
 1

Multi Expression Programming

Mihai Oltean

Department of Computer Science,
Faculty of Mathematics and Computer Science,

Babeş-Bolyai University, Kogălniceanu 1,
Cluj-Napoca, 3400, Romania.

email: mihai.oltean@gmail.com

D. Dumitrescu

Department of Computer Science,
Faculty of Mathematics and Computer Science,

Babeş-Bolyai University, Kogălniceanu 1,
Cluj-Napoca, 3400, Romania.

email: ddumitr@nessie.cs.ubbcluj.ro

Abstract. Multi Expression Programming (MEP) is a new evolutionary paradigm intended for solving
computationally difficult problems. MEP individuals are linear entities that encode complex computer programs. MEP
chromosomes are represented in the same way as C or Pascal compilers translate mathematical expressions into
machine code. MEP is used for solving some difficult problems like symbolic regression and game strategy
discovering. MEP is compared with Gene Expression Programming (GEP) and Cartesian Genetic Programming (CGP)
by using several well-known test problems. For the considered problems MEP outperforms GEP and CGP. For these
examples MEP is two magnitude orders better than CGP.

Keywords: Multi Expression Programming, Genetic Programming, Gene Expression Programming, Tic-
Tac-Toe, Symbolic Regression, Discovering Game Strategy.

1. Introduction

History of algorithms is the history of improvements. Better algorithms are developed every day to replace
others old and less efficient algorithms. These improvements concern two main issues: speed and memory
requirements. Whereas the computer performances have been continuously improved, the need for solving
more and more complex problems made these improvements to be quite inefficient. Thus the theoreticians
searched for new gates for eluding the computers powerless. The efforts have been directed in to two main
directions: (a) developing new and powerful algorithms, (b) parallelization existing ones.

History of evolutionary algorithms may be identified with the history of algorithms: inefficient and slow
implementations at the beginning and then more and more efficient algorithms and implementations.

Genetic Programming (GP) [11], [12], which was originally implemented in LISP is a typical example. This
programming language permits elegant implementation of programs that change their code during execution.
This is all that the evolutionary algorithms that evolve source code need. Though LISP and GP perfectly
match, the 5th generation languages (as LISP and PROLOG) do not perfectly match today computer
processors. Thus, the execution of such programs is slow down by that bottleneck.

Advent of C++ implementations of GP [18], improved the speed of GP programs by one order of magnitude
at least [17].

For dealing with some problems (as bloat) generated by tree representation of GP, several linear variants of
GP have been proposed. Some of them are: Cartesian Genetic Programming (CGP) [14], Grammatical
Evolution (GE) [13], Linear GP [3] and Gene Expression Programming (GEP) [6]. Their aim was to improve

 2

the performance of GP and to offer a viable alternative of implementing GP in 3rd and 4th generation
programming languages. All enumerated GP variants have a common feature: individuals are represented as
linear entities (strings) that are decoded and expressed like non-linear entities (trees).

Proposed Multi Expression Programming1 (MEP) technique follows the improvements trend of GP
techniques. Some of MEP features are summarized in what follows:

a) MEP individuals are strings of genes encoding complex computer programs,

b) When MEP individuals encode expressions for symbolic regression problems, their representation is
similar with the way in which compilers translate C or Pascal expressions into machine code [1].
This may lead to very efficient implementations into assembler languages. The ability of evolving
machine code leads to very important speedups and it has been considered by others researchers too.
For instance Nordin [15], which evolves programs represented in machine code form. Poli and
Langdon proposed sub-machine-code GP [17], which exploits the processor ability to perform some
Boolean operations in parallel.

c) MEP individuals store multiple solutions in a single chromosome. Usually the best solution is chosen
for fitness assignment. This represents a unique feature of MEP and it is called strong implicit
parallelism. This ability has also been investigated by others researchers ([3] [9]). It is remarkable
that this feature does not increase MEP complexity when compared with others techniques like GEP
and GE.

d) Evaluation of the expressions encoded into a MEP individual can be performed by a single parsing
of the chromosome. Note that GEP chromosomes need at least two parsings for computing the
fitness.

e) Offspring, obtained by crossover and mutation, are always syntactically correct MEP individuals
(computer programs). Thus, no extra processing for repairing newly obtained individuals is needed.

MEP technique is used for solving different problems like symbolic regression and discovering game
strategy. The overall conclusion is MEP performs very well for each considered problem.

MEP technique is compared with GEP and CGP on several well-known benchmark problems. The results
suggest that MEP algorithm outperforms GEP and CGP on the considered examples.

2. Linear GP representations

In this section some GP techniques using linear representations are reviewed.

2.1. Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) [14] is a GP technique that encodes chromosomes in graph
structures rather than standard GP trees. The motivation for this representation is that the graphs are more
general than the trees structures, thus allowing the construction of more complex computer programs [15].

CGP is Cartesian in the sense that the graph nodes are represented in a Cartesian coordinate system. This
representation was chosen due to the node connection mechanism, which is similar with GP mechanism. A
CGP node contains a function symbol and pointers towards nodes representing function parameters. Each
CGP node has an output that may be used as input for other(s) node(s).

1 MEP source code is available for download from www.mepx.org or https://github.com/mepx

 3

An example of CGP program is depicted in Figure 1.

Figure 1. A CGP program with 5 inputs, 2 outputs and 3 functions (0, 1, 2 inside square nodes). The grey
squares represent unconnected nodes

Each CGP program (graph) is defined by several parameters: number of rows (nr), number of columns (nc),
number of inputs, number of outputs, and number of functions. The nodes interconnectivity is defined as
being the number (l) of previous columns of cells that may have their outputs connected to a node in the
current column (the primary inputs are treated as node outputs).

CGP chromosomes are encoded as strings by reading the graph columns from top down and printing the
input nodes and the function symbol for each node. The CGP chromosome depicted in Figure 1 is encoded
as:

C = 0 1 3 0 111 000 444 111 3 5 2 2 8 5 0 1 6 8 3 2 4 2 6 0 666 111000 777 222 9 11 10 1 8 8 6 2 11 13

Standard string genetic operators (crossover and mutation) are used with CGP. Crossover may be applied
without any restrictions, but mutation operator requires that some conditions to be met. Node suppling the
outputs are not fixed as they are also subject to crossover and mutation.

