The relationship between the $\varphi(n)$ function and solutions of Diophantine equations

By Shazly abdullah

Abstract

In this work we used an algebraic method that uses elementary algebra . To create series. We used the series and Euler function $\varphi(n)$ to find solutions to some types of Diophantine equations such as $p=d n-n+1$. We found a relationship between the solutions of the Diophantine equations and solutions of some types of congruences that use the $\varphi(n)$ function. This relationship is the results that relate the solutions of congruence to the solution of the equations.

Key word: series, Diophantine equation, congruences, Euler function

1.INTRODUCTION

According binomial theorem and difference of tow nth power theorem if n a positive integer and x y real numbers then

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{j} y^{n-j}
$$

And

$$
x^{n}-y^{n}=(x-y) \sum_{j=1}^{n} x^{n-j} y^{j-1}
$$

2.basic series

Theorem. 1 let k and g real numbers where n is odd then

$$
\begin{aligned}
\frac{1+(k-g)^{n}}{1+k-g} & -\frac{g^{n}-1}{g-1} \\
& =-\mathrm{k}\left(\frac{g^{n-1}-1}{g-1}\right) \\
& +\mathrm{k} \sum_{j=1}^{n-2}(-1)^{j-1}(k-g)^{j}\left(\frac{g^{n-1}-1}{g-1}-\left(g^{n-2}+g^{n-3} \ldots \ldots g^{n-j-1}\right)\right)
\end{aligned}
$$

Theorem. 2 let $\varphi(n)$ Euler function where $\varphi(m)=d(n-1)$ where n in an odd where $a^{d} \not \equiv$ $1(\bmod m),(a, m)=1, \forall a \in \mathbb{N}$ then

$$
\frac{m^{n}+1}{m+1} \equiv \frac{a^{d n}-1}{a^{d}-1}(m d m)
$$

Theorem. 3 if p prime number and $p=d n-n+1$ where n is odd $(p, a)=1$ then

$$
\frac{p^{n}+1}{p+1} \equiv \frac{a^{d n}-1}{a^{d}-1}(\bmod p)
$$

Theorem. 4 let p prime number and a a positive integer $a^{p^{m-1}} \not \equiv 1 \bmod p^{m}$ then

$$
\frac{p^{m p}+1}{p^{m}+1} \equiv \frac{a^{p^{m}}-1}{a^{p^{m-1}}-1}\left(\bmod p^{m}\right)
$$

In this section we will create the basic series
Basic series. Let n is an odd k, g, u, real numbers then

$$
L_{n}^{n}(k, g, u)=V_{n}^{n}(k, g, u)+S_{n}(k, g)
$$

Where

$$
L_{n}^{n}(k, g, u)=\frac{u^{n}+(k-g)^{n}}{u+k-g}-m\left(\frac{g^{n}-1}{g-1}\right)
$$

And

$$
V_{n}{ }^{n}(k, g, u)=\sum_{j=0}^{n-1}\left(u^{n-j-1}-m\right)(k-g)^{j}
$$

And

$$
\begin{aligned}
S_{n}(k, h)=-k m & \left(\frac{g^{n-1}-1}{g-1}\right) \\
& +k m \sum_{j=1}^{n-2}(-1)^{j-1}(k-g)^{j}\left(\frac{g^{n-1}-1}{g-1}-\left(g^{n-2}+g^{n-3} \ldots \ldots \ldots \cdot g^{n-j-1}\right)\right)
\end{aligned}
$$

Proof. let k, g, u real number then according to difference of tow nth power theorem we have that

$$
(k-g)^{n}-(-g)^{n}=\mathrm{k} \sum_{j=1}^{n}(k-g)^{j-1}(-g)^{n-j}
$$

Then

$$
-(-g)^{n}=-(k-g)^{n}+\mathrm{k} \sum_{j=1}^{n}(k-g)^{j-1}(-g)^{n-j}
$$

let $q \in R, n \in N$ where m constant then by multiplying m and adding $u^{q}(k-g)^{n}$ from both sides

$$
u^{q}(k-g)^{n}-m(-g)^{n}=u^{q}(k-g)^{n}-m(k-g)^{n}+\mathrm{km} \sum_{j=1}^{n}(k-g)^{j-1}(-g)^{n-j}
$$

Then

$$
\begin{equation*}
u^{q}(k-g)^{n}-m(-g)^{n}=\left(u^{q}-m\right)(k-g)^{n}+m \mathrm{k} \sum_{j=1}^{n}(k-g)^{j-1}(-g)^{n-j} \tag{1}
\end{equation*}
$$

