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Abstract. Multi Expression Programming (MEP) is a new evadnofiry paradigm intended for solving
computationally difficult problems. MEP individuadse linear entities that encode complex computegnams. MEP
chromosomes are represented in the same way as Rasmal compilers translate mathematical expressiato
machine code. MEP is used for solving some diffiqufoblems like symbolic regression and game gisate
discovering. MEP is compared with Gene Expressimyfmming (GEP) and Cartesian Genetic Programi@eP)
by using several well-known test problems. For ¢basidered problems MEP outperforms GEP and CGPthHese
examples MEP is two magnitude orders better thaR.CG
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1. Introduction

History of algorithms is the history of improvemenBetter algorithms are developed every day ttacep
others old and less efficient algorithms. Theserowpments concern two main issues: speed and memory
requirements. Whereas the computer performances l@en continuously improved, the need for solving
more and more complex problems made these imprawsnte be quite inefficient. Thus the theoreticians
searched for new gates for eluding the computensedess. The efforts have been directed in to tvaocnm
directions: (a) developing new and powerful aldgoms, (b) parallelization existing ones.

History of evolutionary algorithms may be identifisvith the history of algorithms: inefficient antbw
implementations at the beginning and then morenamig: efficient algorithms and implementations.

Genetic Programming (GP) [11], [12], which was oradly implemented in LISP is a typical example.is'h
programming language permits elegant implementatigrograms that change their code during executio
This is all that the evolutionary algorithms thablkre source code need. Though LISP and GP perfectl
match, the B generation languages (as LISP and PROLOG) do edeqily match today computer
processors. Thus, the execution of such prograsisvisdown by that bottleneck.

Advent of C++ implementations of GP [18], improwbé speed of GP programs by one order of magnitude
at least [17].

For dealing with some problems (as bloat) generbyetitee representation of GP, several linear wésiaf
GP have been proposed. Some of them are: Cart€@aetic Programming (CGP) [14], Grammatical
Evolution (GE) [13], Linear GP [3] and Gene ExpressProgramming (GEP) [6]. Their aim was to improve



the performance of GP and to offer a viable altéveaof implementing GP in"3and 4' generation
programming languages. All enumerated GP variaae la common feature: individuals are represerded a
linear entities (strings) that are decoded andesgad like non-linear entities (trees).

ProposedMulti Expression Programming' (MEP) technique follows the improvements trend @GP
techniques. Some of MEP features are summarizethén follows:

a) MEP individuals are strings of genes encoding cempbmputer programs,

b) When MEP individuals encode expressions for synsh@gression problems, their representation is
similar with the way in which compilers translateo€ Pascal expressions into machine code [1].
This may lead to very efficient implementationsoistssembler languages. The ability of evolving
machine code leads to very important speedupstdras ibeen considered by others researchers too.
For instance Nordin [15], which evolves programpresented in machine code form. Poli and
Langdon proposed sub-machine-code GP [17], whigtoés the processor ability to perform some
Boolean operations in parallel.

¢) MEP individuals store multiple solutions in a seghromosome. Usually the best solution is chosen
for fitness assignment. This represents a uniqgatufe of MEP and it is called strong implicit
parallelism. This ability has also been investiddbg others researchers ([3] [9]). It is remarkable
that this feature does not increase MEP complexitgn compared with others techniques like GEP
and GE.

d) Evaluation of the expressions encoded into a MERidual can be performed by a single parsing
of the chromosome. Note that GEP chromosomes neéshst two parsings for computing the
fitness.

e) Offspring, obtained by crossover and mutation, @veays syntactically correct MEP individuals
(computer programs). Thus, no extra processinggjgairing newly obtained individuals is needed.

MEP technique is used for solving different proldelike symbolic regression and discovering game
strategy. The overall conclusion is MEP performs/weell for each considered problem.

MEP technique is compared with GEP and CGP on akweell-known benchmark problems. The results
suggest that MEP algorithm outperforms GEP and G&the considered examples.

2. Linear GP representations
In this section some GP techniques using lineaiesgmtations are reviewed.

2.1. Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) [14] is a GP technique that encodes chromesoin graph
structures rather than standard GP trees. The atigtivfor this representation is that the graplsraore
general than the trees structures, thus allowiagtimstruction of more complex computer prograrg [1

CGP is Cartesian in the sense that the graph rar@esepresented in a Cartesian coordinate systaia. T
representation was chosen due to the node connentghanism, which is similar with GP mechanism. A
CGP node contains a function symbol and pointersatds nodes representing function parameters. Each
CGP node has an output that may be used as inpottfer(s) node(s).

L MEP source code is available for download fromw.mepx.orgor https://github.com/mepx




An example of CGP program is depicted in Figure 1.
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Figure 1. A CGP program with 5 inputs, 2 outputs and 3 fiams (O, 1, 2 inside square nodes). The grey
squares represent unconnected nodes

Each CGP program (graph) is defined by severalnpetiers: number of rows\{, number of columnsnf),
number of inputs, number of outputs, and numbefun€tions. The nodes interconnectivity is defined a
being the number ) of previous columns of cells that may have tleeitputs connected to a node in the
current column (the primary inputs are treatedaieroutputs).