2.2. Gene Expression Programming

Gene Expression Programming (GEP) [6] uses linear chromosomes. A chromosome is composed of genes
containing terminal and nonterminal symbols. Chromosomes are modified by mutation, transposition, root
transposition, gene transposition, gene recombination, one-point and two-point recombination.

GEP genes are composed of a head and a tail. The head contains both functions (nonterminal) and terminals
symbols. The tail contains only terminal symbols.

For each problem the head length (denoted h) is chosen by the user. The tail length (denoted t) is calculated
using the formula:

t = (n – 1) h + 1, (1)

where n is the number of arguments of the function with more arguments.

Translation of a tree–program into a GEP gene is made by breadth-first parsing.

Consider a gene composed of symbols in the set S:

 4

S = {*, /, +, -, a, b}.

In this case we have n = 2. If we choose h = 10 we get

t = 11,

and the length of the gene is 10 + 11 = 21. Such a gene is given below:

C = +*ab-+aa/+ababbbababb.

The expression encoded by the gene C is

E = ((a + b) − a) * b + a.

The expression E represents the phenotypic transcription of a chromosome having C as its unique gene.

Usually a GEP gene is not entirely used for phenotypic transcription. If the first symbol in the gene is a
terminal symbol the expression tree consist of a single node. If all symbols in the head are nonterminals the
expression tree uses all the symbols of the gene.

GEP genes may be linked by a function symbol is order to obtain a fully functional chromosome. In the
current version of GEP the linking functions for algebraic expressions are addition and multiplication. A
single type of function is used for linking multiple genes.

In some situation this seems to be enough (see [6]). But, generally, it is not a good idea to assume that the
genes may be linked either by addition or by multiplication. If the functions {+, -, *, /} are used as linking
operators then the complexity of the problem grows substantially (since the problem of determining how to
mixed these operators with the genes is as hard as the initial problem).

When solving computationally difficult problems (like automated code generation) one may not assume that
a unique kind of nonterminal symbol (like for, while or if instructions) is necessary for inter-connecting
different program parts.

Furthermore, the success rate of GEP increases with the number of genes in the chromosome [5]. But after a
certain value the success rate decreases if the number of genes in the chromosome increases. This is because
one can not force a complex chromosome to encode a less complex expression.

Thus when you use GEP you must be careful with the number of genes that form the chromosome. The
number of genes in the chromosome must be somehow related with the complexity of the expression that
you want to discover.

According to [6] GEP performs better than standard GP for several particular problems.

2.3. Linear genetic programming

Linear Genetic Programming (LGP) [3] uses a specific linear representation of computer programs. Instead
of tree-based GP expressions of a functional programming language (like LISP) programs of an imperative
language (like C) are evolved.

An LGP individual is represented by a variable-length sequence of simple C language instructions.
Instructions operate on one or two indexed variables (registers) r or on constants c from predefined sets. The
result is assigned to a destination register, e.g. ri = rj * c.

An example of LGP program is the following one:
void ind(v)
{

 5

 double v[8];
 …
 v[0] = v[5] + 73;
 v[7] = v[9] – 59;
 if (v[1] > 0)
 if (v[5] > 21)
 v[4] = v[2] *v[1];
 v[2] = v[5] + v[4];
 v[6] = v[9] * 25;
 v[6] = v[4] – 4;
 v[1] = sin(v[6]);
 if (v[0] > v[1])
 v[3] = v[5] * v[5];
 v[7] = v[6] * 2;
 v[5] = [7] + 115;
 if (v[1] <= v[6])
 v[1] = sin(v[7]);
}

A linear genetic program can be transformed into a functional representation by successive replacements of
variables starting with the last effective instruction. Variation operators are crossover and mutation. By
crossover continuous sequences of instructions are selected and exchanged between parents. Two types of
mutations are used: micro mutation and macro mutation. By micro mutation an operand or an operator of an
instruction is changed. Macro mutation inserts or deletes a random instruction.

3. MEP technique

In this section Multi Expression Programming (MEP) paradigm is described. MEP uses a new representation
technique and a special phenotype transcription model. A MEP chromosome usually encodes several
expressions.

3.1. Standard MEP Algorithm

Standard MEP algorithm starts with a randomly chosen population of individuals.

A fixed number of the best individuals enter in the next generation (elitism). We call elitism size the number
of best individuals copied without modification in the next population. The mating pool is filled using binary
tournament selection. Individuals from mating pool are randomly paired and recombined with a fixed
crossover probability pc. By recombination of two parents two offspring are obtained. The offspring are
mutated and enter the next generation. Considered variation operators ensure the chromosome length is a
constant of the search process. The algorithm returns as its answer the best expression evolved along a fixed
number of generations.

Standard MEP algorithm is outlined below:

STANDARD MEP ALGORITHM

begin
Generate Initial Population;
Evaluate_Individuals;
while not Termination_Condition do
 Elitism;
 Selection;
 Recombination;
 Mutation;
 Evaluate_Individuals;
endwhile

end

3.2. MEP representation

 6

MEP genes are (represented by) substrings of variable length. The number of genes per chromosome is
constant. This number defines the length of the chromosome. Each gene encodes a terminal or a function
symbol. A gene encoding a function includes pointers towards the function arguments. Function arguments
always have indices of lower values than the position of that function itself in the chromosome.

Proposed representation ensures no cycle arises while the chromosome is decoded (phenotypically
transcripted). According to the proposed representation scheme the first symbol of the chromosome must be
a terminal symbol. In this way only syntactically correct programs (MEP individuals) are obtained.

Example

Consider a representation where the numbers on the left positions stand for gene labels. Labels do not belong
to the chromosome, they being provided for explanation purposes only.

For this example we use the set of functions

F = {+, *},

and the set of terminals

T = {a, b, c, d}.