According difference nth power theorem if n is odd we have

$$
\begin{gathered}
\frac{u^{n}+(k-g)^{n}}{u+k-g} \\
=u^{n-1}-u^{n-2}(k-g)+u^{n-3}(k-g)^{2}-u^{n-4}(k-g)^{3} \ldots \ldots \ldots \ldots \ldots \ldots(k-g)^{n-1}
\end{gathered}
$$

And

$$
m\left(\frac{g^{n}-1}{g-1}\right)=g^{n-1}+g^{n-2}+g^{n-1} \ldots \ldots \ldots \ldots \ldots 1
$$

By subtracting $m\left(\frac{g^{n}-1}{g-1}\right)$ from $\left(\frac{u^{n}+(k-g)^{n}}{u+k-g}\right)$ then

$$
\begin{gathered}
\frac{u^{n}+(k-g)^{n}}{u+(k-g)}-m\left(\frac{g^{n}-1}{g-1}\right) \\
=u^{n-1}-m-u^{n-2}(k-\mathrm{g})-m g+u^{n-3}(k-g)^{2}-m g^{2}-u^{n-4}(k-g)^{3} \\
-m g^{3} \ldots \ldots \ldots \ldots(k-g)^{n-1}-m g^{n-1}
\end{gathered}
$$

By extracting the common factor between the terms we find that

$$
\begin{align*}
& \frac{u^{n}+(k-g)^{n}}{u+k-g}-m\left(\frac{g^{n}-1}{g-1}\right) \tag{2}\\
& =u^{n-1}-m-\left(u^{n-2}(k-g)+m g\right)+\left(u^{n-3}(k-g)^{2}-m g^{2}\right) \\
& -\left(u^{n-4}(k-g)^{3}+m g^{3}\right) \ldots \ldots \ldots \ldots\left((k-g)^{n-1}-m g^{n-1}\right)
\end{align*}
$$

So we note in equation (2) term (1) equal $u^{n-1}-m$ and term(2) equal $u^{n-2}(k-\mathrm{g})+m g$ and tem
(3) equal $u^{n-3}(k-g)^{2}-m g^{2}$ so From equation (1) we have

$$
u^{q}(k-g)^{n}-m(-g)^{n}=\left(u^{q}-m\right)(k-g)^{n}+m \mathrm{k} \sum_{j=1}^{n}(k-g)^{j-1}(-g)^{n-j}
$$

Let

$$
W_{n}{ }^{q}(k, g, u)=u^{q}(k-g)^{n}-m(-g)^{n}
$$

And

$$
Z_{n}{ }^{q}(k, g, u)=\left(u^{q}-m\right)(k-g)^{n}
$$

And

$$
C_{n}(k, g)=m \mathrm{k} \sum_{j=1}^{n}(k-g)^{j-1}(-g)^{n-j}
$$

So

$$
\begin{equation*}
W_{n}{ }^{q}(k, g, u)=Z_{n}{ }^{q}(k, g, u)+C_{n}(k, g) \tag{3}
\end{equation*}
$$

From equation (3) and term (1) in equation (2)

$$
u^{n-1}-m=W_{0}^{n-1-0}(k, g, u)
$$

From equation (3) and term (2) in equation (2)

$$
u^{n-2}(k-g)+m g=W_{1}^{n-2}(k, g, u)
$$

Term (3) and equation (2)

$$
u^{n-3}(k-g)^{2}-m g^{2}=W_{2}^{n-3}(k g u)
$$

Last term in equation (2)

$$
(k-g)^{n-1}-m g^{n-1}=W^{n-1-n+1}{ }_{n-1}(k, g, u)
$$

Then we have that

$$
\begin{equation*}
\frac{u^{n}+(k-g)^{n}}{u+k-g}-m\left(\frac{g^{n}-1}{g-1}\right)=\sum_{j=0}^{n-1}(-1)^{j} W^{n-1-j}(k, g, u) \tag{4}
\end{equation*}
$$