CGP chromosomes are encoded as strings by reddingraph columns from top down and printing the
input nodes and the function symbol for each ndde CGP chromosome depicted in Figure 1 is encoded
as:

C=01301pan 3522 8501 6832 426@io72 911101 8862 1113

Standard string genetic operators (crossover andtion) are used with CGP. Crossover may be applied

without any restrictions, but mutation operatoruiegs that some conditions to be met. Node supilieg
outputs are not fixed as they are also subjeatdssover and mutation.

2.2. Gene Expression Programming

Gene Expression Programming (GEP) [6] uses linear chromosomes. A chromosonmiisposed of genes
containing terminal and nonterminal symbols. Chreames are modified by mutation, transposition, root
transposition, gene transposition, gene recomhinatine-point and two-point recombination.

GEP genes are composed dfead and atail. The head contains both functions (nonterminad t@nminals
symbols. The tail contains only terminal symbols.

For each problem the head length (dendieid chosen by the user. The tail length (denotesl calculated
using the formula:

t=(h-1h+1, (1)
wheren is the number of arguments of the function withrenarguments.
Translation of a tree—program into a GEP gene dentyy breadth-first parsing.

Consider a gene composed of symbols in th&set



S={*1/,+ - a b}

In this case we have= 2. If we choosé = 10 we get

t=11,

and the length of the gene is 10 + 11 = 21. Supéne is given below:

C = +*ab-+aa/+ababbbababb.

The expression encoded by the gérie

E=(a+b)—-a)*b+a

The expressiok represents the phenotypic transcription of a clasmme having as its unique gene.

Usually a GEP gene is not entirely used for phguotyranscription. If the first symbol in the gersea
terminal symbol the expression tree consist ohglsinode. If all symbols in the head are nonteatsithe
expression tree uses all the symbols of the gene.

GEP genes may be linked by a function symbol iewotd obtain a fully functional chromosome. In the
current version of GEP the linking functions fogelraic expressions are addition and multiplicatidn
single type of function is used for linking muliépgenes.

In some situation this seems to be enough (seeB6}) generally, it is not a good idea to assuha the
genes may be linked either by addition or by mlittiion. If the functions {+, -, *, /} are used disking
operators then the complexity of the problem grewlsstantially (since the problem of determining How
mixed these operators with the genes is as hattkansitial problem).

When solving computationally difficult problemski@ automated code generation) one may not assiahe th
a unique kind of nonterminal symbol (liker, while or if instructions) is necessary for inter-connecting
different program parts.

Furthermore, the success rate of GEP increasegh@thumber of genes in the chromosome [5]. Bt aft
certain value the success rate decreases if thberunh genes in the chromosome increases. Thiscause
one can not force a complex chromosome to encéelssaomplex expression.

Thus when you use GEP you must be careful withnilmaber of genes that form the chromosome. The
number of genes in the chromosome must be somedlated with the complexity of the expression that
you want to discover.

According to [6] GEP performs better than standaRifor several particular problems.

2.3. Linear genetic programming

Linear Genetic Programming (LGP) [3] uses a specific linear representatiowarhputer programs. Instead
of tree-based GP expressions of a functional prognag language (likéI SP) programs of an imperative
language (likeC) are evolved.

An LGP individual is represented by a variable-lBngequence of simpl€ language instructions.
Instructions operate on one or two indexed vargliegistersj or on constants from predefined sets. The
result is assigned to a destination register,re=gr; * C.

An example of LGP program is the following one:

voi d ind(v)

{



doubl e v[8];

v[0] = v[5] + 73;
V[7] = v[9] - 59;
if (v[1] > 0)

if (v[5] > 21)

v[4] = v[2] *Vv[1];
v[2] = v[5] + v[4];
v[6] = v[9] * 25;
v[6] = Vv[4] - 4;
V[1] = sin(v[6]);
if (v[0] > V[1])

V[3] = v[5] * v[5];
V[7] = v[6] * 2;
v[5] = [7] + 115;
if (v[1] <= v[6])

V[1] = sin(v[7]);

A linear genetic program can be transformed inforational representation by successive replacesnaint
variables starting with the last effective instroit Variation operators are crossover and mutatiéy
crossover continuous sequences of instructionselexted and exchanged between parents. Two types o
mutations are used: micro mutation and macro nautaBy micro mutation an operand or an operatarof
instruction is changed. Macro mutation insertsadetbs a random instruction.

3. MEP technique

In this sectiorMulti Expression Programming (MEP) paradigm is described. MEP uses a new reptason
technique and a special phenotype transcriptionemol MEP chromosome usually encodes several
expressions.

3.1. Standard MEP Algorithm
Standard MEP algorithm starts with a randomly chgsepulation of individuals.

A fixed number of the best individuals enter in tiext generation (elitism). We caitism size the number

of best individuals copied without modificationtime next population. The mating pool is filled slvinary
tournament selection. Individuals from mating pe@oé randomly paired and recombined with a fixed
crossover probabilityp.. By recombination of two parents two offspring aetained. The offspring are
mutated and enter the next generation. Considesigdtion operators ensure the chromosome length is
constant of the search process. The algorithmmnetas its answer the best expression evolved adixgd
number of generations.

