
· Direct proof of Fermat’s Last Theorem based on 

parity odd or even of numbers. 

 

Introduction 

The French mathematician Pierre de Fermat (1601-1665), conjectured that the equation 

 x^n +y^n =z^n has no solution in positive integers x, y and z if n is a positive integer >= 3. 

He wrote in the margin of his personal copy of Brachet’s translation of Diophantus’ 

Arithmetica:”I have discovered a truly marvellous demonstration of this proposition that this 

margin is too narrow to contain”. 

Many researchers believe that Fermat does not find a demonstration of his proposition but 

some others think there is a proof and Fermat’s claim seems right. 

The search of a solution of equation x^n + y^n =z^n are splitted in two directions. 

The first one is oriented to search a solution for a specific value of the exponent n and the 

second is more general, oriented to find a solution for any value of the exponent n. 

 

- Babylonian (570,495 BC) studied the equation x^2+y^2=z^2 and found the solution (3,4,5).  

- Arabic mathematician Al-Khazin studied the equation x^3+y^3=z^3 in the X century and his 

work mentioned in a philosophic book by Avicenne in the XI century. 

- A defective proof of FLT was given before 972 by the Arab Alkhodjandi 

- The Arab Mohamed Beha Eddin ben Alhossain (1547-1622) listed among the problems 

remaining unsolved from former times that to divide a cube into two cubes.(refer Image of 

Arabic manuscript from British Museum. Problem N4 Red color at line 8 from top). 

- Fermat (1601, 1665), Euler (1707, 1783) and Dirichlet (around 1825) solved the equation for 

n=3, 4 and 5. 

- In 1753, Leonhard Euler presented a proof  for x^3+y^3=z^3 

- Fermat found a proof of x^4 +y^4 =z^4 using his famous “infinite descente”. This method 

combines proof by contradiction and proof by backward induction. 

- Dirichlet (in 1825) solved the equation x^5+y^5=z^5 . 

- Sophie Germain (in 1823) generalized the result of Dirichlet for prime p if 2p+1 is prime.. 

Let p prime, x^p +y^p =z^p has no solution in positive integers  if 2p+1 is prime. 

- In XIX century E.Kummer continued the work of Gauss and innovated by using numbers of 

cyclotomic field and introduced the concept of “prime factor ideal”.  
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-Andrew Wiles, a professor at Princeton University, provided an indirect  proof  of Fermat’s 

Conjecture in two articles published in the May 1995 issue of Annals of Mathematics. 

Andrew Wiles solved a high level problem in modular forms about elliptic curves and the 

consequence is a solution for FLT. Thanks to the results of Andrew Wiles, we know that 

Fermat’s Last Theorem is true. 

I think he opens a space for mathematicians to search proofs for FLT comprehensible by a 

normal student in mathematics and may be to find new concepts or ideas. This result should 

imply a direct proof of FLT. 

 

In this paper, I would like to suggest a direct proof using mathematical concepts (Parity 

Even/Odd of numbers, Forward Induction and Backward Induction) and tools of the Fermat‘s 

era; valid for whatever value n > 2. This direct proof is comprehensible for a normal student 

and mathematical lovers. 

 

Proof Of FLT: 

Let we recall the Pythagorean theorem which states that x^2 +y^2 =z^2 has many integer 

solutions . 

x= u^2 –v^2  ; y=2uv and z= u^2+v^2 with u and v positive integers, relatively prime , of 

opposite parity and u > v > 0. 

 

Assume the equation  x^n + y^n =z^n  with x, y, z positive integers and n is integer greater 

than 2. . 

In this proof we only deal with primitive triples which have no common divisor. 

- (x^n+y^n)=(x+y)*(x^(n-1) –x^(n-2)y+………..y^(n-1))=z *z^(n-1) 

- The sum  (x+y) from LHS and the number z from RHS must not  have any common 

divisor (like 2n or another) otherwise the equation x^n+y^n=z^n would be 

transformed in another equation degree (n-1) and different from x^n+y^n =z^n 

- No two numbers from (x, y, z) can be even because two would be a common divisor. 

- All three numbers (x,y,z)  cannot be odd because the equation x^n +y^n =z^n would 

say the sum of two odd numbers is odd. Therefore, exactly one is even. 