We note from equation (3)

$$
W_{n}{ }^{q}(k, g, u)=Z_{n}{ }^{q}(k, g, u)+C_{n}(k, g)
$$

Where

$$
Z_{n}^{q}(k, g, u)=\left(u^{q}-m\right)(k-g)^{n}
$$

And

$$
C_{n}(k, g)=m \mathrm{k} \sum_{j=1}^{n}(k-g)^{j-1}(-g)^{n-j}
$$

From equation (3) and (4) we have

$$
\begin{align*}
& \frac{u^{n}+(k-g)^{n}}{u+k-g}-m\left(\frac{g^{n}-1}{g-1}\right) \tag{5}\\
& \quad=\sum_{j=0}^{n-1}\left(u^{n-1-j}-m\right)(k-g)^{j}+k m \sum_{j=1}^{n-1} \sum_{r=}^{j}(-1)^{j}(k-g)^{r-1}(-g)^{j-r}
\end{align*}
$$

Let

$$
L_{n}(k, g, u)=\frac{u^{n}+(k-g)^{n}}{u+k-g}-m\left(\frac{g^{n}-1}{g-1}\right)
$$

And

$$
V_{n}^{n}(k, g, u)=\sum_{j=0}^{n-1}(-1)^{j}\left(u^{n-j-1}-m\right)(k-g)^{j}
$$

And

$$
S_{n}(k, g)=\mathrm{km} \sum_{j=1}^{n-1} \sum_{r=1}^{j}(-1)^{j}(k-g)^{r-1}(-g)^{j-r}
$$

Then we have

$$
L_{n}(k g, u)=V_{n}^{n}(k, g, u)+S_{n}(k, g)
$$

Note $g^{j-r}(-h)=(-1)^{j-r} g^{j-r}(h)$ and $(-1)^{j}(-1)^{j-r}=(-1)^{2 j-r}=(-1)^{r}$ if j and r is odd or even note we find in $s_{n}(k, h)$

$$
S_{n}(k, g)=\mathrm{km} \sum_{j=1}^{n-1} \sum_{r=1}^{j}(-1)^{r}(k-g)^{r-1}(-g)^{j-r}
$$

Then we have

$$
\begin{aligned}
s_{n}(k, g)=\mathrm{km} & \left(\sum_{r=1}^{1}(-1)^{r}(k-g)^{r-1} g^{1-r}+\sum_{r=1}^{2}(-1)^{r}(k-g)^{r-1} g^{2-r}\right. \\
& \left.+\sum_{r=1}^{3}(-1)^{r}(k-g)^{r-1} g^{3-r} \ldots \ldots \ldots \ldots \sum_{r=1}^{n-1}(-1)^{r}(k-g)^{r-1} g^{n-r}\right)
\end{aligned}
$$

By analyzing all the complex terms of the $S_{n}(k, g)$ we find that

$$
\begin{aligned}
S_{n}(k, h)=k m & \left((-1)+(-g+(k-g))+\left(-g^{2}+g(k-g)-(k-g)^{2}\right)\right. \\
& -\left(-g^{3}+g^{2}(k-\mathrm{g})-g(k-g)^{2}+(k-g)^{3}\right) \ldots \ldots \ldots .\left(-g^{n-1}+g^{n-2}(k-\mathrm{g})\right. \\
& \left.\left.-g^{n-3}(k-g)^{2}+g^{n-4}(k-g)^{3} \ldots \ldots \ldots \ldots(k-g)^{n-2}\right)\right)
\end{aligned}
$$

In $S_{n}(k, h)$ a all compound terms have been dismantled note if we add for every first term in the complex term we find that $-\left(-1+g \ldots \ldots \ldots g^{n-2}\right)$ then we adding the terms to include that $(k-\mathrm{g})$ finding that $\left(1+g \ldots \ldots g^{n-2}\right)$ then the terms that include $(k-g)^{2}$ we find that $(-(1+$ $\left.g \ldots \ldots . . g^{j-3}\right)$) if the method is equal all the terms can be added $1 \leq j \leq n-1$ until we reach the last terms $(k-g)^{n-1}$ then

$$
\begin{gathered}
s_{n}(k, h)=\operatorname{km}\left(-\left(1+g+g^{2} \ldots \ldots \ldots g^{n-2}\right)+(k-g)\left(\left(1+g+g^{2}+g^{3} \ldots \ldots \ldots . g^{n-3}\right)\right)\right. \\
\left.-(k-g)^{2}\left(1+g+g^{2}+g^{3} \ldots \ldots \ldots . g^{n-4}\right) \ldots \ldots \ldots .(k-g)^{n-1}\right)
\end{gathered}
$$