Standard MEP algorithm is outlined below:

STANDARD MEP ALGORITHM

begi n
Generate Initial Population;
Evaluate_Individuals;
whi | e not Termination_Condition do
Elitism;
Selection;
Recombination;
Mutation;
Evaluate_Individuals;
endwhi | e
end

3.2. MEP representation



MEP genes are (represented by) substrings of ‘ariabgth. The number of genes per chromosome is
constant. This number defines the length of th@mlesome. Each gene encodes a terminal or a function
symbol. A gene encoding a function includes positewards the function arguments. Function argusnent
always have indices of lower values than the pwsif that function itself in the chromosome.

Proposed representation ensures no cycle ariseke wine chromosome is decoded (phenotypically
transcripted). According to the proposed represiemtacheme the first symbol of the chromosome rhast

a terminal symbol. In this way only syntacticallyrect programs (MEP individuals) are obtained.

Example

Consider a representation where the numbers defthgositions stand for gene labels. Labels dobabbng
to the chromosome, they being provided for explangturposes only.

For this example we use the set of functions
F= {7

and the set of terminals

T={ab,c,d}.

An example of chromosome usikRcandT is given below:

* + 00 4+ T O

The maximum number of symbols in MEP chromosonggven by the formula:
Number_of Symbols= (n+ 1) - (Number_of Genes—1) +1 ),(2
wheren is the number of arguments of the function wita thghest number of arguments. The maximum

number of effective symbols is achieved when eatedexcepting the first one) encodes a functionbsy
with the highest number of arguments.

The minimum number of effective symbols is equahi® number of genes and it is achieved when alkge
encode terminal symbols only.

3.3. Decoding MEP chromosome and fitness assignmeambcess

Now we are ready to describe how MEP individuatsteanslated into computer programs. This trarmsiati
represents the phenotypic transcription of the ME®mosomes.

Phenotypic translation is obtained by parsing theomosome top-down. A terminal symbol specifies a
simple expression. A function symbol specifies eplex expression obtained by connecting the oparand
specified by the argument positions with the curfenction symbol.

For instance, genes 1, 2, 4 and 5 in the previgasple encode simple expressions formed by a single
terminal symbol.



Gene 3 indicates the operation + on the operantstdd at the positions 1 and 2 of the chromosome.
Therefore the gene 3 encodes the expression:

E.=a+bh. (3)

The gene 6 indicates the operation + on the opsrkowéted at the positions 4 and 5. Therefore #re &
encodes the expression:

E2=C+d. (4)

The gene 7 indicates the operation * on the operdochted at the position 3 and 6. Therefore theege
encodes the expression:

Es=(a+b)*(c+d). ®)
E; is the expression encoded by the whole chromosome.

It is obvious that a MEP chromosome generally cah encode an expression that uses all the genes.
Consider the chromosome:

1:a

2:b

3:+1,2

4:c

5:d

6:+4,5

It is obvious that this chromosome can not encodmgle expression which uses all of its genes.tBist
chromosome encodes two complex expressions, namely:

E,=a+b, (6)
E2=C+d. (7)

The connection between expressi&sndE,; it is not specified by chromosome so we do nowvkhow to
combine them in a unique expression.

This is why each MEP chromosome is allowed to ee@dumber of expressions equal to the chromosome
length (number of genes). Previously describedrobsmme encodes the following expressions:

Ei=a, 8
E,=b, 9
Es=a+b, (20)
E.=c, (11)
Es =d, (12)
Es=c+d. (13)

The value of these expressions may be computedaising the chromosome top down. Partial results are
computed by dynamic programming [2] and are stareticonventional manner.

As MEP chromosome encodes more than one problemtisul it is interesting to see how the fitness is
assigned.

Let us consider that a procedure for computingithessf(E) is available.



Chromosome fitness is defined by considering theefis of each sub-expression encoded by the
chromosome. Therefore we may define:

f(C)=Df(E)

where E; are the expressions encoded by the chromosGmand O stands for a suitable operation.
According to the probleri could bemin, max, mean, etc.

Usually the chromosome fitness is defined as theds of the best expression encoded by that cluama

For instance, if we want to solve symbolic regrasgiroblems the fithess of each sub-expresgjonay be
computed using the formula:

f(E)= kZill\Ok,i _Wk"

whereoy; is the obtained result by the expresdipifor the fithess caseand w is the targeted result for the
fitness casé. In this case the fitness needs to be minimized.

The fitness of an individual is set to be equalhwihe lowest fithess of the expressions encoded in
chromosome:

f(C)=minf (E).

When we have to deal with others problems we coenfh# fitness of each sub-expression encoded in the
MEP chromosome and the fitness of the entire iddizi is given by the fithess of the best expression
encoded in that chromosome.

3.4. MEP strong implicit parallelism

Generally a GP chromosome encodes a single expne@mputer program). This is also the case foP GE
and GE chromosomes. By contrast, a MEP chromosormoedes several expressions (it allows a multi-
expression representation). Each of the encoderkgsipns may be chosen to represent the chromosome,
i.e. for giving chromosome phenotypic transcriptittsually the best of the expressions the chromesom
encodes supplies phenotypic transcription (reptesba chromosome).