An example of chromosome using F and T is given below:

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

The maximum number of symbols in MEP chromosome is given by the formula:

Number_of_Symbols = (n + 1) · (Number_of_Genes – 1) + 1 (2),

where n is the number of arguments of the function with the highest number of arguments. The maximum
number of effective symbols is achieved when each gene (excepting the first one) encodes a function symbol
with the highest number of arguments.

The minimum number of effective symbols is equal to the number of genes and it is achieved when all genes
encode terminal symbols only.

3.3. Decoding MEP chromosome and fitness assignment process

Now we are ready to describe how MEP individuals are translated into computer programs. This translation
represents the phenotypic transcription of the MEP chromosomes.

Phenotypic translation is obtained by parsing the chromosome top-down. A terminal symbol specifies a
simple expression. A function symbol specifies a complex expression obtained by connecting the operands
specified by the argument positions with the current function symbol.

For instance, genes 1, 2, 4 and 5 in the previous example encode simple expressions formed by a single
terminal symbol.

 7

Gene 3 indicates the operation + on the operands located at the positions 1 and 2 of the chromosome.
Therefore the gene 3 encodes the expression:

E1 = a + b. (3)

The gene 6 indicates the operation + on the operands located at the positions 4 and 5. Therefore the gene 6
encodes the expression:

E2 = c + d. (4)

The gene 7 indicates the operation * on the operands located at the position 3 and 6. Therefore the gene 7
encodes the expression:

E3 = (a + b) * (c + d). (5)

E3 is the expression encoded by the whole chromosome.

It is obvious that a MEP chromosome generally can not encode an expression that uses all the genes.
Consider the chromosome:

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5

It is obvious that this chromosome can not encode a single expression which uses all of its genes. But this
chromosome encodes two complex expressions, namely:

E1 = a + b, (6)

E2 = c + d. (7)

The connection between expressions E1 and E2 it is not specified by chromosome so we do not know how to
combine them in a unique expression.

This is why each MEP chromosome is allowed to encode a number of expressions equal to the chromosome
length (number of genes). Previously described chromosome encodes the following expressions:

E1 = a, (8)

E2 = b, (9)

E3 = a + b, (10)

E4 = c, (11)

E5 = d, (12)

E6 = c + d. (13)

The value of these expressions may be computed by parsing the chromosome top down. Partial results are
computed by dynamic programming [2] and are stored in a conventional manner.

As MEP chromosome encodes more than one problem solution, it is interesting to see how the fitness is
assigned.

Let us consider that a procedure for computing the fitness f(Ei) is available.

 8

Chromosome fitness is defined by considering the fitness of each sub-expression encoded by the
chromosome. Therefore we may define:

),()(i
E

EfCf
i

⊕=

where Ei are the expressions encoded by the chromosome C, and ⊕ stands for a suitable operation.
According to the problem ⊕ could be min, max, mean, etc.

Usually the chromosome fitness is defined as the fitness of the best expression encoded by that chromosome.

For instance, if we want to solve symbolic regression problems the fitness of each sub-expression Ei may be
computed using the formula:

,)(
1

,∑
=

−=
n

k
kiki woEf

where ok,i is the obtained result by the expression Ei for the fitness case k and wk is the targeted result for the
fitness case k. In this case the fitness needs to be minimized.

The fitness of an individual is set to be equal with the lowest fitness of the expressions encoded in
chromosome:

).(min)(i
i

EfCf =

When we have to deal with others problems we compute the fitness of each sub-expression encoded in the
MEP chromosome and the fitness of the entire individual is given by the fitness of the best expression
encoded in that chromosome.

3.4. MEP strong implicit parallelism

Generally a GP chromosome encodes a single expression (computer program). This is also the case for GEP
and GE chromosomes. By contrast, a MEP chromosome encodes several expressions (it allows a multi-
expression representation). Each of the encoded expressions may be chosen to represent the chromosome,
i.e. for giving chromosome phenotypic transcription. Usually the best of the expressions the chromosome
encodes supplies phenotypic transcription (represents the chromosome).

It is also possible that several expressions may be selected to represent a single chromosome. In this case we
may say that the chromosome has a manifold phenotypic transcription. Multi-expression representation gives
a supplementary power to the method.

Therefore MEP technique is based on a special kind of implicit parallelism. A chromosome usually encodes
several well-defined expressions. We may call strong implicit parallelism (SIP) the ability of MEP
chromosome to encode several syntactically correct expressions in a chromosome.

Some numerical experiments presented in Section 4.5 reveals the practical importance of SIP.

The ability of storing multiple solutions in a single chromosome has been suggested by others researchers,
too (see for instance [10]). Several attempts have been made for implementing this ability in GP technique.
For instance Handley [9] stored the entire population of GP trees in a single graph. In this way a lot of
memory is saved. Also if partial solutions are efficiently stored we can get an important speed up. Linear GP
[3] is also very suitable for storing multiple solutions in a single chromosome. In that case the multi
expression ability is given by the possibility of choosing any variable as the program output.

3.5. Discussion about MEP representation

 9

We can see that the effective expression length can increases exponentially with the length of the
chromosome. This is happening because some sub-expressions may be used more than once to build a more
complex (bigger) expression. Consider, for instance, we want to obtain a chromosome that encodes the

expression
n

a 2 , and only the operators {+, -, *, /} are allowed. If we use GEP representation the chromosome
has to contain at least (2n+1 – 1) symbols since we need to store 2n terminal symbols and (2n – 1) function
operators. A GEP chromosome that encodes the expression E = a8 is given below:

C = ******* aaaaaaaa.

A MEP chromosome uses only (3n + 1) symbols for encoding the expression
n

a 2 . A MEP chromosome that
encodes expression E = a8 is given below:

1: a
2: * 1, 1
3: * 2, 2
4: * 3, 3

As a further comparison, when n = 20, a GEP chromosome has to have 2097151 symbols, while MEP needs
only 61 symbols.

MEP representation is similar with GP and CGP, in the sense that each function symbol provides pointers
towards its parameters. Whereas both GP and CGP have complicated representations (trees and graphs),
MEP provides an easy and effective way to connect (sub) parts of a computer program. Moreover, the
motivation for MEP was to provide an expression representation close to the way in which C or Pascal
compilers interprets the mathematical expressions [1]. That code is also called three adreses code or
intermediary code.