Using the binomial theorem it is possible to abbreviate all the terms that include, $(k-\mathrm{g})$ and $(k-g)^{2}$ and $(k-g)^{3}$ until we reach the last term $(k-g)^{n-1}$, we notice that

$$
\begin{gathered}
-\left(1+g+g^{2} \ldots \ldots \ldots \cdot g^{n-2}\right)=\frac{g^{n-1}-1}{g-1} \\
(k-g)\left(1+g \ldots \ldots \ldots \cdot g^{n-3}\right)=(k-g)\left(\frac{g^{n-1}-1}{g-1}-g^{n-2}\right) \\
(k-g)^{2}\left(1+g \ldots \ldots \ldots g^{n-4}\right)=(k-g)^{2}\left(\frac{g^{n-1}-1}{g-1}-g^{n-2}-g^{n-3}\right)
\end{gathered}
$$

Then we have that
$S_{n}(k, h)=\mathrm{km}\left(\frac{g^{n-1}-1}{g-1}\right)+\mathrm{km} \sum_{j=1}^{n-2}(-1)^{j-1}(k-g)^{j}\left(\frac{g^{n-1}-1}{g^{n}-1}-\left(g^{n-2}+g^{n-3} \ldots \ldots . g^{n-j-1}\right)\right)$
Then

$$
\begin{equation*}
L_{n}(k, g, u)=\frac{u^{n}+(k-g)^{n}}{u+k-g}-m\left(\frac{g^{n}-1}{g-1}\right) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
V_{n}^{n}(k, g, u)=\sum_{j=0}^{n-1}(-1)^{j}\left(u^{n-j-1}{ }_{j}-m\right)(k-g)^{j} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
=-\mathrm{km}\left(\frac{g^{n-1}-1}{g-1}\right)+\mathrm{km} \sum_{j=1}^{n-2}(-1)^{j-1}(k-g)^{j}\left(\frac{g^{n-1}-1}{g-1}-\left(g^{n-2}+g^{n-3} \ldots . . g^{n-j-1}\right)\right) \tag{9}
\end{equation*}
$$

3.proof theorem. 1

In this section we will use the basic series $L_{n}(u, k, g)=V_{n}^{n}(u, k, g)+S_{n}(k, g)$ in prove the theorem. 1 and use the theorem. 1 to prove theorem. 2 let in $V_{n}{ }^{n}(u, k, g), u=1$ and $m=1$ then we find

$$
V_{n}{ }^{n}(k, h, 1)=\sum_{j=1}^{n-1}(-1)^{j}\left((1)^{n-j}-1\right)(k-g)^{j}=0
$$

Then

$$
L_{n}(u, k, 1)=V_{n}^{n}(u, k, 1)+S_{n}(k, g)
$$

Then

$$
L_{n}(u, k, 1)=0+S_{n}(k, g)
$$

According to the equations, $(2,7,2.8,2.9)$ we find that

$$
\begin{aligned}
\frac{1+(k-g)^{n}}{1+k-g} & -\frac{g^{n}-1}{g-1} \\
& =-\mathrm{k}\left(\frac{g^{n-1}-1}{g-1}\right) \\
& +\mathrm{k} \sum_{j=1}^{n-2}(-1)^{j-1}(k-g)^{j}\left(\frac{g^{n-1}-1}{g-1}-\left(g^{n-2}+g^{n-3} \ldots \ldots . g^{n-j-1}\right)\right)
\end{aligned}
$$

Proof.theorem. 2 and theorem. 3

According to Euler's theorem $(\mathrm{a}, \mathrm{n})=1$ where $\varphi(\mathrm{n})$ Euler function then $\mathrm{a}^{\varphi(\mathrm{n})} \equiv$ $1(\bmod n)$ see $\left[K\right.$. M 244] 2
proof. Theorem. 2 from theorem. 1 if n is odd and kg real number we have

$$
\begin{aligned}
\frac{1+(k-g)^{n}}{1+k-g} & -\frac{g^{n}-1}{g-1} \\
& =-\mathrm{k}\left(\frac{g^{n-1}-1}{g-1}\right) \\
& +\mathrm{k} \sum_{j=1}^{n-2}(-1)^{j-1}(k-g)^{j}\left(\frac{g^{n-1}-1}{g-1}-\left(g^{n-2}+g^{n-3} \ldots \ldots . g^{n-j-1}\right)\right)
\end{aligned}
$$

