2(b) and as we could intuitively expect. The
variable 13 (“centroid standard deviation”) is the fifth in GR
and appears in some of the first twelve best sequences. How-
ever, the Gibbs analysis reveals (that in terms of robustness)
other variables such as 20 (“flatness mean”) and 22 (“entropy
mean”) are more or a similar relevance than 13. The feature 20
is the 14-th variable in the GR, and is particularly important in
RM3 (4-th position) and RM5 (6-th position). The feature 16
(“skewness mean”) does not appears in the best first twenty
variables in the rankings, but appears in the best sequences
permanently for M ≥ 9. In the Gibbs analysis, the feature 16
acquires some relevance as M grows. Finally, the feature 3
(“decrease slope mean”) does not appear in the first twelve best
sequences and it does not seems relevant by the Gibbs analysis.
However, it appears in 8-th position of GR and within the first
twenty more relevant variables in all the ranking methods.1

Level 3. Other possibly important variables, which appear in
the best sequence search and in the rankings RM1 and RM2,
are

43 (“7th MFCC stand. deviation”)
and 107 (“7th chromagram stand. deviation”).

The variable 43 appears in 8-th position in RM2 and 13-th
position in RM1. Moreover, it appears in the best sequences
for M ≥ 8. The feature 43 appears in 11-th position in RM2

1More surprisingly, for the output 2 - valence -, only three features are
included within the first twenty more relevant variables in all the ranking
methods: they are the variables 113, 114 and again 3. Namely the feature 3
(as 113 and 114) is included within the first twenty more relevant variables
in all the ranking methods for both outputs.
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and 14-th position in RM1. Moreover, it appears in the best
sequences for M ≥ 10. On the other hand, the Gibbs analysis
does not associate any particular relevance to these variables.

E. Selection of the number of variables for the output 1

First of all, we have applied different information criteria,
such as the AIC and BIC, shown in Table I [21]. The more
adequate results have been provided the Bayesian information
criterion (BIC) which suggests to use 17 variables whereas
AIC suggests the use of 40 variables. We have also tried
the classical analysis based on p-values which suggests 71
variables [9], [17]. The results of the corresponding ranking
method is given in Table V. The first most relevant 7 variables
are again 113, 14, 8, 4, 56, 115 and 114, i.e., the very relevant
features that we have found after our analysis.
However, after our exhaustive study, we believe that a more
parsimonious model can be suggested. The most parsimonious
LM after all the consideration in our study, is the model which
includes at least the seven very relevant variables (described
above),

113, 114, 14, 115, 4, 8, and 56. (13)

More precisely, the suggested linear model is

y =− 0.5293 + 3.6494 x113 + 1.8080 x114+

− 1.5534 x14 − 3.8491 x115+ (14)
+ 1.5056 x4 + 1.1714 x8 − 0.3450 x56,

obtaining a MAE of 0.1593, MSE of 0.0432 (i.e, RMSE of
0.2078), and R2 = 0.8703. Considering a Monte Carlo cross-
validation procedure (with 80% of the data in the train-set
and the rest of 20% of data in the test-set, chosen randomly
in each 2 · 104 independent runs), we obtain MAE of 0.1611,
MSE of 0.0450 (i.e, RMSE of 0.2118), and R2 = 0.8641.
Namely, we have a very slight increase of MAE and MSE
(or a slight decrease of R2), proving the robustness of our
proposed model.

V. FINAL DISCUSSION AND CONCLUSIONS

The previous exhaustive analysis has been repeated for
output 2 (i.e., valence). All the details and related comments
can be found in the Supplementary Material. The final
suggested model for the output 2 is formed by 16 variables,

y =0.2831− 2.4741 x114 − 1.0919 x113 + 0.8070 x14+

0.2538 x88 + 2.8482 x115 − 0.6448x3+

− 1.4867 x8 + 1.1290 x20 − 0.2003 x79+ (15)
− 0.7192 x4 + 0.5182 x109 + 0.1642 x110+

0.3312 x40 + 0.2978 x31 + 0.4621 x42 − 0.5342 x52,

obtaining a MAE of 0.2799, MSE of 0.1182 (i.e, an RMSE
of 0.3437), and an R2 = 0.6452. Considering a Monte Carlo
cross-validation procedure (with 80% of the data in the
train-set and the rest of 20% of data in the test-set, chosen
randomly in each of the 2 · 104 independent runs), we obtain
MAE of 0.2849, MSE of 0.1233 (i.e, RMSE of 0.3509), and
R2 = 0.6311. As for the output 1, we have a very slight
increase of MAE and MSE (and a slight decrease of R2),

proving the robustness of our proposed model.