- There are 3 cases : 

o  z even and x odd and y  odd  

o  x odd, y even and z odd 

o x even and y odd and z odd 

We have to choose the right one according to the equation x^n +y^n =z^n. 

2/ Parity table 



A parity table is a mathematical table used in logic specifically in connection with parity which sets 

out the functional values of logical expressions (x^n +y^n =z^n) on each of their functional arguments, 

that is, for each combination of values taken by their logical variables 

The cell contains the parity of  each element (x,y,z) and the last column the sum  (x^n +y^n) and the 

right comment.  

E= Even and O=Odd 

N° x x^n y y^n z z^n x^n+y^n=z^n Comment 

1 E E E E E E E +E=E Excluded 

2 E E E E O O E+E=O Impossible 

3 E E O O E E E +O=E Impossible 

4 E E O O O O E + O=O To be examined 

5 O O E E E E O +E=E Impossible 

6 O O E E O O O +E=O To be examined 

7 O O O O O O O +O =O Excluded 

8 O O O O E E O +O=E To be examined 

 

1/ We want to prove that z is odd and x and y are of opposite parity. 

If z is even then z=2p with p integer . . The numbers x and y are odd and can be written as 

x=2q+1 and y= 2r+1.. 

x^n= (2q+1)^n =(2q)^n +1 + ∑ n ! / (j ! (n-j) !) (2q)^j  with 1≤ j ≤ (n-1) 

(2q+1)^n=(2q)^n +n (2q)^(n-1)+n(n-1)/2 (2q)^(n-2)+…….n(n-1)/2 (2q)^2 +n(2q) +1 

n is common factorn in all terms of binomial formula except in the leading term (2q)^n and 

the last term (one). 

y^n =(2r)^n +1 + ∑ n ! / (j ! (n-j) !) (2r)^j  

and z^n = (2p)^n. 

If  x^n +y^n =z^n and z even this implies : 

[(2q)^n +1 +∑ n ! / (j ! (n-j) !) (2q)^j ] + [(2r)^n+1 +∑ n ! / (j ! (n-j) !) (2r)^j ]= (2p)^n  with 

n>2 and 1≤ j ≤ (n-1) 

1.1/ Suppose n=2k with k>1 
x^n= (2q+1)^n =(2q)^n +1 + ∑ n ! /(j ! (n-j) !) (2q)^j 

 

(2q+1)^2k=(2q)^2k +1+ ∑ (2k)! /(j ! (2k-j) !) (2q)^j  

 

(2q+1)^2k =2^2k q^2k  +1 + (2k)*2 ∑ (2k-1) !/(j! ( (2k-j) !) 2^(j-1) (q)^j 

 

2^2k q^2k=4^k q^2k and 2k*2=4k  

 

(2p)^2k =2^2k p^2k =4^k  p^2k 

 

The number 4 is common divisor of x^2k, y^2k and z^2k 

 



(2q+1)^2k=[4^k q^2k+4k ∑ (2k-1) !/(j! ( (2k-j) !) 2^(j-1) (q)^j) +1]=4[4^(k-1) q^2k +k*Q]+1  

 

with Q is polynomial in q 

 

(2r+1)^2k=[4^k r^2k+4k ∑ (2k-1) !/(j! ( (2k-j) !) 2^(j-1) (r)^j) +1]=4[4^(k-1) r^2k +k*R]+1,  

 

with R is polynomial in r 

 

(2p)^2k =2^2k p^2k=4[4^(k-1) p^2k] ,  

 

If x^n +y^n =z^n and z even this implies : 

 

4[4^(k-1)q^2k +k*Q +4^(k-1) r^2k +k*R] +2 =4[4^(k-1) (p^2k)] 

 

4[4^(k-1) (q^2k + r^2k –p^2k)+ k*(Q +R)]= -2 

 

4 divides the LHS and must divide the RHS, thus 4 divides 2 which is a contradiction . 