Some GP techniques, like Linear GP, remove non-coding sequences of chromosome during the search
process. As already noted ([3], [6]) this strategy does not give the best results. The reason is sometimes a part
of the useless genetic material have to be kept in the chromosome in order to maintain population diversity.

There is a notable difference of speed between MEP and GEP due to the number of chromosome parsing
operations. MEP chromosomes are traversed one to compute the fitness, whereas GEP chromosomes need to
be parsed twice for computing the fitness.

3.6. Selection

Standard MEP algorithm is a generational evolutionary procedure. Selection ensures the fittest individuals
having a higher chance to be represented in the next generation. q-tournament selection is used. The best
individual from q randomly chosen individuals enters the mating pool (see [5], [8]).

Some experiments for setting tournament size were performed (results not shown). Binary tournament (q =
2) seems to work very good on considered test problems. Thus binary tournament will be used in all
experiments considered in this paper.

3.7. Search operators

Search operators used within MEP algorithm are recombination and mutation. Considered search operators
preserve the chromosome structure. All offspring are syntactically correct expressions.

3.7.1. Recombination

Three variants of recombination have been considered and tested within our MEP implementation: one-point
recombination, two-point recombination and uniform recombination.

 10

3.7.1.1. One-point recombination

One-point recombination operator in MEP representation is analogous to the corresponding binary
representation operator. One crossover point is randomly chosen and the parent chromosomes exchange the
sequences at the right side of the crossover point.

Example

Consider the chromosomes C1 and C2:

C1 C2
1: b
2: * 1, 1
3: + 2, 1
4: a
5: * 3, 2
6: a
7: - 1, 4

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

Choosing the crossover point after position three two offspring F1 and F2 are obtained as follows:

F1 F2
1: b
2: * 1, 1
3: + 2, 1
4: c
5: d
6: + 4, 5
7: * 3, 6

1: a
2: b
3: + 1, 2
4: a
5: * 3, 2
6: a
7: - 1, 4

3.7.1.2. Two-point recombination

Two crossover points are randomly chosen and the chromosomes exchange genetic material between the
crossover points.

Example

Let us consider the chromosomes C1 and C2:

C1 C2
1: b
2: * 1, 1
3: + 2, 1
4: a
5: * 3, 2
6: a

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5

 11

7: - 1, 4 7: * 3, 6

Suppose that the crossover points were chosen after the position 2 and 5. In this case the obtained offspring
F1 and F2 are:

F1 F2
1: b
2: * 1, 1
3: + 1, 2
4: c
5: d
6: a
7: - 1, 4

1: a
2: b
3: + 2, 1
4: a
5: * 3, 2
6: + 4, 5
7: * 3, 6

3.7.1.3. Uniform recombination

Within uniform recombination offspring genes are taken randomly from one parent or another.

Example

Consider the chromosomes C1 and C2:

C1 C2
1: b
2: * 1, 1
3: + 2, 1
4: a
5: * 3, 2
6: a
7: - 1, 4

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

Using uniform recombination two offspring F1 and F2 are obtained as follows:

F1 F2
1: a
2: * 1, 1
3: + 2, 1
4: c
5: * 3, 2
6: + 4, 5
7: - 1, 4

1: b
2: b
3: + 1, 2
4: a
5: d
6: a
7: * 3, 6

3.7.2. Mutation

Each gene in the chromosome may be the target of mutation operator. A mutation probability (pm) is
considered when applying mutation operator.

3.7.2.1. Standard mutation

 12

By mutation some symbols in the chromosome are changed. To preserve the consistency of the chromosome
its first gene must encode a terminal symbol.

If the current gene encodes a terminal symbol it may be changed into another terminal symbol or into a
function symbol. In the last case the positions indicating the function arguments are also generated by
mutation.

If the current gene encodes a function the gene may be mutated into a terminal symbol or into another
function (function symbol and pointers towards arguments).

3.7.2.2. Smooth mutation

For changing a function symbol one may apply a smooth mutation operator. Smooth mutation changes each
symbol in the gene (i.e. function symbol or function parameters position) with a fixed probability psm.

If the function in the gene has two parameters the value

psm = 0.33

is suggested. This is a mutation probability value equivalent with one position mutation per gene.

Smooth mutation is an additional search operator intended to perform a fine grained search in the solutions
space.

3.7.3. Example

In this example we consider a mutation probability

pm = 0.28

equivalent with two mutations per chromosome. Smooth mutation operator is not used. Thus each gene is
freely changed into another gene.

Consider the chromosome:

1: a
2: * 1, 1
3: b
4: * 2, 2
5: b
6: + 3, 5
7: a

If genes 3 and 6 are selected for mutation then an offspring could be the following one:

1: a
2: * 1, 1
3: + 1, 2
4: * 2, 2
5: b
6: + 1, 4
7: a

In this case a terminal symbol has been changed into a function symbol (gene 3). Positions of function
parameters changed into another ones (gene 6).

3.8. Handling exceptions within MEP

 13

Exceptions are special situations that interrupt the normal flow of expression evaluation (program
execution). An example of exception is division by zero which is raised when the divisor is equal with zero.

Exceptions handling is a mechanism that performs special processing when an exception is thrown.

Usually GP techniques use a protected exception handling mechanism [13], [14]. For instance if a division
by zero exception is encountered, a predefined value (for instance 1 or the numerator) it is returned.

GEP uses a different mechanism: if an individual contains an expression that generates an error that
individual receive the lowest fitness possible.

MEP uses a new and specific mechanism for handling exceptions. When an exception is encountered (which
is always generated by a gene containing a function symbol), the gene that generated the exception is
mutated into a terminal symbol. Thus, no infertile individual appears in population.

3.9. Improving MEP algorithm: weighting symbols

For particular problems there is an easy way to improve performance of MEP algorithm by weighting the
function as well as terminal symbols. Obtained evolutionary procedure is called Weighted MEP (WMEP)
algorithm.