It is important to observe that within the most important
features for the output 2 (i.e., valence), the features

114, 113, 14, 88, 115, and 3, (ordered by Gibbs analysis),

are also relevant for the the output 1, with exception of the
variable 88 (“inharmonicity stand. deviation”). Therefore,
we can conclude that the psychoacoustic features 113,
114 (“loudness mean” and “loudness standard deviation”,
respectively), the frequency-domain feature 14 (“spread
mean”), and the time-domain feature 115 ( “energy mean”)
are the most relevant variables in our study. They have been
included in both suggested models. The frequency-domain
feature 3 (“decrease slope mean”), although has not been
included in the suggested model for the output 1, appears
within the first twenty more relevant variables in all the
rankings, for both outputs. The relevant features reveal the
importance of the psychoacoustic indicators in SER. However,
time and frequency-domain features have been also included
into the suggested models. These results are in line with other
studies which also highlight that subjective perception and
time-dynamics of the signals (jointly embedded in indicators)
lead to better model scores [1], [20]. The valence model
provides worse performance than arousal one, even involving
more features. This outcome agrees with the literature and it
seems to be due to the prevalence of neutral annotations of
valence in some soundscape categories [11].
We remark that the suggested LMs are very cheap and
parsimonious models (including only 7 variables for arousal
and 16 for valence, over the 122 possible features) and provide
quite high R2 coefficients (R2 = 0.8703 for arousal and
R2 = 0.6452 for valence), and small MSEs (0.045 for arousal
and 0.118 for valence), compared with the results previously
obtained in the literature, even using non-linear models and
including more variables. Indeed, our results are competitive
with respect to the EMO baseline that employs a non-linear
SVR and many more features (exactly 39 variables), both in
arousal (with an MSE of 0.048) and valence (with an MSE
of 0.128) [10]. In [2], the authors suggest also linear models
with EMO obtaining worse results: specifically MSE ≈ 0.090
for arousal and MSE ≈ 0.160 for valence) using also more
features in their models (exactly 25). Recent studies with
EMO have shown that more sophisticated nonlinear models
(such as RF) can reach good scores with 15 features for
arousal (MSE ≈ 0.050) and 14 features for valence (MSE
≈ 0.140). Finally, other authors using more sophisticated
nonlinear models, such as CNNs and data augmentation
techniques, obtain slightly better metrics (MSE ≈ 0.035 for
arousal, and MSE ≈ 0.078 for valence), but also including
substantially more variables in their models: from 23 up to
54 features [11], [31]. All these considerations confirm the
quality of our suggested models.

Due to the exhaustive study that we have performed,
we believe that the suggested LMs are robust and allow
good prediction in different databases. Thus, the obtained
parsimonious models can help the design of SER methods,
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and its practical applications by remarking the most relevant
features.
As future research lines, we plan to extend our variable
selection study (including the proposed Gibbs analysis) for
nonlinear models, and then judge if this non-linearity is
strongly required with the EMO dataset, since the proposed
LMs provides already very good performance. Furthermore,
we plan to design novel schemes for selecting automatically a
reasonable number of variables, when the priority is to obtain
the simplest (and hence cheapest) possible model. Indeed,
at least with these soundscapes data, the current benchmark
techniques often seem to widely overestimate the adequate
number of relevant variables.
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(a) M = 2 (b) M = 6

(c) M = 10 (d) M = 20

Figure 3: Results in terms of probabilities obtained by a Gibbs sampling analysis for the Output 1. The dashed line depicts
the equiprobability (uniform) distribution with probability 1/122.

