# THE BINARY GOLDBACH CONJECTURE VIA THE NOTION OF SIGNATURE 

T. AGAMA

$$
\begin{aligned}
& \text { AbSTRACT. In this paper we prove the binary Goldbach conjecture. By ex- } \\
& \text { ploiting the language of circles of partition, we show that for all sufficiently } \\
& \text { large } n \in 2 \mathbb{N} \\
& \qquad \#\{p+q=n \mid p, q \in \mathbb{P}\}>0
\end{aligned}
$$

This proves that every sufficiently large even number can be written as the sum of two prime numbers.

## 1. Introduction

The method of circles of partition was extensively developed in [1]. This method was motivated by the need to address some additive questions of significance such as the binary Goldbach conjecture and Lemoine's conjecture. The latter and the former are closely related, so that any viable approach applied to study one of these could be applied to the other. Not much progress has been made on any of these problems, except for weaker variants like the ternary version of the conjecture that has been universally accepted [2]. In this paper we adopt the method of circles of partition to study this problem. In particular, it is shown that every sufficiently large even number can be written as the sum of two prime numbers.

## 2. The Circle of Partition

In this section we introduce the notion of the circle of partition. We study some elementary properties of this combinatorial structure in the following sequel.

Definition 2.1. Let $n \in \mathbb{N}$ and $\mathbb{M} \subset \mathbb{N}$. We denote with

$$
\mathcal{C}(n, \mathbb{M})=\{[x] \mid x, y \in \mathbb{M}, n=x+y\}
$$

the Circle of Partition generated by $n$ with respect to the subset $\mathbb{M}$. We will abbreviate this in the further text as CoP. We call members of $\mathcal{C}(n, \mathbb{M})$ as points and denote them by $[x]$.

Definition 2.2. We denote the line $\mathbb{L}_{[x],[y]}$ joining the point $[x]$ and $[y]$ as an axis of the $\operatorname{CoP} \mathcal{C}(n, \mathbb{M})$ if and only if $x+y=n$. We say the axis point $[y]$ is an axis partner of the axis point $[x]$ and vice versa. We do not distinguish between $\mathbb{L}_{[x],[y]}$ and $\mathbb{L}_{[y],[x]}$, since it is essentially the same axis. The point $[x] \in \mathcal{C}(n, \mathbb{M})$ such that $2 x=n$ is the center of the CoP. If it exists then it is their only point which is not an axis point. The line joining any two arbitrary point which are not axes partners on the CoP will be referred to as a chord of the CoP.

[^0]We denote by

$$
\mathbb{N}_{n}=\{m \in \mathbb{N} \mid m \leq n\}
$$

the sequence of the first $n$ natural numbers. Further we will denote

$$
\|[x]\|:=x
$$

as the weight of the point $[x]$ and correspondingly the weight set of points in the $\operatorname{CoP} \mathcal{C}(n, \mathbb{M})$ as $\|\mathcal{C}(n, \mathbb{M})\|$.

Proposition 2.3. Each axis is uniquely determined by points $[x] \in \mathcal{C}(n, \mathbb{M})$.
Proof. Let $\mathbb{L}_{[x],[y]}$ be an axis of the $\operatorname{CoP} \mathcal{C}(n, \mathbb{M})$. Suppose as well that $\mathbb{L}_{[x],[z]}$ is also an axis with $z \neq y$. Then it follows by Definition 2.2 that we must have $n=x+y=x+z$ and therefore $y=z$. This cannot be and the claim follows immediately.

Corollary 2.4. Each point of a $\operatorname{CoP} \mathcal{C}(n, \mathbb{M})$ except its center has exactly one axis partner.

Proof. Let $[x] \in \mathcal{C}(n, \mathbb{M})$ be a point without an axis partner being not the center of the CoP. Then holds for every point $[y] \neq[x]$ except the center

$$
\|[x]\|+\|[y]\| \neq n
$$

This contradiction to the Definition 2.1. Due to Proposition 2.3 the case of more than one axis partners is impossible. This completes the proof.

Let us denote the assignment of an axis $\mathbb{L}_{[x],[y]}$ to a $\operatorname{CoP} \mathcal{C}(n, \mathbb{M})$ as

$$
\mathbb{L}_{[x],[y]} \hat{\in} \mathcal{C}(n, \mathbb{M}) \text { which means }[x],[y] \in \mathcal{C}(n, \mathbb{M}) \text { with } x+y=n
$$

and the number of axes of a CoP as

$$
\begin{equation*}
\nu(n, \mathbb{M}):=\#\left\{\mathbb{L}_{[x],[y]} \hat{\in} \mathcal{C}(n, \mathbb{M}) \mid x<y\right\} \tag{2.1}
\end{equation*}
$$

Obviously holds

$$
\nu(n, \mathbb{M})=\left\lfloor\frac{k}{2}\right\rfloor, \text { if }|\mathcal{C}(n, \mathbb{M})|=k
$$

## 3. Main result

In this section we present the main result including preparatory lemmas. We exploit the notion of the signature in a subtle manner to establish the main result.