By weighting, some symbols may appear in chromosome more often than other symbols. However suggested
improvement is based on observations on particular problems. Generally it can not be assumed that some
symbols appear in chromosome more frequently than other symbols.

3.10. MEP complexity

Let N be the number of individual in population and NG the number of genes in chromosome.

The fitness of an individual (when solving symbolic regression problems) can be computed in O(NG) steps
by dynamic programming [2]. In fact MEP chromosome needs to be traversed once for computing the
fitness. GEP chromosomes must be traversed twice for computing the fitness.

The complexity of MEP algorithm when solving symbolic regression problems is:

O(N·NG). (16)

Thus, MEP algorithm does not have a higher complexity than other GP - techniques that encode a single
computer program in each chromosome.

4. MEP technique applied for solving symbolic regression problems

In this section standard and weighted MEP are used for solving symbolic regression problems.

4.1. Standard MEP for symbolic regression

The aim of symbolic regression is to discover a function that satisfies a set of fitness cases. For instance we
want to discover the function:

f(x) = x4 + x3 + x2 + x, (17)

based on a set of 10 fitness cases randomly generated over the interval [0, 20] as used by GEP in [6].

For this problem we use the set of functions

 14

F = {+, -, *, /},

and the set of terminals

T = {x}.

4.1.1. Experiment 1

In this experiment the success rate of the standard MEP algorithm is analyzed. A comparison with the results
supplied by GEP technique [6] is realized. The chromosome length is gradually increased. Algorithm
parameters are given in Table 1.

Population size 30
Number of generations 50
Mutation 2 genes / chromosome
Crossover type One-point-crossover
Crossover probability 0.7
Selection Binary tournament
Elitism size 1

Table 1. Algorithm parameters for the Experiment 1.

Because GEP and MEP use different chromosome representations we can not make a direct comparison
based on chromosome length. Instead we will provide a comparison based on the number of symbols in
chromosome.

In this case n = 2 and the maximum number of symbols in chromosome is:

Number_of_Symbols = 3 · Number_of_Genes – 2.

GEP chromosome consists of a single gene with the head length of h. Thus the total number of symbols in
GEP chromosome is (2h + 1).

Success rates of the MEP and GEP algorithms depending on number of symbols in the chromosome are
depicted in Figure 2. GEP parameters are the same as MEP parameters.

 15

Figure 2. Success rate of MEP and GEP algorithms. The number of symbols in chromosome varies between 8 and 100.
The results are summed over 100 runs.

One may note that the success rate of GEP increases up to 80% and then decreases. This indicates that very
long GEP chromosomes cannot encode short expressions efficiently. The length of GEP chromosome must
be somehow related with the length of the expression that must be discovered.

The success rate of the MEP algorithm increases with the chromosome length and never decreases toward
very low values. When the search space (chromosome length) increases, an increased number of expressions
are encoded by MEP chromosomes. Very large search spaces (very long chromosomes) are very beneficial
for MEP technique because

4.1.2. Experiment 2

From Experiment 1 we may infer that for the considered problem the MEP success rate never decreases to
very low values. To obtain an experimental evidence for this assertion longer chromosomes are considered.
We extend chromosome length up to 300 genes (898 symbols).

The success rate of MEP is depicted in Figure 3. We can observe that the MEP success rate lies in the
interval [92, 100] for the chromosome length greater than 12. One may note that after that the chromosome
length becomes 10, the success rate never decrease fewer than 90%.

Figure 3. Success rate of MEP algorithm. The chromosome length varies between 5 and 100. The results are summed
over 100 runs.

4.1.3. Experiment 3

The first position in each chromosome must be occupied by a terminal symbol in order to obtain
syntactically correct computer programs. One may also fill positions 2, 3,… with terminal symbols.

 16

In this experiment the relationship between success rate and the number of initial positions compulsory filled
with terminal symbols is analyzed.

Algorithm parameters are given in Table 2.

Population size 30
Number of generations 50
Chromosome length 40 genes
Mutation 2 genes / chromosome
Crossover type One-point-crossover
Crossover probability 0.7
Selection Binary tournament
Elitism size 1

Table 2. Algorithm parameters for the Experiment 3.

The results of this experiment are depicted in Figure 4.

Figure 4. Success rate of MEP algorithm when the number of first positions occupied by terminal symbols varies. The
number of first positions occupied by terminals varies between 1 and 20. The results are summed over 100 runs.

We may infer that the best results are obtained when only the first position is compulsory a terminal symbol.
After this value the success rate gradually decreases.

Imposing terminal symbols to other initial positions seems to generate performance decreasing. This loss of
performance is due to the reduction of chromosome positions encoding operators.

For some problems, where the solution is a simple expression consisting of a single terminal, the statement
above may not hold. In those cases an increased number of positions containing terminal symbols may be
very beneficial. However, if the solution contains many function symbols it is always a good idea to force
only the first position in chromosome to hold a terminal symbol.

4.1.4. Experiment 4

In this experiment the relationship between the success rate and the population size is analyzed. Algorithm
parameters for this experiment are given in Table 3.

 17

Number of generations 50
Chromosome length 17 genes
Mutation 2 genes / chromosome
Crossover type One-point-crossover
Crossover probability 0.7
Selection Binary tournament
Elitism size 1

Table 3. Algorithm parameters for the Experiment 4.

The maximum number of symbols in MEP chromosome is equal with the number of symbols in GEP
chromosome (49 symbols).

Experiment results are given in Figure 5.

Figure 5. Success rate of MEP algorithm. Population size varies between 2 and 200. The results are summed over 100
runs.

For the considered problem (symbolic regression) and for the MEP algorithm parameters given in Table 3
optimal population size is 30. Corresponding success rate is 99%. This result suggests that small MEP
populations may supply very good results.

MEP has a higher success rate than GEP for the same parameter settings. For a population of size 30 the
GEP success rate reaches 80%, while the success rate of MEP is 99%. For a population with 50 individuals
the GEP success rate reaches to 90%, while MEP success rate is 98%.

4.1.5. Experiment 5

In this experiment the relationship between the MEP and GEP success rate and the number of generations
used in the search process is analyzed.

 18

MEP algorithm parameters are given in Table 4.