Table V: Results of RM based on p-values for the output 1

Ranking Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RM based on p-values 113 14 8 4 56 115 114 16 43 75 55 13 37 122 2 107 11 40 3 38
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I. RESULTS FOR THE OUTPUT2 - VALENCE

In this section, we analyze the the output 2 of the dataset,
i.e., valence. From the results that we will provide in this
section (by all the figures and tables below), we can note
that the output 2 (valence) is less linear correlated with the
variables x, compared with th first output (arousal). Here we
mainly discuss the variables which seem relevant for both
outputs (1 and 2) and some features just relevant for output 2.
The most important features for output 2 are

114 (“loudness standard deviation”),
113 (“loudness mean”),
14 (“spread mean”),
and 3 (“decrease slope mean”).

They are also relevant for the output 1 (as we can see in the
main body of the work). The variable 114 seems to increase
its relevance with respect the output 1, whereas the variable
3 is much more relevant for the output 2. The importance of
these features is confirmed by the Gibbs analysis in Fig. 2,
specially for the feature 14. Indeed, the case of feature 14 is
very interesting and reveals also the importance of the Gibbs
analysis. The variable 14 does not seem relevant following
RM1 and RM2 (which provides the sequences with the smaller
errors) and does not appears in the best sequences in Table III.
However, it is the third more important variables for RM3,
RM4 and RM5, and it is the third more relevant variable for
the Gibbs analysis (see Fig. 3). Furthermore, it acquires more
relevance as M grows (see again Fig. 3). The variables

1 (“RMS mean”),
and 115 (“energy mean”),

(which are highly correlated, also with the feature 50; see the
main body of the paper for further details) appear relevant for
the second output as well. The variable 1 is contained in the
first twenty more important features in RM2, RM4 and RM5.
Moreover, the variable 1 appears in the best sequences playing
the role of the variable 115, i.e., when the feature 115 does not
appear in those sequences. Namely, due to their correlation in
the rankings and in the best sequences, the presence of one

of them (1 or 115) avoids the presence of the other one. The
feature 115 appears in the best sequences almost in a stable
way for M ≥ 3. The Gibbs analysis confirms the relevance of
both 1 and 115, and they seem even more relevant than the
variable 3. Furthermore, the following variables

50, (“flux mean”),
20, (“flatness mean”),
13, (“centroid standard deviation”),
and 8 (“roll-off mean”),

are also important for the output 2. The variable 20 is in the
7-th position of the GR, the variable 50 is of the 8-th position
in the GR (but is highly correlated with the features 1 and
115), the variable 13 is of the 9-th position of the GR and
the feature 8 is in the 14-th position of the GR.
The variables above have certain relevance also for the
output 1. Below, we discuss some features that seem to have
importance only for the output 2 (i.e., valence).

Variables relevant mainly for the output2 (not for
output 1). A careful look to the results reveals that the
following features

88 (“inharmonicity standard deviation”),
31 (“8th MFCC mean”),
40 (“4th MFCC standard deviation”),
42 (“6th MFCC standard deviation”),
52 (“Low Energy”),
79 (“11th chromagram center stand. deviation”),
109 (“9th chromagram stand. deviation”),
and 110 (“10th chromagram standard deviation”),

