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Abstract. Knowledge representation is a classic problem in Knowledge
graph. Distance-based models have made great progress. The most signif-
icant recent developments in this direction have been those of Rotate[1]
and PairRE[2], which focus on express relationships as projections of
nodes. However TransX series Model(TransE[3], TransH[4], TransR[5])
express relationships as translations of nodes. To date, the problem of
the Combination of Projection and translation has received scant atten-
tion in the research literature. Hence, we propose TripleRE, a method
which models relationships by projections and translations. Compared
with the other knowledge representation model, we achieve the best re-
sults on ogbl-wikikg2 dataset.
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1 Introduction

Knowledge representation(KR) is an important research branch of knowledge
graph, which plays a essential role in the life cycle of downstream tasks, such
as semantic parsing[6], named entity disambiguation[7], question answering[8],
and etc. The previous research has established two main directions: transla-
tion distance model and bilinear model, mainly focusing on modeling knowledge
triples with scoring functions. The Translation distance model expresses rela-
tionships as projections or translations of nodes. The bilinear model uses matrix
decomposition to model triples. Our work mainly lies in the optimization of the
Translation distance model. One major theoretical issue that has dominated the
field for many years concerns how to model the complex relation. Rotate[1] ex-
presses the relationship as the projection of the head node and expands it in the
complex vector space. It can model symmetric, asymmetric, inverse and combi-
nation relationships. PairRE[2] divides the relationship into rh and rt, where rh
represents the projection of the head node, and rt represents the projection of
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the tail node, In addition to modeling the above relationships, it can also model
sub-relationships. As the sota of the translation distance model, pairRE[2] re-
moves the expansion of the complex vector space, is more concise than Rotate[1].
However, pairRE[2] still only regards the relationship as the projection of the
node. We believe that both pairRE[2] and Rotate[1] does not take account of
the relationship can learn as the translation part of the node. Our work is equiv-
alent to making a complement on this basis. On the other hand, pairRE[2] can
be regarded as our special case. We split the relationship into three parts. The
projection part is the same as PairRE[2]. The translation part is learned by a
separate parameter. In order to better learn translation features, we provide two
TripleRE solutions. In addition to Nodepiece and RP techniques, our TripleRE
achieve the best results. It is worth noting that our TripleRE + NodePiece
solution achieves the best results on the ogbl-wikikg2 dataset.

2 Related Work

The knowledge graph is composed of entities and relationships, usually expressed
in the form of triples, [head (head entity), relation (relationship of entities), tail
(tail entity)], abbreviated as (h, r, t). The task of knowledge representation
learning is to learn distributed representations of h, r, and t (also known as
the embedding representation of the knowledge graph). The elements in the
knowledge graph are embedded as dense low-dimensional vectors while retaining
the original structure and connections. The embedded entities and relationships
can complete a variety of knowledge graph tasks, such as semantic parsing,
named entity disambiguation and question answering.

1) Translation distance model TransE[3] uses the translation invariance
of the word vector embedding space found to express the relationship as the
translation of the entity vector, thereby opening the door to the translation
distance model. The model itself has the advantages of simple principles and
fewer parameters, but it also cannot handle complex relationships and symme-
try. Relationship and inverse relationship modeling and other issues. The key
to the translation distance model is to choose an appropriate scoring func-
tion. A better scoring function will have a better performance in modeling
complex relationships such as 1-N, N-1, N-N and relationship patterns such as
symmetric/non-relationship, inverse relationship, combination relationship, and
sub-relationship. The TransX series(TransE[3], TransH[4], TransD[9], TransR[5])
has made up for the shortcomings of TransE’s inability to express complex re-
lationships and symmetrical relationships, but there are still shortcomings such
as the model is too complex and the expression of the relationship model is
insufficient. RotatE[1] takes inspiration from Euler’s formula and uses the rota-
tion of the vector to express the relationship. At the same time, it uses complex
embedding to model the inverse relationship. The model has achieved excellent
results. PairRE[2] uses two-stage vectors to express the relationship to model
the sub-relationship.
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2) Bilinear model The bilinear model is also known as the semantic match-
ing model. It uses similarity-based scores to measure the possibility of the fact
that the triples are true by matching the latent semantics of entities and relation-
ships in the embedding vector space. RESCAL[10] uses a vector to represent the
embedding of the head entity and the tail entity, and the relationship is expressed
as a matrix to model the interaction of the three. DisMult[11] imposes constraints
on the relationship matrix and simplifies the calculation. ComplEX[12] embeds
the head and tail entities and relationships into the complex space, so that it
can better model the antisymmetric relationship.