Population size 30
Chromosome length 27 genes
Mutation 2 genes / chromosome
Crossover type One-point-crossover
Crossover probability 0.7
Selection Binary tournament
Elitism size 1

Table 4. Algorithm parameters for the Experiment 6.

The maximum number of symbols in MEP chromosome is equal with the number of symbols in GEP
chromosome (79 symbols).

Experiment results are given in Figure 6.

Figure 6. Relationship between the success rate of MEP algorithm and the number of generations used in the search
process. The number of generations varies between 10 and 500. The results are summed over 100 runs.

The success rate reaches 100% when the number of generations reaches 80. GEP algorithm with similar
parameter settings reaches the success rate of 69% when the number of generations reaches 70.

Moreover, according to [6], GEP algorithm reaches the success rate of 90% only when the number of
generations reaches 500.

For the considered generation range GEP success rate never reaches 100%. MEP success rate is stabilized to
100% since generation 200.

 4.2. Weighted MEP for symbolic regression problem

For a given problem could be some preferred symbols. These symbols are expected to appear more
frequently in the solution expression.

 19

To distinguish symbols we may associate a weight for each function symbol. A preference for a certain
symbol may be forced by assigning it to a larger weight. We illustrate this method for the fourth polynomial
problem considered at the beginning of the section 4.

We weight the symbols + and * such that these symbols have a double chance to appear in chromosome than
other symbols. Results of weighted MEP technique are described in the following experiment.

4.2.2. Experiment with Weighted MEP

In this experiment we examine the success rate of weighted MEP algorithm when the number of genes in
chromosome is variable. Results are compared with those obtained by the standard MEP.

Algorithm parameters are given in Table 5.

Population size 30
Number of generations 20
Chromosome length 20 genes
Mutation 2 genes / chromosome
Crossover type One point crossover
Crossover probability 0.7
Selection Binary tournament
Elitism size 1

Table 5. Algorithm parameters for the Weighted MEP.

Figure 7 depicts the relationship between the success rate and the chromosome length when function
symbols are weighted. According to the considered weighing system, the operators + and * have double
chance to appear in chromosome.

Figure 7. Success rate of MEP algorithm when operators are weighted. The chromosome length varies between 10 and
100. The results are summed over 100 runs.

One may note that success rate of Weighted MEP is higher than the success rate of Standard MEP. These
improvements are correlated with a particular weight system based on observations on the problem.

4.3. MEP vs. CGP

In [14], CGP was used for symbolic regression of the sixth polynomial problem [12]:

f(x) = x6 – 2x4 + x2.

 20

In this section MEP technique is used to solve the same problem using parameters settings similar with those
of CGP. To provide a fair comparison, all experiment conditions described in [14] are carefully reproduced
for MEP technique.

CGP chromosomes were bounded by the following parameters: nr = 1, nc = 10, l = 10. MEP chromosomes
are set to contain 12 genes (in addition MEP uses two supplementary genes for the terminal symbols {1.0,
x}).

MEP parameters (similar with those used by CGP) are given in Table 6.

Chromosome length 12 genes
Mutation 2 genes / chromosome
Crossover type One point crossover
Crossover probability 0.7
Selection Binary tournament
Elitism size 1
Terminal set {x, 1.0}
Function set {+, −, *, /}
Number of runs 100

Table 6. Algorithm parameters for the MEP vs. CGP experiment.

CGP used a population of 500 individuals and a number of 8000 generations. We perform two experiments.
In the first experiment we set the MEP population size to 500 individuals and we compute how many
generations are needed to obtain the same success rate (61 %) as reported for CGP in [14].

When the MEP was run for 40 generations, the success rate was 60% (in 60 runs out of 100 MEP found the
correct solution). Thus MEP requires 200 times less generations than CGP to solve the same problem (the
sixth polynomial problem). This is an improvement with two orders of magnitude.

In the second experiment we keep fixed the number of generations (8000) and we use a small MEP
population. We are interested to see which is the optimal population size required by MEP to solve this
problem.

After several trials we found that MEP has a success rate of 60% when a population of 4 individuals is used.
This means that MEP requires 125 times less individuals than CGP for solving the sixth polynomial problem.
Again we deal with an improvement of two orders of magnitude.

4.5 Multi Expression Programming vs. Single Expression Programming

We are interested to see how the multi expression ability improves the performances of evolutionary
algorithms. To achieve this, we consider a new algorithm that uses the MEP representation but only the last
expression (the expression encoded by the last gene) is chosen to represent that chromosome. For instance, if
we take the chromosome described in the section 3.1, the fitness of that chromosome is given by the fitness
of the expression E6.

The technique obtained in this way is called Single Expression Programming (SEP).

SEP is similar with GEP and CGP as it encodes a single solution in chromosome.

Several numerical experiments with MEP and SEP were performed to see if there are any differences
between them. We analyze the relationships between the success rate of MEP and SEP with respect to the
number of generations, the population size and the chromosome length.

 21

In all experiments MEP and SEP use identical parameter settings. Some of these are given in Table 7.

Mutation 2 genes / chromosome
Selection Binary tournament
Crossover type 1 point crossover
Crossover probability 0.9
Elitism size 1
Terminal set {x}
Function set {+, −, *, /, sin, cos}

Table 7. MEP and SEP algorithm parameters.

When the relationship between the success rate and the population size is analyzed, MEP and SEP are run
over 100 generations using chromosomes of length 20.

When the relationship between the success rate and the number of generations is analyzed, MEP and SEP
use populations of 50 individuals, each having 20 genes.

When the relationship between the success rate and the chromosome length is analyzed, MEP and SEP are
run over 100 generations using populations of 50 individuals.

Both MEP and SEP algorithms were used to solve the sixth polynomial problem described in the section 4.4.
Ten fitness cases (randomly generated over the interval [-1..1]) were used unchanged during the search
process.

The results of these experiments are depicted in the Figure 9.

We can see that MEP outperforms SEP on the most cases (only one unimportant exception is recorded).