Therefore x and y can not both be odd. Thus exactely one must be even and z must be odd 

 

If (q^(2k) + r^(2k) - p^(2k)) is equal zero then 4 divides the LHS and must divide the RHS, 

thus 4 divides 2 which is a contradiction. We can infer that   (q^(2k) + r^(2k) - p^(2k)) cannot 

equal zero and FLT is true for n even equal 2k with k>1 

 

1.2/ Suppose  n=2k+1 with k>0 
x^n= (2q+1)^n =(2q)^n +1 + ∑ n ! /(j ! (n-j) !) (2q)^j 

 

(2q+1)^2k+1=(2q)^(2k+1) +1+ ∑ (2k+1)! /(j ! (2k+1-j) !) (2q)^j =2^(2k+1) q^(2k+1) +1 + 

(2k+1)*(2) ∑ (2k) !/(j! ( (2k+1-j) !) 2^(j-1) (q)^j 

 

The number 4k+2 is common divisor of binomial terms except the term 1. 

(2q+1)^(2k+1)=(4k+2)*Q +1 +(2q)^(2k+1), Q is polynomial in q 

 

(2r+1)^(2k+1) = (4k+2)*R  +1 + (2r)^(2k+1), R is polynomial in r 

 

If x^n +y^n =z^n and z even this implies 

 

(4k+2)*Q +1 + (2q)^(2k+1) +(4k+2)*R +1 +(2r)^(2k+1) =2^(2k+1)p^(2k+1) 

 

(4k+2)*(Q +R )=-2 [1 + 2^2k (q^(2k+1) + r^(2k+1) -p^(2k+1)] 

 

4k+2 divides the LHS and must divide the RHS, thus 4k+2 divides 2 which is a contradiction 

or divides (1+2^2k (q^(2k+1) + r^(2k+1) - p^(2k+1)) which is an odd number .4k+2 cannot 

divides it because 4k+2 is even. Therefore x and y can not both be odd. Thus exactely one 

must be even and z must be odd. 

 

If (q^(2k+1) + r^(2k+1) - p^(2k+1)) is equal zero then 4k+2 divides the LHS and must divide 

the RHS, thus 4k+2 divides 2 which is a contradiction. . We can infer that   (q^(2k+1) + 

r^(2k+1) - p^(2k+1)) cannot equal zero and FLT is true for n odd equal 2k+1 with k>0. 



The two cases n=2k or n=2k+1 yields to contradiction.This 

contradiction proves that z is odd .Assume that y is the other odd 

number if it is not then switch with x because x and y are 

interchangeable in the equation x^n +y^n =z^n. 

So z is odd  x, and y are of opposite parity. 

Summary Parity table  

             X Even  Odd 

 Y    

Even Even+Even=Even     Excluded Odd+Even=Odd            To be examined 

 Even+Even=Odd Impossible Odd+Even=Even           Impossible 

    

Odd Even +Odd =Odd To be xamined Odd + Odd =Odd          Excluded 

 Even +Odd =Even impossible Odd + Odd =Even         To be examined 

2.1/ We will examine the case Odd +Odd= Even. 

Assume x=2q+1, y=2r+1 and z=2p 

x^n+y^n =z^n 

(2q+1)^n +(2r+1)^n =(2p)^n 

((2q+1) +(2r+1))*[(2q+1)^(n-1) –(2q+1)^(n-2) (2r+1)+…..(2r+1)^(n-1)]=(2p)^n 

((2q+1) +(2r+1))=2(q+r+1) is even 

(2p) is also even. These two terms has 2 as a common factor, so the equation is 

excluded because it does not a Fermat’s equation. 

 

3.1/ We will examine now the 2 cases  Even + Odd =Odd  and  

Odd + Even = Odd 

Assume x odd, y even and z odd 

y^n=z^n - x^n 

y^n = z^n - x^n =(z-x) [z^(n-1) +x z^(n-2)+.........+x^(n-1)] 

y^n is even, (z-x) is even and [z^(n-1) +x z^(n-2)+.........+x^(n-1)] is the product of module of 

all complex roots . 

3.1.1/ If n is even , n=2m 

z^n –x^n= (z^2 –x^2) ∏ (z^2 -2zx cos(2k*pi)/n +x^2) with 1≤ k ≤ (m-1)  

z^n –x^n= (z^2 –x^2)*Product of module of complex roots from k=1 to k=m-1. 