3) Others Recently, an AutoML based model, AutoSF[13], has emerged.
Through AutoML, it uses a certain search algorithm to search the score function
with the best performance in the search space, and has achieved good results.
Based on AutoSF[13], other scholars have proposed the method of combining
NodePiece[14]with it. Each entity node is uniquely represented by anchor entity
nodes and context relations, and a vocabulary is constructed for model training,
which not only greatly reduces the amount of parameters, but also improves the
effect of the model.

Fig. 1. Illustration of TripleREv1. For TripleREv1, all entities are on the unit circle.
rh and rt project entities to different locations, rm is response for the translation part.

3 Methodology

We have proposed two plans for tripleRE. We call them v1 and v2 respectively,
where v1 is the version we have submitted to the ogb benchmark.Illustration of
the proposed TripleREv1 is shown in Figure 1.
Loss funtion In the KR task, the goal is to embed knowledge graph triples into
a low-dimensional vector space. The loss we use is close to transE’s loss[3]. loss
functions can be written as the following formula:

L = −(σ̄(S) + σ̄(S′))/2 (1)

where S means positive score, S’ means negative score. σ̄ means take the average
of σ. σ means sigmoid function.
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TripleREv1 score funtion pairRE split relation into rh and rt. rh means the
projection of head node. rt means the projection of tail node. we split relation
into three parts, rh, rm and rt. rh and rt are the same as pairRE. rm is mainly
responsible for the translation of the node. Score functions can be written as the
following formula:

fr(h, t) = −∥h ◦ rh − t ◦ rt + rm∥ (2)

TripleREv2 score funtion: We try to add additional variables to rh and rt,
so that our method can better learn the representation of triples.We added two
parameters u and e, where u is a constant. In our experiment, we set it to 1, and
e is the unit vector. The specific formula is as follows::

fr(h, t) = −∥h ◦ (rh + u ∗ e)− t ◦ (rt + u ∗ e) + rm∥ (3)

More train step We found that our model is not prone to overfitting, so we
lengthened the training step and still gained benefits.

3.1 Implementation Detail

Specifically, we set learning rate 0.0005, step 700 thousand, the other Hyperpa-
rameters are the same as pairRE. pairRE need double relation dimension. In our
score function, We expand the dimension of the relationship to three times.The
implementation of TripleREv1 are shown in Figure 2.

Fig. 2. The implementation of score function.

3.2 Main Results

General Performance Table 1 shows model performance of each KR model.We
can see that our method achieves the best results.

4 Conclusions and Future Work

Our work shows that the distance-based knowledge representation model can
also learn very competitive knowledge representation vectors. In order to enrich
the expression of relationships and deal with complex relationships and multiple
relationship patterns, we propose TripleRE, which represents relationships as two
projections and one translation. At the same time, we seek a better expression of
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Table 1. On ogbl-wikikg2[15], our model achieved the best performance.

ogbl-wikikg2

Model test MRR valid MRR

ComplEx-RP (50dim) 0.6392 ± 0.0045 0.6561 ± 0.0070
NodePiece + AutoSF 0.5703 ± 0.0035 0.5806 ± 0.0047
AutoSF 0.5458 ± 0.0052 0.5510 ± 0.0063
PairRE (200dim) 0.5208 ± 0.0027 0.5423 ± 0.0020
RotatE (250dim) 0.4332 ± 0.0025 0.4353 ± 0.0028
TransE (500dim) 0.4256 ± 0.0030 0.4272 ± 0.0030
ComplEx (250dim) 0.4027 ± 0.0027 0.3759 ± 0.0016
DistMult (500dim) 0.3729 ± 0.0045 0.3506 ± 0.0042
TripleRE (200dim) 0.5794 ± 0.0020 0.6045 ± 0.0024
TripleREv2 (200dim) 0.6045 ± 0.0017 0.6117 ± 0.0008
TripleREv2 + NodePiece 0.6582 ± 0.0020 0.6616 ± 0.0018

the relationship between the projection of the entity nodes at both ends and the
translation after the projection of the head node. In large scale benchmark ogbl-
wikikg2,We have achieved relatively good results. Our follow-up work will focus
on how to better apply the knowledge representation vector to tasks downstream
of the knowledge graph.
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