Let in theorem. $1 k=a^{d}+m$ and $g=a^{d}$ then $k-g=m$ so we have

$$
\begin{aligned}
& \frac{1+\mathrm{m}^{n}}{1+m}-\frac{a^{d n}-1}{a^{d}-1} \\
& \quad=-\left(a^{d}+m\right)\left(\frac{a^{d(n-1)}-1}{g-1}\right) \\
& \quad+\left(a^{d}+m\right) \sum_{j=1}^{n-2}(-1)^{j-1} \mathrm{~m}^{j}\left(\frac{a^{d n-d}-1}{a^{d}-1}-\left(a^{d n-2 d}+a^{d n-3 d} \ldots \ldots . a^{d n-j d-1 d}\right)\right)
\end{aligned}
$$

Then

$$
\begin{align*}
& \frac{1+\mathrm{m}^{n}}{1+m}-\frac{a^{d n}-1}{a^{d}-1}=-\left(a^{d}+m\right)\left(\frac{a^{d(n-1)}-1}{a^{d}-1}\right) \tag{10}\\
& +m\left(\sum_{j=1}^{n-2}(-1)^{j-1} \mathrm{~m}^{j-1}\left(\frac{a^{d n-d}-1}{a^{d}-1}-\left(a^{d n-2 d}+a^{d n-3 d} \ldots \ldots . a^{d n-j d-1 d}\right)\right)\right)
\end{align*}
$$

Let V equal

$$
\begin{equation*}
V=\left(a^{d}+m\right) \sum_{j=1}^{n-2}(-1)^{j-1} \mathrm{~m}^{j-1}\left(\frac{a^{d n-d}-1}{a^{d}-1}-\left(a^{d n-2 d}+a^{d n-3 d} \ldots \ldots . a^{d n-j d-1 d}\right)\right) \tag{11}
\end{equation*}
$$

From equation (10) and (11) we have that

$$
\begin{equation*}
\frac{1+\mathrm{m}^{n}}{1+m}-\frac{a^{d n}-1}{a^{d}-1}=-\left(a^{d}+m\right)\left(\frac{a^{d(n-1)}-1}{a^{d}-1}\right)+m V \tag{12}
\end{equation*}
$$

Let $\varphi(m)=d(n-1)$ where $\varphi(m)$ Euler function then we note in rigor side equation

$$
\begin{equation*}
\frac{1+\mathrm{m}^{n}}{1+m}-\frac{a^{d n}-1}{a^{d}-1}=-\left(a^{d}+m\right)\left(\frac{a^{\varphi(m)}-1}{a^{d}-1}\right)+m V \tag{13}
\end{equation*}
$$

According Euler theorem

$$
a^{\varphi(m)} \equiv 1(\bmod m)
$$

From equation (13) and Euler theorem if $a^{d} \not \equiv 1(\bmod m)$ we have

$$
\frac{m^{n}+1}{m+1} \equiv \frac{a^{d n}-1}{a^{d}-1}(\bmod m)
$$

Proof. Theorem. 3 from equation (13) we have that

$$
\frac{1+\mathrm{m}^{n}}{1+m}-\frac{a^{d n}-1}{a^{d}-1}=-\left(a^{d}+m\right)\left(\frac{a^{\varphi(m)}-1}{a^{d}-1}\right)+m V
$$

Let $m=p$ where p prime number according Euler function $\varphi(p)=p-1=d(n-$ 1) and n is odd then we have

$$
\frac{1+\mathrm{p}^{n}}{1+p}-\frac{a^{d n}-1}{a^{d}-1}=-\left(a^{d}+p\right)\left(\frac{a^{p-1}-1}{a-1}\right)+p V
$$

Then If $p-1=d(n-1)$ we n is odd we have

8

$$
\frac{p^{n}+1}{p+1} \equiv \frac{a^{d n}-1}{a^{d}-1}(\bmod p)
$$

Proof. Theorem. 4 according theorem. 2 if $\varphi(m)=d(n-1)$ where n is odd we have

$$
\frac{m^{n}+1}{m+1} \equiv \frac{a^{d n}-1}{a^{d}-1}(\bmod m)
$$

let in theorem. $1 m=p^{m}$ and $n=p$ then according Eulere function $\varphi\left(p^{m}\right)=p^{m-1}(p-$ 1) so $d=p^{m-1}$ and $d n=p^{m}$ we have that

$$
\frac{p^{m p}+1}{p^{m}+1} \equiv \frac{a^{p^{m}}-1}{a^{p^{m-1}}-1}\left(\bmod p^{m}\left(a^{p^{m-1}}+p^{m}\right)\right)
$$

Student: Shazly Abdullah Fdl Faculty of mathematics sciences \& statistics Aleenlain University Sudan Email address: Shazlyabdullah3@gmail.com