We can write y=2p ; (z-x) =2q and z+x=2r and [z^(n-1) +x z^(n-2)+.........+x^(n-1)]=Product 

of module=∏ (Mi)^2 



with p, q and r integers because y,is even and (z-x) is even and z+x=2r and [z^(n-1) +x z^(n-

2)+.........+x^(n-1)]= ∏ (Mi)^2.. 

Plug these values into y^n =z^n - x^n it becomes y^n=(2p)^n =(2q) (2r) ∏ (Mi)^2. 

We get y = 4^(1/n) (qr)^(1/n) (∏ (Mi)^2)^(1/n) .  

Due to irrationality of  4^(1/n) and (∏ (Mi)^2)^(1/n) we cannot get y is an integer  with n>2.  

This is a contradiction according to the premise.( y is integer and even) 

Checking  for n=2, x^2 +y^2 =z^2 

y^2=z^2- x^2 = (z-x)(z+x) 

Assume x odd, y even and z odd 

We can write y=2p ; (z-x) =2q and z+x=2r  

with p, q and r integers because y,is even and (z-x) is even and z+x is even . 

Plug these values into y^2 =z^2 - x^2 it becomes y^2=(2p)^2 =(2q) (2r)  

We get p^2 =qr with q and r  coprime . Since qr=p^2 we know that q and r must each be 

square  

This implies there exist q=v^2 and r=u^2. We get y^2=2u^2 *2v^2 and z-x=2v^2 and 

z+x=2u^2 

We get x=u^2 –v^2 , y=2uv, z=u^2+v^2. We find the well known pythagorean solution for 

the equation x^2+y^2=z^2. 

3.1.2/ If n is odd , n=2m+1 

z^n –x^n= (z –x) ∏ (z^2 -2zx cos(2k*pi)/n +x^2) with 1≤ k ≤ m  

z^n –x^n= (z –x)*Product of module of complex roots from k=1 to k=m. 

z^n –x^n= (z –x)*Product of module of complex roots from k=1 to k=m. 

We can write y=2p ; (z-x) =2q and [z^(n-1) +x z^(n-2)+.........+x^(n-1)]=Product of 

module=∏ (Mi)^2 

with p, q integers because y,is even and (z-x) is even and [z^(n-1) +x z^(n-2)+........+x^(n-1)]= 

∏ (Mi)^2.. 

Plug these values into y^n =z^n - x^n it becomes y^n=(2p)^n =(2q) ∏ (Mi)^2. 

We get y=2^(1/n) q^(1/n) (∏ (Mi)^2)^(1/n) .  

Due to irrationality of  2^(1/n) we cannot get y as an integer.  

This is a contradiction according to the premise.( y is integer and even) 

We can claim that the parity combination odd +even =odd is impossible. 

In the equation x^n +y^n =z^n  the variables x and y are interchangeable. 

We can replace x by y in the demonstration above and we get the parity combination  

even +odd = odd is impossible. 



Cheking with n=3 , x^3+y^3=z^3 

y^3=z^3 – x^3=(z-x) (z^2 +xz +x^2) 

Assume x odd, y even and z odd 

We can write y=2p ; (z-x) =2q and z^2+xy +x^2=(z^2 +2 (x z) 1/2 +x^2)= (z^2 -2 (x z) cos 

(120°) +x^2)=M^2 (M as module of complex root)  

with p, q  integers because y,is even and (z-x) is even  . 

Plug these values into y^3 =z^3 - x^3 it becomes y^3= (2p)^3 =(2q) (M^2) 

y^3=(2q) (M^2) or y=2^(1/3) q^(1/3) M^(2/3) which is not an integer, due to irrationality of 

2^(1/3).  

This is a contradiction according to the premise. (y is integer and even). 

We can claim that the parity combination odd +even =odd is impossible. 

In the equation x^3+y^3=z^3 the variables x and y are interchangeable. The parity 

combination even + odd =odd is also impossible if we replace x by y in the demonstration 

above.. 

4/ Conclusion 

All the  parity combinations  of x, y and z are examined and eliminated. 

So Fermat’s Last Theorem is always true. 

In all cases the equation x^n +y^n =z^n is impossible and we can claim that 

x^n +y^n =z^n has no integer solutions for n>2. 

Q.E.D 
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