It is also possible that several expressions magehlected to represent a single chromosome. Ircdse we
may say that the chromosome has a manifold phelaigmscription. Multi-expression representatiaveg
a supplementary power to the method.

Therefore MEP technique is based on a special &dnchplicit parallelism. A chromosome usually enesd
several well-defined expressions. We may ailbng implicit parallelism (SIP) the ability of MEP
chromosome to encode several syntactically coengatessions in a chromosome.

Some numerical experiments presented in Sectioredeals the practical importance of SIP.

The ability of storing multiple solutions in a slagchromosome has been suggested by others resesarch
too (see for instance [10]). Several attempts Hman made for implementing this ability in GP teghe.
For instance Handley [9] stored the entire popoatf GP trees in a single graph. In this way aolot
memory is saved. Also if partial solutions areafintly stored we can get an important speed upedsi GP

[3] is also very suitable for storing multiple stiduns in a single chromosome. In that case theimult
expression ability is given by the possibility dfoosing any variable as the program output.

3.5. Discussion about MEP representation



We can see that the effective expression length inareases exponentially with the length of the
chromosome. This is happening because some subssipms may be used more than once to build a more
complex (bigger) expression. Consider, for instarvee want to obtain a chromosome that encodes the

expressiorai2n , and only the operators {+, -, *, /} are allowdfiwe use GEP representation the chromosome
has to contain at least"{2— 1) symbols since we need to stoPeedminal symbols and {2- 1) function
operators. A GEP chromosome that encodes the eipnés= a° is given below:

C = ®*&%r gaaaaaaa

A MEP chromosome uses onlyn(3 1) symbols for encoding the express'mﬁ; . A MEP chromosome that
encodes expression Ez&is given below:

1:a

2:*1,1

3:%2,2

4:*3,3

As a further comparison, wher= 20, a GEP chromosome has to have 2097151 symidoile MEP needs
only 61 symbols.

MEP representation is similar with GP and CGP hm $ense that each function symbol provides painter
towards its parameters. Whereas both GP and CGe ¢mwplicated representations (trees and graphs),
MEP provides an easy and effective way to conngab)( parts of a computer program. Moreover, the
motivation for MEP was to provide an expressionrgspntation close to the way in which C or Pascal
compilers interprets the mathematical expressidijs That code is also called three adreses code or
intermediary code.

Some GP techniques, like Linear GP, remove nonnagpdequences of chromosome during the search
process. As already noted ([3], [6]) this stratdggs not give the best results. The reason is soeeh part
of the useless genetic material have to be keghteirchromosome in order to maintain population .

There is a notable difference of speed between 6P GEP due to the number of chromosome parsing
operations. MEP chromosomes are traversed onanpude the fithess, whereas GEP chromosomes need to
be parsed twice for computing the fitness.

3.6. Selection

Standard MEP algorithm is a generational evolutipriocedure. Selection ensures the fittest indiaisl
having a higher chance to be represented in the gemerationg-tournament selection is used. The best
individual fromqg randomly chosen individuals enters the mating jfeet [5], [8]).

Some experiments for setting tournament size werpned (results not shown). Binary tournament (

2) seems to work very good on considered test prnafl Thus binary tournament will be used in all
experiments considered in this paper.

3.7. Search operators

Search operators used within MEP algorithm arembdoation and mutation. Considered search operators
preserve the chromosome structure. All offsprirggsyntactically correct expressions.

3.7.1. Recombination

Three variants of recombination have been congidane tested within our MEP implementation: oneapoi
recombination, two-point recombination and unifaeoombination.



3.7.1.1. One-point recombination

One-point recombination operator in MEP repres@niais analogous to the corresponding binary
representation operator. One crossover point idamfy chosen and the parent chromosomes exchaage th
sequences at the right side of the crossover point.

Example
Consider the chromosom€g andC,:

C G
1:b 1l:a
2:*1,1 2:b
3:+2,1 3:+1,2
4:a 4.c
5:*3,2 5:d
6:a 6:+4,5
7:-1,4 7:*%3,6

Choosing the crossover point after position thvee affspring ik and k are obtained as follows:

Fi F.
1:b 1l:a
2:*1,1 2:b
3:+2,1 3:+1,2
4.c 4:a
5:d 5:*3,2
6:+4,5 6:a
7:*3,6 7:-1,4

3.7.1.2. Two-point recombination

Two crossover points are randomly chosen and tihenabsomes exchange genetic material between the
crossover points.

Example

Let us consider the chromoson@sandC,:

C C,
1:b 1l:a
2:*1,1 2:b
3:+2,1 3:+1,2
4:a 4.c
5:*3,2 5:d
6:a 6:+4,5

10



7:-1,4 7:*3,6

Suppose that the crossover points were chosentbéigrosition 2 and 5. In this case the obtainéspbahg
F. andF; are:

F1 F.
1:b 1l:a
2:*1,1 2:b
3:+1,2 3:+2,1
4.c 4:a
5:d 5:*3,2
6:a 6:+4,5
7.-1,4 7:*3,6

3.7.1.3. Uniform recombination

Within uniform recombination offspring genes arketa randomly from one parent or another.

