
Comparison of various models for stock
prediction

Jonathan Lee

Contest: Financial data utilization

Abstract. The stock forecast of the Korean stock with using the Fi-
nanceDataReader provided by Python Module. Eight models were com-
pared to choose the best model. As a result, ARIMA had the best per-
formance.

1 Introduction

Due to the high volatility of the COVID-19 pandemic, interest in stock invest-
ment is focused. Also, it is said that the atmosphere is gathering again from
the cryptocurrency market to the domestic stock market. In this situation, we
looked at which model could more accurately predict the closing price of a stock.

2 Models

We compared eight models for forecasting stock prices. The models: Linear Re-
gression, XGBoost, ARIMA, ES, VAR, LSTM, DeepAR, AR-net

2.1 Linear Regression

In statistics, linear regression is a linear approach for modelling the relationship
between a scalar response and one or more explanatory variables (also known as
dependent and independent variables). The case of one explanatory variable is
called simple linear regression; for more than one, the process is called multiple
linear regression. This term is distinct from multivariate linear regression, where
multiple correlated dependent variables are predicted, rather than a single scalar
variable.

In linear regression, the relationships are modeled using linear predictor func-
tions whose unknown model parameters are estimated from the data. Such mod-
els are called linear models. Most commonly, the conditional mean of the response
given the values of the explanatory variables (or predictors) is assumed to be an
affine function of those values; less commonly, the conditional median or some
other quantile is used. Like all forms of regression analysis, linear regression fo-
cuses on the conditional probability distribution of the response given the values
of the predictors, rather than on the joint probability distribution of all of these
variables, which is the domain of multivariate analysis.



Linear regression was the first type of regression analysis to be studied rig-
orously, and to be used extensively in practical applications. This is because
models which depend linearly on their unknown parameters are easier to fit
than models which are non-linearly related to their parameters and because the
statistical properties of the resulting estimators are easier to determine.

Linear regression has many practical uses. Most applications fall into one of
the following two broad categories:

If the goal is prediction, forecasting, or error reduction,[clarification needed]
linear regression can be used to fit a predictive model to an observed data set
of values of the response and explanatory variables. After developing such a
model, if additional values of the explanatory variables are collected without an
accompanying response value, the fitted model can be used to make a predic-
tion of the response. If the goal is to explain variation in the response variable
that can be attributed to variation in the explanatory variables, linear regression
analysis can be applied to quantify the strength of the relationship between the
response and the explanatory variables, and in particular to determine whether
some explanatory variables may have no linear relationship with the response at
all, or to identify which subsets of explanatory variables may contain redundant
information about the response. Linear regression models are often fitted using
the least squares approach, but they may also be fitted in other ways, such as
by minimizing the ”lack of fit” in some other norm (as with least absolute devi-
ations regression), or by minimizing a penalized version of the least squares cost
function as in ridge regression (L2-norm penalty) and lasso (L1-norm penalty).
Conversely, the least squares approach can be used to fit models that are not
linear models. Thus, although the terms ”least squares” and ”linear model” are
closely linked, they are not synonymous.[2]

2.2 XGBoost

XGBoost is an open-source software library which provides a regularizing gra-
dient boosting framework for C++, Java, Python, R, Julia, Perl, and Scala. It
works on Linux, Windows, and macOS. From the project description, it aims to
provide a ”Scalable, Portable and Distributed Gradient Boosting (GBM, GBRT,
GBDT) Library”. It runs on a single machine, as well as the distributed pro-
cessing frameworks Apache Hadoop, Apache Spark, Apache Flink, and Dask. It
has gained much popularity and attention recently as the algorithm of choice for
many winning teams of machine learning competitions.

XGBoost initially started as a research project by Tianqi Chen as part of
the Distributed (Deep) Machine Learning Community (DMLC) group. Initially,
it began as a terminal application which could be configured using a libsvm
configuration file. It became well known in the ML competition circles after
its use in the winning solution of the Higgs Machine Learning Challenge. Soon
after, the Python and R packages were built, and XGBoost now has package
implementations for Java, Scala, Julia, Perl, and other languages. This brought
the library to more developers and contributed to its popularity among the
Kaggle community, where it has been used for a large number of competitions.