From Figure 9(b) we see that SEP has the same behavior as GEP: the success rate increases up to a value and
then it has a decreasing tendency. The maximum success rate reached by GEP and SEP depends both on the
training data and individuals representation.

Both SEP and GEP require a good match between the chromosome length and the length of the expression to
be discovered.

SEP success rates, even when population size increases (Figure 9(c)), is very low (never jumps over 13%).
Even a long population size (300 individuals) does not have beneficial effects over SEP success rate. This
problem could be due to the need of a connection between the SEP chromosome length and the length of the
target expression. It seems that this problem occurs very often with the systems that store a single expression
in a chromosome (as is the case of GEP and SEP).

 22

Figure 9. (a) Success rate of MEP and SEP when the number of generations varies between 100 and 500.

(b) Success rate of MEP and SEP when the chromosome length varies between 10 and 150.

(c) Success rate of MEP and SEP when the population size varies between 10 and 300.

The results are summed over 100 runs.

5. Discovering game strategies with MEP

In this section we investigate the application of MEP technique for discovering game strategies.

Koza [11] suggested that GP can be applied to discover game strategy. The game-playing strategy may be
viewed as a computer program that takes the information about the game as its input and produces a move as
output.

The available information may be an explicit history of previous moves or an implicit history of previous
moves in the form of a current state of game (e.g. the position of each piece on the chess board) [11].

Tic-tac-toe (TTT, or naughts and crosses) is a game with simple rules, but complex enough to illustrate the
ability of MEP to discover game strategy.

 23

5.1. TTT game description

In Tic-Tac-Toe there are two players and a 3 × 3 grid. Initially the grid is empty. Each player moves in turn
by placing a marker in an open square. By convention, the first player’s marker is “X” and the second
player’s marker is “0”.

The player that put three markers of his type (“X” for the first player and “0” for the second player) in a row
is declared the winner.

The game is over when one of players wins or all squares are marked and no player wins. In the second case
the game ends with draw (none of the players win). Enumerating the game tree shows that the second player
can obtain at least a draw.

A well-known evolutionary algorithm that evolves game strategy has been proposed in [4]. This algorithm
will be reviewed in the next section.

5.2. Chellapilla’s approach of TTT

In [5] an evolutionary algorithm has been used in order to obtain a good strategy (that never loses) for the
Tic-Tac-Toe game. A strategy is encoded in a neural network. A population of strategies encoded by neural
networks is evolved.

Each network receives a board pattern as input and yields a move as output. The aim is to store in a neural
network the function that gives the quality of a configuration. When a configuration is presented to the
network, the network output (supplies) the next move.

Each neural network has an input layer with 9 nodes, an output layer with 9 nodes, and a hidden layer with a
variable number of nodes.

Fogel’s algorithm starts with a random population of 50 neural networks. For each network the number of
nodes from the hidden layer is randomly chosen with a uniform distribution over integers 1...10. The initial
weighted connection strengths and bias terms are randomly distributed according to a uniform distribution
ranging over [-0.5, 0.5].

From each parent a single offspring is obtained by mutation. Mutation operator affects the hidden layer
structure, weight connections and bias terms.

Each strategy encoded in a neural network was played 32 times against a heuristic rule base procedure.

The payoff function has several values corresponding to winning, loosing and draw.

The best individuals from a generation are retained to form the next generation.

The process is evolved for 800 generations. According to [4] the best obtained neural network is able to play
to win or draw with a perfect play strategy.

5.3. MEP approach of TTT

In this section we illustrate the use of MEP to discover an unbeatable play strategy for Tic-Tac-Toe.

We are searching for a mathematical function F that gives the quality of each game configuration. Using this
function the best configurations that can be reached in one move from the current configuration, is selected.
Therefore function F supplies the move to be performed for each game configuration.

 24

Function F evaluating each game configuration is represented as a MEP chromosome. The best expression
encoded by a chromosome is chosen to be the game strategy of that chromosome.

Without any loose of generality we may allow MEP strategy to be the first player in each game.

All expressions in the chromosome are considered in the fitness assignment process. Each expression is
evaluated using an “all-possibilities” procedure. This procedure executes all moves that are possible for the
second player. The fitness of an expression E is the number of games that the strategy encoded by the
expression E loses. Obviously the fitness has to be minimized.

Let us denote by

P = (p0, p1… p8)

a game configuration.

Each pk describes the states “X”, “0” or an empty square. In our experiments the set {5, -5, 2} has been used
for representing the symbols “X”, “0” and the empty square.

The game board has been linearized by scanning board squares from up to down and from left to right. Thus
the squares in the first line have indices 0, 1 and 2, etc. (see Figure 10).

Figure 10. Game board linearized representation.

For this problem the set of nonterminal symbols is

F = {+, -, *, /}

and the set of terminal symbols is

T = {p0, p1,…, p8}.

Algorithm parameters are given in Table 8.

Population size 50
Chromosome length 50 genes
Mutation probability 0.05
Crossover type Two-point-crossover
Selection Binary tournament
Elitism size 1

Table 8. Algorithm parameters for TTT game.

The MEP algorithm is able to evolve a perfect, non-loosing, game strategy in 11 generations. This process
requires less than 10 seconds when an Intel Pentium 3 processor at 1GHz is used.

In Figure 11 the fitness of the best individual in the best run and average fitness of the best individuals over
all runs are depicted.

 25

Figure 11. Fitness of the best individual in the best runs and the average fitness of the best individuals over all runs.
The results are taken over 30 runs.

Form Figure 11 we may see that an individual representing a non-loosing strategy appears in the population
at generation 14.

Some functions evolved by the MEP algorithm are given below:

F1(P) = ((p4-p5-(p6+p5))*p8+p4*p3)*(p4-p7), (19)

F2(P) = p2-(p8*p7-p4)-p7-(p2*p5), (20)

F3(P) = (p4*p1+p2)*p7-(p1-p2+p7*p5)-(p8-(p3*p5)). (21)

These functions do not force the win when it is possible, but they never lose. This is a consequence of fitness
assignment process. However, proposed technique can also generate a function that forces the win whenever
it is possible.