Example
Consider the chromosom€&g andC,:

C C,
1:b 1l:a
2:*1,1 2:b
3:+2,1 3:+1,2
4:a 4:.c
5:*3,2 5:d
6:a 6:+4,5
7:-1,4 7:*3,6

Using uniform recombination two offspring &nd k are obtained as follows:

F1 F.
1:a 1:b
2:*1,1 2:b
3:+2,1 3:+1,2
4.c 4:a
5:*3,2 5:d
6:+4,5 6:a
7:-1,4 7:*3,6

3.7.2. Mutation

Each gene in the chromosome may be the target ¢ditimo operator. A mutation probabilityp.() is
considered when applying mutation operator.

3.7.2.1. Standard mutation

11



By mutation some symbols in the chromosome aregd@hnTo preserve the consistency of the chromosome
its first gene must encode a terminal symbol.

If the current gene encodes a terminal symbol iy tm& changed into another terminal symbol or into a
function symbol. In the last case the positionscating the function arguments are also generaied b
mutation.

If the current gene encodes a function the gene beaynutated into a terminal symbol or into another
function (function symbol and pointers towards angats).

3.7.2.2. Smooth mutation

For changing a function symbol one may applymaoth mutation operator. Smooth mutation changes each
symbol in the gene (i.e. function symbol or funotmarameters position) with a fixed probability.

If the function in the gene has two parameters/giee
Psm = 0.33
is suggested. This is a mutation probability vadgaivalent with one position mutation per gene.

Smooth mutation is an additional search operatenged to perform a fine grained search in thetisois
space.

3.7.3. Example
In this example we consider a mutation probability
pm = 0.28

equivalent with two mutations per chromosome. Simanutation operator is not used. Thus each gene is
freely changed into another gene.

Consider the chromosome:

1:a
2:*1,1
3:b

N
N

= Noak
Q o 4 T x*
w
(6]

enes 3 and 6 are selected for mutation theoffapring could be the following one:

* Q
P
NP

»

T * +

o))
+
[E
N

Ne
o

In this case a terminal symbol has been changedaniunction symbol (gene 3). Positions of function
parameters changed into another ones (gene 6).

3.8. Handling exceptions within MEP
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Exceptions are special situations that interrup tiormal flow of expression evaluation (program
execution). An example of exceptiondisision by zero which is raised when the divisor is equal withazer

Exceptions handling is a mechanism that perforresigpprocessing when an exception is thrown.

Usually GP techniques usepeotected exception handling mechanism [13], [14]. For instance ifi@sion
by zero exception is encountered, a predefinedevd@ir instance 1 or the numerator) it is returned.

GEP uses a different mechanism: if an individuahtains an expression that generates an error that
individual receive the lowest fitness possible.

MEP uses a new and specific mechanism for handbogptions. When an exception is encountered (which

is always generated by a gene containing a funatignbol), the gene that generated the exception is
mutated into a terminal symbol. Thus, no inferitidividual appears in population.

3.9. Improving MEP algorithm: weighting symbols

For particular problems there is an easy way toravg performance of MEP algorithm by weighting the
function as well as terminal symbols. Obtained etrohary procedure is callédkeighted MEP (WMEP)
algorithm.

By weighting, some symbols may appear in chromosmmie often than other symbols. However suggested
improvement is based on observations on partiquiablems. Generally it can not be assumed that some
symbols appear in chromosome more frequently thizer gymbols.

3.10. MEP complexity

Let N be the number of individual in population ai@ the number of genes in chromosome.

The fitness of an individual (when solving symbategression problems) can be computed iIN®)(steps

by dynamic programming [2]. In fact MEP chromosoneeds to be traversed once for computing the
fitness. GEP chromosomes must be traversed twiasofaputing the fitness.

The complexity of MEP algorithm when solving symbakgression problems is:

O(N'NG). (16)

Thus, MEP algorithm does not have a higher completian other GP - techniques that encode a single
computer program in each chromosome.

4. MEP technique applied for solving symbolic regresion problems
In this section standard and weighted MEP are faegblving symbolic regression problems.
4.1. Standard MEP for symbolic regression

The aim of symbolic regression is to discover afiom that satisfies a set of fithess cases. Fsiaite we
want to discover the function:

fX) =X+ X+ X +X, (17)
based on a set of 10 fitness cases randomly gedevaér the interval [0, 20] as used by GEP in [6].

For this problem we use the set of functions

13



F={+-*1/}

and the set of terminals

T={x}.

4.1.1. Experiment 1

In this experiment the success rate of the stand#iid algorithm is analyzed. A comparison with thsuits

supplied by GEP technique [6] is realized. The olosome length is gradually increased. Algorithm
parameters are given in Table 1.

Population size 30

Number of generationg 50

Mutation 2 genes / chromosome
Crossover type One-point-crossover
Crossover probability 0.7

Selection Binary tournament
Elitism size 1

Table 1 Algorithm parameters for the Experiment 1.

Because GEP and MEP use different chromosome exfieg®ns we can not make a direct comparison
based on chromosome length. Instead we will progideomparison based on the number of symbols in
chromosome.