are relevant, and appear in the best sequences for the output
2. Moreover, the feature 88 is the second more important in
RM1 and appears in the 13-th position of RM3 (and in the
18-th position of the GR). The importance of 88 is confirmed
(and is even more clear) by the Gibbs sampling analysis
shown in Figure 2. The feature 31 seems to be relevant for
RM1, RM5 and the Gibbs analysis. Moreover, it appears in
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the best sequences for M ≥ 11. The variable 40 is within
the first twenty most important variables of RM1 and RM2,
and takes the 11-th position in the GR. It also appears in the
ranking based on p-values in the 10-th position (see Table
IV). Moreover, it starts to appear in the best sequences for
M ≥ 10. The importance of the feature 40 increases as M
grows, following the Gibbs analysis. The feature 42 seems
to have also the same importance of the variable 40 for the
Gibbs analysis, and appears in the 16-th position of the GR
and in the 15-th position of RM1. The variable 52 takes
the 9-th position in RM2, appears in the best sequences
for M ≥ 10 and seems relevant according to the Gibbs
analysis. The feature 79 appears within the first twenty more
important variables in RM1, RM2 and RM3. From the Gibbs
analysis, it seems clear that its importance grows with M . In
the best sequences, the feature 79 appears in a stable way
for all the best sequences with M ≥ 8. The feature 110 is
contained within the first twenty more important variables in
RM1, RM2 and RM3. It is in the 10-th position of the GR.
Following the Gibbs analysis, the feature 109 is similar or
more relevant than 110. It also appears in the best sequence
with M = 7 and in the 6-th position of the classical ranking
based on p-values. The feature 50 seems relevant by the
Gibbs analysis but it is very correlated to 1 and 115 (see the
main body of this work for further details).

On the possible consensus of RM1, RM2 and best
sequences. Figure 1 shows the MAE obtained by ordering
the variables with the different ranking. Figure 2 depicts the
MAE curve associated to the best sequences and compared
with the curves of RM1 and RM2. Again, as with output 1,
these three curves are very close. However, it is important to
remark that the corresponding sequences of variables ordered
by RM1, RM2 and according to the best sequences are very
different. They agree, in the first twelve more important
feature, just for

114 (“loudness standard deviation”),
113 (“loudness mean”),
1 (“RMS mean”) - or 115 (“energy mean”),
and 3 (“decrease slope mean”).

Considering only RM1 and the best sequences, there is also a
consensus on the features

88 (“inharmonicity standard deviation”),
and 109 (“9th chromagram stand. deviation”).

Considering only RM2 and the best sequences, there is also a
consensus on the variables

79 (“11th chromagram center stand. deviation”),
and 72 (“4th chromagram center stand. deviation”).

On the consensus of RM1, the ranking based on p-values,
and best sequences. The results of the classical ranking
method based on p-values is given on Table IV. The stopping

rule of this classical analysis suggests to use 83 variables. We
can observe that the first five more relevant variables

114 (“loudness standard deviation”),
88 (“inharmonicity standard deviation”),
115 (“energy mean”),
3 (“decrease slope mean”),
113 (“loudness mean”),
(ordered for their relevance),

are also important for RM1. Note that the first four variables
above are in the same position and the same order in RM1
and in Table IV. Moreover, the first four features form the
best sequence with M = 4. The variable 113 appears in the
best sequence with M = 5.

II. PROPOSED MODEL FOR THE OUTPUT 2

For the output 2, the BIC suggests the use of 22 variables,
whereas the AIC suggests the use of 68 variables. The classical
p-values method suggests the use of 83 variables. However, all
the considerations in our study above, we believe that a more
parsimonious model can be proposed. In our opinion, The most
parsimonious linear model that we can suggest is the model
which includes at least the six very relevant variables which
are (see the considerations above)

114 (“loudness standard deviation”),
113 (“loudness mean”),
14 (“spread mean”),
88 (“inharmonicity standard deviation”),
115 (“energy mean”),
3 (“decrease slope mean”),
(ordered by the Gibbs analysis),

and the ten relevant variables,

8, (“roll-off mean”),
20, (“flatness mean”),
79 (“11th chromagram center stand. deviation”),

4 , (“maximum fluctuation”),
109 (“9th chromagram stand. deviation”),
110 (“10th chromagram standard deviation”),
40, (“4th MFCC standard deviation”),
31, (“8th MFCC mean”),
42, (“6th MFCC standard deviation”),
and 52 (“Low Energy”),

(ordered by the Gibbs analysis),

where we have included the feature 4 due to the Gibbs
analysis. It appears also in the first twenty positions of RM3,
RM4 and RM5: in the 12-th position, in the 18-th position, and
in the 15-th position, respectively. The variable 72 has been
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excluded due to the Gibbs analysis, as well. More precisely,
the suggested model is

y =0.2831− 2.4741 x114 − 1.0919 x113 + 0.8070 x14+

0.2538 x88 + 2.8482 x115 − 0.6448x3+

− 1.4867 x8 + 1.1290 x20 − 0.2003 x79+ (1)
− 0.7192 x4 + 0.5182 x109 + 0.1642 x110+