It is not easy to compare this result with the result obtained by Chellapilla and Fogel [4] as the experiment
conditions were not the same. In [4] evolved strategies play against a heuristic procedure, but here MEP
formulas play against an all-moves procedure. Population size was the same (50 individuals). Individual
sizes are difficult to be compared. All MEP individual have the same size: 148 symbols. Neural network’s
sizes used in [4] are variable since the hidden layer contains a variable number of nodes. If the number of
nodes in the hidden layer is 9 then the size of the neural network (biases + connection weights) is 9 * 9 + 9 *
9 * 9 + 9 * 9 = 324.

MEP approach seems to be faster as MEP was able to discover a non-losing strategy in no more than 17
generations. As noted in [4] neural network approach requires 800 generations.

5.4. A good TTT heuristic vs. MEP

 26

A good heuristic for Tic-Tac-Toe is described in what follows:

S1. If a winning move is available make that move, else
S2. If a winning move is available for the opponent, move to block it, else
S3. If a move of the opponent that leads to two winning ways is available, block that move, else
S4. If the board center is available, move in the board center,
S5. If one ore more corners of the table are available, move in one of them, else
S6. Move randomly in an available square.

This heuristic performs well on most of the game positions. But applying one of the formulas evolved by the
MEP algorithm some benefits are obtained:

• easy implementation in programming languages,

• MEP evolved formula is an algorithm faster than previously shown heuristic.

5.5. Applying MEP for generating complex game strategies

Using the “all-possibilities” technique (a backtracking procedure that plays all the moves for the second
player) allows us to compute the absolute quality of a game position.

For complex games a different fitness assignment technique is needed since the moves for the second player
can not be simulated by an “all-possibilities” procedure (the number of moves that needs to be simulated is
too large).

One fitness assignment possibility is to use a heuristic procedure that acts as the second player. But there are
several difficulties related to this approach. If the heuristic is very good it is possible that none of evolved
strategy could ever beat the heuristic. If the heuristic procedure plays as a novice then many evolved strategy
could beat the heuristic from the earlier stages of the search process. In the last case fitness is not correctly
assigned to population members and thus we can not perform a correct selection.

A good heuristic must play on several levels of complexity. At the beginning of the search process the
heuristic procedure must play on easy level. As the search process advances the difficulty level of heuristic
procedure must increases.

However for complex games such a procedure is difficult to implement.

Another possibility is to search for a game strategy using a coevolutionary algorithm [4]. This approach
seems to offer the most spectacular results. In this case MEP population must develop intelligent behavior
based only on internal competition.

7. Conclusions and further work

Multi Expression Programming is a new evolutionary technique that may be used for evolving computer
programs. MEP technique uses a new solution representation and specific search operators.

It is documented that MEP technique can be used for solving various classes of difficult problems.

MEP correctly identified several important trends in nowadays Evolutionary Algorithms:

- encoding multiple solutions in single chromosome,

- individual encoding is similar to nowadays machine code (MEP representation is similar with the
way in which C and Pascal compilers evaluate expressions),

 27

- low complexity of fitness assignment process (MEP individuals are parsed only once for computing
the fitness).

Several numerical experiments have been performed with MEP. For the considered problems MEP algorithm
performs better than similar evolutionary techniques (particularly GEP and CGP).

Further efforts will be dedicated applying MEP for solving other real world difficult problems namely
prediction of complex phenomena, classification, discovering heuristics for NP-Complete [7] problems,
discovering strategies for complex games, etc.

References

[1] A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools, Addison Wesley, 1986.

[2] R. Bellman, Dynamic Programming, Princeton, Princeton University Press, New Jersey, 1957.
[3] M. Brameier, W. Banzhaf, A Comparison of Linear Genetic Programming and Neural Networks in

Medical Data Mining, IEEE Transactions on Evolutionary Computation, 5:17-26, 2001.

[4] K. Chellapilla, D. B. Fogel, Evolution, Neural Networks, Games and Intelligence, Proc. IEEE. Vol. 87,
1471-1496, 2000.

[5] D. Dumitrescu, B. Lazzerini, L. Jain, A. Dumitrescu, Evolutionary Computation. CRC Press, Boca
Raton, FL, 2000.

[6] C. Ferreira, Gene Expression Programming: a New Adaptive Algorithm for Solving Problems, Complex
Systems, Vol. 13, 87-129, 2001.

[7] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to NP-completeness, Freeman & Co,
San Francisco, 1979.

[8] D.E., Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley,
Reading, MA, 1989.

[9] S. Handley, On the Use of a Directed Graph to Represent a Population of Computer Programs. In
Proceeding of the IEEE World Congress on Computational Intelligence, 154-159, Orlando, Florida, 1994

[10] M.A. Lones, A.M. Tyrrell, Biomimetic Representation in Genetic Programming in proceedings of
the Workshop on Computation in Gene Expression at the Genetic and Evolutionary Computation
Conference 2001 (GECCO2001), July 2001.

[11] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press, Cambridge, MA, 1992.

[12] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Subprograms, Cambridge,
MA: MIT Press, 1994.

[13] M. O’Neill, C. Ryan, Grammatical Evolution, IEEE Transaction on Evolutionary Computation, Vol
5, No 4, 2001.

[14] J. Miller, P. Thomson, Cartesian Genetic Programming, In R. Poli et al (editor) Third European
Conference on Genetic Programming, Vol. 1802, Lecture notes in Computer Science, Springer, 2002.

[15] P. Nordin, A Compiling Genetic Programming System that Directly Manipulates the Machine Code,
In K. E. Kinnear, Jr. (editor), Advances in Genetic Programming, 311-331, MIT Press, 1994.

 28

[16] R. Poli, Evolution of Graph-like Programs with Parallel Distributed Genetic Programming. In T.
Back (editor): Genetic Algorithms: Proceedings of the Seventh International Conference, 346-353,
Morgan Kaufmann, San Francisco, CA, 1997.

[17] R. Poli, W. B. Langdon, Sub-machine code Genetic Programming, Technical report CSRP -98-18,
School of Computer Science, University of Birmingham, 1998.

[18] A. Singleton, Genetic Programming with C++, BYTE, 171-176, 1991.