In this casen = 2 and the maximum number of symbols in chroma@smn

Number_of Symbols = 3- Number_of Genes — 2.

GEP chromosome consists of a single gene with ¢lagel fength oh. Thus the total number of symbols in
GEP chromosome is 2+ 1).

Success rates of the MEP and GEP algorithms depgrahi number of symbols in the chromosome are
depicted in Figure 2. GEP parameters are the santwE® parameters.
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Figure 2. Success rate of MEP and GEP algorithms. The nuofl®/mbols in chromosome varies between 8 and 100
The results are summed over 100 runs.

One may note that the success rate of GEP incre@ses80% and then decreases. This indicates/émgt
long GEP chromosomes cannot encode short expraessfticiently. The length of GEP chromosome must
be somehow related with the length of the expres$iat must be discovered.

The success rate of the MEP algorithm increasds tlvé chromosome length and never decreases toward
very low values. When the search space (chromo$emggh) increases, an increased number of expressio
are encoded by MEP chromosomes. Very large sepates (very long chromosomes) are very beneficial
for MEP technique because

4.1.2. Experiment 2

From Experiment 1 we may infer that for the consdeproblem the MEP success rate never decreases to
very low values. To obtain an experimental evidefor this assertion longer chromosomes are coreide
We extend chromosome length up to 300 genes (888ag).

The success rate of MEP is depicted in Figure 3.cdafe observe that the MEP success rate lies in the
interval [92, 100] for the chromosome length grediten 12. One may note that after that the chromes
length becomes 10, the success rate never dedesasethan 90%.
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Figure 3. Success rate of MEP algorithm. The chromosomegthemaries between 5 and 100. The results are sdmme
over 100 runs.

4.1.3. Experiment 3

The first position in each chromosome must be oedupy a terminal symbol in order to obtain
syntactically correct computer programs. One mag éll positions 2, 3,... with terminal symbols.
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In this experiment the relationship between succagsand the number of initial positions compufdidred
with terminal symbols is analyzed.

Algorithm parameters are given in Table 2.

Population size 30

Number of generationg 50

Chromosome length 40 genes

Mutation 2 genes / chromosome
Crossover type One-point-crossover
Crossover probability 0.7

Selection Binary tournament
Elitism size 1

Table 2 Algorithm parameters for the Experiment 3.

The results of this experiment are depicted in Fagu
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Figure 4. Success rate of MEP algorithm when the numbdirgifpositions occupied by terminal symbols vari€ke
number of first positions occupied by terminalsi@gtbetween 1 and 20. The results are summed 6@erubs.

We may infer that the best results are obtainedwamdy the first position is compulsory a termisgmbol.
After this value the success rate gradually deeeas

Imposing terminal symbols to other initial positioseems to generate performance decreasing. Bsi®fo
performance is due to the reduction of chromosooséipns encoding operators.

For some problems, where the solution is a simppgession consisting of a single terminal, theestent
above may not hold. In those cases an increasetharunf positions containing terminal symbols may be
very beneficial. However, if the solution contamsny function symbols it is always a good ideadiwé
only the first position in chromosome to hold antral symbol.

4.1.4. Experiment 4

In this experiment the relationship between thecess rate and the population size is analyzed.ridtgo
parameters for this experiment are given in Table 3
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Number of generationg 50

Chromosome length 17 genes

Mutation 2 genes / chromosome
Crossover type One-point-crossover
Crossover probability 0.7

Selection Binary tournament
Elitism size 1

Table 3. Algorithm parameters for the Experiment 4.

The maximum number of symbols in MEP chromosomeqsal with the number of symbols in GEP
chromosome (49 symbols).

Experiment results are given in Figure 5.
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Figure 5. Success rate of MEP algorithm. Population sizéesebetween 2 and 200. The results are summedl®@er
runs.

For the considered problem (symbolic regressiod) fan the MEP algorithm parameters given in Table 3
optimal population size is 30. Corresponding susaege is 99%. This result suggests that small MEP
populations may supply very good results.

MEP has a higher success rate than GEP for the pamaeneter settings. For a population of size &0 th
GEP success rate reaches 80%, while the successfislEP is 99%. For a population with 50 indivittua
the GEP success rate reaches to 90%, while MERssIcate is 98%.

4.1.5. Experiment 5

In this experiment the relationship between the MigH GEP success rate and the number of generations
used in the search process is analyzed.
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MEP algorithm parameters are given in Table 4.

Population size

30

Chromosome length

27 genes

Mutation

2 genes / chromosome

Crossover type

One-point-crossover

Crossover probability

0.7

Selection

Binary tournament

Elitism size

1

Table 4. Algorithm parameters for the Experiment 6.

The maximum number of symbols in MEP chromosomedgsal with the number of symbols in GEP
chromosome (79 symbols).

Experiment results are given in Figure 6.
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Figure 6. Relationship between the success rate of MEPritigo and the number of generations used in theckea
process. The number of generations varies betw@amd 500. The results are summed over 100 runs.

The success rate reaches 100% when the numbemefagens reaches 80. GEP algorithm with similar
parameter settings reaches the success rate olvb8¥the number of generations reaches 70.