Lemma 3.1. Let $\mathbb{P}$ denotes the set of all prime numbers. If $\nu(n, \mathbb{P})=0$ for infinitely many $n \in 2 \mathbb{N}$ then

$$
\#\left\{\mathbb{L}_{[x],[y]} \hat{\in} \mathcal{C}(n) \mid\{x, y\} \cap \mathbb{P} \neq \emptyset\right\} \geq(1+o(1)) \frac{n}{\log n}
$$

holds for those $n \in 2 \mathbb{N}$.

Proof. By the uniqueness of the axes of CoPs we can write

$$
\begin{aligned}
\#\left\{\mathbb{L}_{[x],[y]} \hat{\in \mathcal{C}(n) \mid\{x, y\} \cap \mathbb{P} \neq \emptyset\}}=\right. & \nu(n, \mathbb{P})+\#\left\{\mathbb{L}_{[x],[y]} \hat{\in} \mathcal{C}(n) \mid x \in \mathbb{P}\right. \\
& y \in \mathbb{N} \backslash \mathbb{P}\}
\end{aligned}
$$

so that under the assumption $\nu(n, \mathbb{P})=0$ for infinitely many $n \in 2 \mathbb{N}$ we obtain

$$
\begin{aligned}
\#\left\{\mathbb{L}_{[x],[y]} \hat{\in \mathcal{C}(n) \mid x \in \mathbb{P}, y \in \mathbb{N} \backslash \mathbb{P}\}}\right. & =\pi(n) \\
& \geq(1+o(1)) \frac{n}{\log n}
\end{aligned}
$$

by virtue of the prime number theorem.
Remark 3.2. Crucially the lower bound of the quantity

$$
\#\left\{\mathbb{L}_{[x],[y]} \hat{\in} \mathcal{C}(n) \mid x \in \mathbb{P}, y \in \mathbb{N} \backslash \mathbb{P}\right\}
$$

in Lemma 3.1 cannot be lowered any further down in the case $\nu(n, \mathbb{P})=0$. This fact will be exploited in establishing the main result of the paper.

Definition 3.3. Let $\mathbb{H} \subset \mathbb{N}$ with $\mathbb{M} \subseteq \mathbb{N}$ and $\mathcal{C}(n, \mathbb{M})$ be a CoP. Then by the signature of the $\operatorname{CoP} \mathcal{C}(n)$ with the pen $\mathbb{H}$ on the $\operatorname{CoP} \mathcal{C}(n, \mathbb{M})$ we mean the ratio

$$
\operatorname{Sign}\left[\mathcal{C}(n)_{\mathbb{H}} \mid \mathcal{C}(n, \mathbb{M})\right]=\frac{\#\left\{\mathbb{L}_{[x],[y]} \hat{\in} \mathcal{C}(n) \mid\{x, y\} \cap \mathbb{H} \neq \emptyset\right\}}{\left\lfloor\frac{\left|\mathbb{M} \cap \mathbb{N}_{n}\right|-1}{2}\right\rfloor}
$$

Proposition 3.4. Let $\mathbb{H} \subset \mathbb{N}$ with $\mathbb{M}, \mathbb{K} \subseteq \mathbb{N}$ and $\mathcal{C}(n, \mathbb{M}), \mathcal{C}(n, \mathbb{K})$ be CoPs. Then the following properties hold
(i) $\operatorname{Sign}\left[\mathcal{C}(n)_{\mathbb{H}} \mid \mathcal{C}(n, \mathbb{M})\right] \geq \operatorname{Sign}\left[\mathcal{C}(n)_{\mathbb{H}} \mid \mathcal{C}(n, \mathbb{K})\right]$ if and only if $\mathbb{M} \subseteq \mathbb{K}$.
(ii)

$$
\begin{aligned}
& \operatorname{Sign}\left[\mathcal{C}(n)_{\mathbb{H}} \mid \mathcal{C}(n)\right] \geq \frac{\left\lfloor\frac{\left|\mathbb{H} \cap \mathbb{N}_{n}\right|}{2}\right\rfloor}{\left\lfloor\frac{n-1}{2}\right\rfloor} \\
& \text { and } \lim _{n \longrightarrow \infty} \operatorname{Sign}\left[\mathcal{C}(n)_{\mathbb{H}} \mid \mathcal{C}(n)\right] \geq \mathcal{D}(\mathbb{H}) .
\end{aligned}
$$

Proof. These properties are easy consequences of Definition 3.3 and the notion of density of CoPs.

Remark 3.5. The intuitive essence of the notion of the signature allows to count the number of axes in a typical CoP. This notion counts the number of axes with specified character of the weight of the corresponding points as the pen that appends the required signature.

