On the Last Numbers of Positive Integers

Kenji Matsuura
daiken6217@i.softbank.jp, Seiichi Koshiba
k363a2@yahoo.co.jp, and
Masami Yamane
lf1yamane7@gmail.com

December 14, 2021

Abstract

In this note, we are interested in the last numbers of positive integers; for example, for 20211206, the last number is 6 , typically we note that for any positive integer a, the last numbers of a^{5} and a are the same.

Key Words: The last number of a positive integer, Fermat's small theorem, series of integers, Yamane's problem, repeated series.

2010 Mathematics Subject Classification: 11B50, 11B83.

1 Introduction

In this note, we are interested in the last numbers of positive integers; for example, for 20211206 , the last number is 6 , typically we note that for any positive integer a, the last numbers of a^{5} and a are the same.

2 Main results

For any natural numbers (positive integers) a and b we consider the series

$$
\{(a-n, b+n)\}_{n=\infty}^{n=-\infty}
$$

as in

$$
,,,(a-2, b+2),(a-1, b+1),(a, b),(a+1, b-1),(a+2, b-2),,, .
$$

Then, we have
Theorem 2.1 In the series

$$
\left\{(a-n)^{3}+(b+n)^{3}\right\}_{n=\infty}^{n=-\infty},
$$

the last numbers are the repeated series composing at most 4 numbers.
Indeed, we note the identity

$$
\begin{gathered}
S_{5}=(a-5)^{3}+(b+5)^{2} \\
=(a+b)\left(a^{2}-a b+b^{2}-15(a-b-5)\right) .
\end{gathered}
$$

Note that all the cases

$$
(a+b) 15(a-b-5)
$$

is a multiply of 10 ; that is, the last numbers of $S_{0}=a^{3}+b^{3}$ and S_{5} are the same. Therefore, in general, we have the theorem.

In general, let $L n$ denote the last number of an integer n.
Corollary 2.1 If $L(a+b)=0$, then $L\left(a^{3}+b^{3}\right)=0$.
Theorem 2.1 states that the series is repeated with at most 4 numbers. By examining the details, we have

Corollary 2.2 For

$$
L(a+b)=1
$$

the series is repeated as

$$
1,7,9,7,1
$$

Siminary,

$$
2: \quad 6,8,2,8,6
$$

$$
\begin{array}{cc}
3: & 9,7,3,7,9 . \\
4: & 4,8,6,8,4 . \\
5: & 5,5,5,5,5 . \\
6: & 6,2,4,2,6 . \\
7: & 1,3,7,3,1 . \\
8: & 4,2,8,2,4 . \\
9: & 9,3,1,3,9 \\
0: & 0,0,0,0,0
\end{array}
$$

3 An application of the Fermat's small theorem

In connection with the last numbers of positive integers, we obtain the pleasant theorem:

Theorem 3.1 For any positive integer a, the last numbers of a^{5} and a are the same.

Indeed, in the identity

$$
a^{5}-a=a\left(a^{5-1}-1\right),
$$

from the Fermat's small theorem ($[1,2]$), if a is not a multiply of 5 , since

$$
\left(a^{5-1}-1\right) \equiv 0, \quad(\bmod \quad 5),
$$

we see that for the both cases of even a and odd $a, a^{5}-a$ is a multiply of 10 and so, we have the desired result.

If a is a multiply of 5 , then the result is trivial.

4 Open problems

In this note we are interested in the last number of positive integers. How will be such an problem? It seems that this type problem will be a new type one. Therefore, we would like to propose a general problem as the Yamane's problem:

Yamane's Problem: Discuss or derive the results about the last numbers of positive integers.

In particular, we can propose
(Y1): What is the general theorem of Theorem 2.1?
(Y2): Could we derive the result of Theorem 3.1 type?

References

[1] Eric, W. Weisstein, Fermat's Little Theorem. MathWorld.
[2] Eric, W. Weisstein, Euler's Totient Theorem. MathWorld.