0.3312 x40 + 0.2978 x31 + 0.4621 x42 − 0.5342 x52,

obtaining a MAE of 0.2799, MSE of 0.1182 (i.e, an RMSE
of 0.3437), and an R2 = 0.6452. Considering a Monte Carlo

cross-validation procedure (with 80% of the data in the train-
set and the rest of 20% of data in the test-set, chosen randomly
in each 2 · 104 independent runs), we obtain MAE of 0.2849,
MSE of 0.1233 (i.e, RMSE of 0.3509), and R2 = 0.6311. As
for the output 1, we have a very slight increase of MAE and
MSE (and a slight decrease of R2), proving the robustness of
our proposed model.
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(a) MAE versus M , ordering the variables.
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(b) The same of Figure (a) but in log-log scale.

Figure 1: MAE versus M obtained ordering the variables according to the different rankings (for Output 2). At each M ,
we consider the first M variables in each ranking and compute the MAE. Clearly, when M = 122 (i.e., we are using all
the variables) all the curves reach the same point. The black solid line corresponds to the MAE curves without ordering the
variables.
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Figure 2: MAE versus M obtained ordering the variables according to RM1, RM2 and the best sequence search (Output 2).

Table I: Results of the ranking methods - Output 2.

Meth. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RM1 114 88 115 3 42 5 113 109 64 31 59 15 9 121 13 36 79 75 40 110

RM2 114 1 113 110 3 79 94 62 52 72 12 14 40 15 10 101 91 92 29 67

RM3 113 114 14 20 18 3 119 9 13 65 94 4 88 86 79 110 101 121 34 42

RM4 113 114 14 20 50 51 2 116 1 115 18 9 13 3 119 19 17 4 12 34

RM5 113 114 14 116 2 20 51 1 115 50 13 9 3 21 4 122 29 56 31 23
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Table II: Possible global ranking (GR) - Output 2.

GR: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Variable: 114 113 3 14 9 12 20 50 13 110 40 122 34 8 101 42 29 88 2 15

RM1: 1 7 4 33 13 34 39 58 15 20 19 43 31 40 27 5 50 2 46 12
RM2: 1 3 5 12 30 11 67 32 91 4 13 27 22 68 16 51 19 81 42 14
RM3: 2 1 6 3 8 22 4 34 9 16 21 42 19 27 17 20 41 13 89 60
RM4: 2 1 14 3 12 19 4 5 13 26 73 42 20 21 22 78 57 67 7 82
RM5: 2 1 13 3 12 28 6 10 11 98 41 16 78 21 101 30 17 23 5 25

N. Score: 0.99 0.98 0.94 0.92 0.88 0.82 0.81 0.78 0.78 0.74 0.73 0.73 0.73 0.72 0.71 0.71 0.71 0.70 0.70 0.69

Table III: Best Sequences - Output 2

M Labels of the features in the best sequence
1 114
2 88 114

3 88 114 115

4 3 88 114 115

5 3 104 113 114 115

6 33 40 113 114 115 119

7 3 5 88 109 113 114 115

8 3 5 72 79 110 113 114 115

9 3 5 72 79 88 110 113 114 115

10 3 5 40 72 79 88 112 113 114 115

11 3 31 40 52 72 79 91 110 113 114 115

12 1 3 31 40 52 72 79 88 91 110 113 114

Table IV: Results of RM based on p-values - output 2.

Ranking Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RM based on p-values 114 88 115 3 113 109 5 25 65 40 33 37 4 122 68 107 36 2 51 47
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(a) M = 2 (b) M = 6

(c) M = 10 (d) M = 20

Figure 3: Results in terms of probabilities obtained by a Gibbs sampling analysis for the output 2 (valence). The dashed line
depicts the uniform discrete distribution with probability 1/122.