Moreover, according to [6], GEP algorithm reachles success rate of 90% only when the number of
generations reaches 500.

For the considered generation range GEP successaaér reaches 100%. MEP success rate is stabitize
100% since generation 200.

4.2. Weighted MEP for symbolic regression problem

For a given problem could be some preferred symbblese symbols are expected to appear more
frequently in the solution expression.
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To distinguish symbols we may associate a weightefich function symbol. A preference for a certain
symbol may be forced by assigning it to a largeigive We illustrate this method for the fourth paodynial
problem considered at the beginning of the seetion

We weight the symbols + and * such that these sysiiteve a double chance to appear in chromosome tha
other symbols. Results of weighted MEP techniqeedasscribed in the following experiment.

4.2.2. Experiment with Weighted MEP

In this experiment we examine the success rateengivied MEP algorithm when the number of genes in
chromosome is variable. Results are compared Witbet obtained by the standard MEP.

Algorithm parameters are given in Table 5.

Population size 30

Number of generationg 20

Chromosome length 20 genes

Mutation 2 genes / chromosome
Crossover type One point crossover
Crossover probability 0.7

Selection Binary tournament
Elitism size 1

Table 5. Algorithm parameters for the Weighted MEP.

Figure 7 depicts the relationship between the smsceate and the chromosome length when function
symbols are weighted. According to the considerethwng system, the operators + and * have double
chance to appear in chromosome.
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Figure 7. Success rate of MEP algorithm when operatorsvaighted. The chromosome length varies betweemiO a
100. The results are summed over 100 runs.

One may note that success rate of Weighted MERgiehthan the success rate of Standard MEP. These
improvements are correlated with a particular wesylstem based on observations on the problem.

4.3. MEP vs. CGP
In [14], CGP was used for symbolic regression efgixth polynomial problem [12]:

f(x) =x8 — 2¢ + X2
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In this section MEP technique is used to solvestimae problem using parameters settings similar tvithe
of CGP. To provide a fair comparison, all experitneonditions described in [14] are carefully reproed
for MEP technique.

CGP chromosomes were bounded by the following patensin, = 1,n. = 10,| = 10. MEP chromosomes
are set to contain 12 genes (in addition MEP usessupplementary genes for the terminal symbol6,{1.

x}).

MEP parameters (similar with those used by CGPaen in Table 6.

Chromosome length 12 genes

Mutation 2 genes / chromosome
Crossover type One point crossover
Crossover probability 0.7

Selection Binary tournament
Elitism size 1

Terminal set % 1.0}

Function set {+, -, 5 1}

Number of runs 100

Table 6. Algorithm parameters for the MEP vs. CGP expenine

CGP used a population of 500 individuals and a ramolb 8000 generations. We perform two experiments.
In the first experiment we set the MEP populatiazze 40 500 individuals and we compute how many
generations are needed to obtain the same sueateg$t %) as reported for CGP in [14].

When the MEP was run for 40 generations, the sga@te was 60% (in 60 runs out of 100 MEP found the
correct solution). Thus MEP requires 200 times gmserations than CGP to solve the same probleen (th
sixth polynomial problem). This is an improvemerithawo orders of magnitude.

In the second experiment we keep fixed the numlbegemerations (8000) and we use a small MEP
population. We are interested to see which is th@mal population size required by MEP to solvesthi
problem.

After several trials we found that MEP has a suscate of 60% when a population of 4 individualsssd.
This means that MEP requires 125 times less indalglthan CGP for solving the sixth polynomial peoi.
Again we deal with an improvement of two ordersnafgnitude.

4.5 Multi Expression Programming vs. Single Expressn Programming

We are interested to see how the multi expresshilityaimproves the performances of evolutionary
algorithms. To achieve this, we consider a newritlym that uses the MEP representation but onlyldbe
expression (the expression encoded by the las) genbkosen to represent that chromosome. Forrostaf

we take the chromosome described in the sectigritglfitness of that chromosome is given by theefis

of the expressiofs.

The technique obtained in this way is calfagle Expression Programming (SEP).

SEP is similar with GEP and CGP as it encodesglessolution in chromosome.

Several numerical experiments with MEP and SEP vpendormed to see if there are any differences

between them. We analyze the relationships betweeisuccess rate of MEP and SEP with respect to the
number of generations, the population size anadhhemosome length.
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In all experiments MEP and SEP use identical paransettings. Some of these are given in Table 7.

Mutation 2 genes / chromosome
Selection Binary tournament
Crossover type 1 point crossover
Crossover probability 0.9

Elitism size 1

Terminal set b4

Function set {+, -, %, /, sin, cos}

Table 7. MEP and SEP algorithm parameters.

When the relationship between the success rate¢hengdopulation size is analyzed, MEP and SEP are ru
over 100 generations using chromosomes of length 20

When the relationship between the success raterendumber of generations is analyzed, MEP and SEP
use populations of 50 individuals, each having @0e3.

When the relationship between the success ratéhendhromosome length is analyzed, MEP and SEP are
run over 100 generations using populations of 8ividuals.