It was soon integrated with a number of other packages making it easier to use
in their respective communities. It has now been integrated with scikit-learn for
Python users and with the caret package for R users. It can also be integrated
into Data Flow frameworks like Apache Spark, Apache Hadoop, and Apache
Flink using the abstracted Rabit and XGBoost4J. XGBoost is also available on
OpenCL for FPGAs. An efficient, scalable implementation of XGBoost has been
published by Tianqi Chen and Carlos Guestrin.

Salient features of XGBoost which make it different from other gradient
boosting algorithms include:

Clever penalization of trees A proportional shrinking of leaf nodes Newton
Boosting Extra randomization parameter Implementation on single, distributed
systems and out-of-core computation Automatic Feature selection

XGBoost works as Newton Raphson in function space unlike gradient boost-
ing that works as gradient descent in function space, a second order Taylor
approximation is used in the loss function to make the connection to Newton
Raphson method. [4]

2.3 LSTM

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN)
architecture used in the field of deep learning. Unlike standard feedforward neu-
ral networks, LSTM has feedback connections. It can process not only single
data points (such as images), but also entire sequences of data (such as speech
or video). For example, LSTM is applicable to tasks such as unsegmented, con-
nected handwriting recognition, speech recognition and anomaly detection in
network traffic or IDSs (intrusion detection systems).

A common LSTM unit is composed of a cell, an input gate, an output gate
and a forget gate. The cell remembers values over arbitrary time intervals and
the three gates regulate the flow of information into and out of the cell.

LSTM networks are well-suited to classifying, processing and making predic-
tions based on time series data, since there can be lags of unknown duration
between important events in a time series. LSTMs were developed to deal with
the vanishing gradient problem that can be encountered when training tradi-
tional RNNs. Relative insensitivity to gap length is an advantage of LSTM over
RNNs, hidden Markov models and other sequence learning methods in numerous
applications [3]

2.4 Exponential smoothing

Exponential smoothing is a rule of thumb technique for smoothing time series
data using the exponential window function. Whereas in the simple moving
average the past observations are weighted equally, exponential functions are
used to assign exponentially decreasing weights over time. It is an easily learned
and easily applied procedure for making some determination based on prior
assumptions by the user, such as seasonality. Exponential smoothing is often
used for analysis of time-series data.



Exponential smoothing is one of many window functions commonly applied
to smooth data in signal processing, acting as low-pass filters to remove high-
frequency noise. This method is preceded by Poisson’s use of recursive expo-
nential window functions in convolutions from the 19th century, as well as Kol-
mogorov and Zurbenko’s use of recursive moving averages from their studies of
turbulence in the 1940s. [1]

3 Conclusion

Except for Linear Regression and XGBoost, all predictions were made using only
closing price information. Linear Regression, XGBoost 2 model was predicted
using the closing price, opening price, high price, and low price. In the case of
LSTM, predictions were made using 16 hidden cells. In the case of DeepAR,
the performance was rather low and took a long time, so we excluded it from
the measurement. The measured evaluation formula is NMAE * 100. Using data
from the previous week, we predicted the stock price from November 1, 2021 to
November 5, 2021.

Models FinanceDataReader Korea Stock Forecasting

Linear Regression 3.46

XGBoost 4.45

ARIMA 2.97

ES 2.95

VAR 2.98

LSTM X

AR-net 2.96

Table 1. NMAE * 100

The model performance results different weekly. In the case of LSTM, the
results were not good. In the case of LSTM, it is estimated that more model
parameter modifications and pre-processing are required. The performance of
ARIMA and ES is almost identical. However, ARIMA was slightly more stable in
measurements in about average 8 weeks. Among the ARIMA models, the (1,1,0)
selection was able to obtain the highest average score. AR-net had almost the
same performance as ARIMA, but because ARIMA was ahead in terms of time,
ARIMA(1,1,0) measured according to Ockham’s razor principle was considered
to be the best model on average.

References

1. contributors, W.: ”exponential smoothing.” wikipedia
2. contributors, W.: ”linear regression.” wikipedia
3. contributors, W.: ”long short-term memory.” wikipedia
4. contributors, W.: ”xgboost.” wikipedia