It is important to notice that the signature of the $\operatorname{CoP} \mathcal{C}(n)$ with the pen $\mathbb{H}$ on itself the $\operatorname{CoP} \mathcal{C}(n)$ mimicks the structure of the underlying CoP, by recovering the local density of the overlap of the first $n$ positive integers with the set $\mathbb{H}$. This perspective is somewhat different when we deal with other CoPs that lack a somewhat uniformity as opposed to the $\operatorname{CoP} \mathcal{C}(n)$. If we let $\mathbb{P}$ denotes the set of all prime numbers then the signature of the $\operatorname{CoP} \mathcal{C}(n)$ with the pen $\mathbb{P}$ on the CoP $\mathcal{C}(n, \mathbb{P})$ no longer generates the local density of the first few prime numbers. Instead it generates the local density of the number of axes within the $\operatorname{CoP} \mathcal{C}(n, \mathbb{P})$.

Proposition 3.6. Let $\mathbb{P}$ be the set of all prime numbers and $\mathcal{C}(n, \mathbb{P})$ be a CoP. Then for all $n \in 2 \mathbb{N}$ with $n>6$ the inequality holds

$$
\#\left\{\mathbb{L}_{[x],[y]} \hat{\in} \mathcal{C}(n) \mid\{x, y\} \cap \mathbb{P} \neq \emptyset\right\} \geq(1+o(1)) \frac{1}{2} \frac{n}{\log ^{2} n}
$$

Proof. Since $\mathbb{P} \subset \mathbb{N}$, it follows by appealing to Proposition 3.4

$$
\operatorname{Sign}\left[\mathcal{C}(n)_{\mathbb{P}} \mid \mathcal{C}(n)\right] \leq \operatorname{Sign}\left[\mathcal{C}(n)_{\mathbb{P}} \mid \mathcal{C}(n, \mathbb{P})\right]
$$

so that we have

$$
\begin{aligned}
\operatorname{Sign}\left[\mathcal{C}(n)_{\mathbb{P}} \mid \mathcal{C}(n, \mathbb{P})\right] & \geq \frac{\left\lfloor\frac{\left|\mathbb{P} \cap \mathbb{N}_{n}\right|}{2}\right\rfloor}{\left\lfloor\frac{n-1}{2}\right\rfloor} \\
& =(1+o(1)) \frac{1}{\log n}
\end{aligned}
$$

by appealing to the prime number theorem. It follows that

$$
\#\left\{\mathbb{L}_{[x],[y]} \hat{\in} \mathcal{C}(n) \mid\{x, y\} \cap \mathbb{P} \neq \emptyset\right\} \geq(1+o(1)) \frac{1}{\log n}\left\lfloor\frac{\pi(n)-1}{2}\right\rfloor
$$

and the inequality follows by appealing one more time to the prime number theorem.

Remark 3.7. We are now ready to state the main result of this paper.
Theorem 3.8. For all sufficiently large $n \in 2 \mathbb{N}$ holds

$$
\nu(n, \mathbb{P})>0
$$

Proof. By exploiting the uniqueness of the axes of CoPs , we can write

$$
\begin{aligned}
\#\left\{\mathbb{L}_{[x],[y]} \hat{\in \mathcal{C}(n) \mid\{x, y\} \cap \mathbb{P} \neq \emptyset\}}=\right. & \nu(n, \mathbb{P})+\#\left\{\mathbb{L}_{[x],[y]} \hat{\in} \mathcal{C}(n) \mid x \in \mathbb{P}\right. \\
& y \in \mathbb{N} \backslash \mathbb{P}\}
\end{aligned}
$$

Let us suppose to the contrary that there are infinitely many $n \in 2 \mathbb{N}$ such that $\nu(n, \mathbb{P})=0$, then by following the proof in Proposition 3.6 and noting that $\#\left\{\mathbb{L}_{[x],[y]} \hat{\in} \mathcal{C}(n) \mid x \in\right.$ $\mathbb{P}$,
$y \in \mathbb{N} \backslash \mathbb{P}\}=\pi(n)$ in this case, it follows that

$$
\#\left\{\mathbb{L}_{[x],[y]} \hat{\in} \mathcal{C}(n) \mid\{x, y\} \cap \mathbb{P} \neq \emptyset\right\} \geq(1+o(1)) \frac{n}{\log ^{2} n}
$$

for those values of $n \in 2 \mathbb{N}$, thereby contradicting the lower bound in Lemma 3.6.

## References

1. Agama, Theophilus and Gensel, Berndt Studies in Additive Number Theory by Circles of Partition, arXiv preprint arXiv:2012.01329, 2020.
2. Helfgott, Harald A The ternary Goldbach conjecture is true, arXiv preprint arXiv:1312.7748, 2013.

Department of Mathematics, African Institute for mathematical sciences, Ghana.
E-mail address: Theophilus@aims.edu.gh/emperordagama@yahoo.com


[^0]:    Date: December 6, 2021.
    2010 Mathematics Subject Classification. Primary 11Pxx, 11Bxx; Secondary 11Axx, 11Gxx. Key words and phrases. Lemoine.