Both MEP and SEP algorithms were used to solveittith polynomial problem described in the sectioh 4
Ten fitness cases (randomly generated over thevaitg-1..1]) were used unchanged during the search
process.

The results of these experiments are depicteckifridure 9.
We can see that MEP outperforms SEP on the moss ¢asly one unimportant exception is recorded).

From Figure 9(b) we see that SEP has the same ibelaavGEP: the success rate increases up to e aahli
then it has a decreasing tendency. The maximunessgate reached by GEP and SEP depends both on the
training data and individuals representation.

Both SEP and GEP require a good match betweerhteenosome length and the length of the expression t
be discovered.

SEP success rates, even when population size ses€kigure 9(c)), is very low (never jumps ove¥o)3
Even a long population size (300 individuals) does have beneficial effects over SEP success Téiis.
problem could be due to the need of a connectibrndsn the SEP chromosome length and the lengtheof t
target expression. It seems that this problem sceerry often with the systems that store a singigession

in a chromosome (as is the case of GEP and SEP).
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Figure 9. (a) Success rate of MEP and SEP whenuimber of generations varies between 100 and 500.
(b) Success rate of MEP and SEP when the chromolsomgth varies between 10 and 150.
(c) Success rate of MEP and SEP when the populsizenvaries between 10 and 300.

The results are summed over 100 runs.

5. Discovering game strategies with MEP

In this section we investigate the application dRitechnique for discovering game strategies.

Koza [11] suggested that GP can be applied to dgcgame strategy. The game-playing strategy may be
viewed as a computer program that takes the inflomabout the game as its input and produces a&rasv

output.

The available information may be an explicit higtof previous moves or an implicit history of preus
moves in the form of a current state of game (b position of each piece on the chess board) [11]

Tic-tac-toe (TTT, or naughts and crosses) is a gaittesimple rules, but complex enough to illustrte
ability of MEP to discover game strategy.
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5.1. TTT game description

In Tic-Tac-Toe there are two players and & 3 grid. Initially the grid is empty. Each playeowes in turn
by placing a marker in an open square. By convantibe first player's marker is “X” and the second
player’'s marker is “0”.

The player that put three markers of his type (o the first player and “0” for the second playerja row
is declared the winner.

The game is over when one of players wins or albses are marked and no player wins. In the secasel
the game ends with draw (none of the players viinumerating the game tree shows that the secogdrpla
can obtain at least a draw.

A well-known evolutionary algorithm that evolvesnga strategy has been proposed in [4]. This algarith
will be reviewed in the next section.

5.2.Chellapilla’s approach of TTT

In [5] an evolutionary algorithm has been usedrnteo to obtain a good strategy (that never losasjhe
Tic-Tac-Toe game. A strategy is encoded in a newdhork. A population of strategies encoded byraleu
networks is evolved.

Each network receives a board pattern as inputysetds a move as output. The aim is to store irearal
network the function that gives the quality of anfeguration. When a configuration is presentedtte t
network, the network output (supplies) the next emov

Each neural network has an input layer with 9 npdesutput layer with 9 nodes, and a hidden Iayjdr a
variable number of nodes.

Fogel’s algorithm starts with a random populatiérb® neural networks. For each network the numlber o
nodes from the hidden layer is randomly chosen witimiform distribution over integers 1...10. Théial
weighted connection strengths and bias terms awdoraly distributed according to a uniform distriiont
ranging over [-0.5, 0.5].

From each parent a single offspring is obtainedrutation. Mutation operator affects the hidden taye
structure, weight connections and bias terms.

Each strategy encoded in a neural network was glagdimes against a heuristic rule base procedure.
The payoff function has several values correspantirwinning, loosing and draw.
The best individuals from a generation are retatoldrm the next generation.

The process is evolved for 800 generations. Acogrth [4] the best obtained neural network is ablplay
to win or draw with a perfect play strategy.

5.3. MEP approach of TTT
In this section we illustrate the use of MEP tacdiser an unbeatable play strategy for Tic-Tac-Toe.
We are searching for a mathematical functotat gives the quality of each game configuratldsing this

function the best configurations that can be reddéhene move from the current configuration, ikestd.
Therefore functiork supplies the move to be performed for each gam@groation.
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FunctionF evaluating each game configuration is represeated MEP chromosome. The best expression
encoded by a chromosome is chosen to be the gaategst of that chromosome.

Without any loose of generality we may allow MERagtgy to be the first player in each game.

All expressions in the chromosome are considerethénfitness assignment process. Each expression is
evaluated using an “all-possibilities” procedurdisTprocedure executes all moves that are poskibline
second player. The fitness of an expresdiois the number of games that the strategy encogethdo
expressiork loses. Obviously the fitness has to be minimized.

Let us denote by

P= (va P1... pg)

a game configuration.

Eachp, describes the states “X”, “0” or an empty squéameour experiments the set {5, -5, 2} has been used
for representing the symbols “X”, “0” and the emptyuare.

The game board has been linearized by scanningl Isgaares from up to down and from left to rightu3
the squares in the first line have indices 0, 13retc. (see Figure 10).

of1|e
34|65
B 7|8

Figure 10. Game board linearized representation.

For this problem the set of nonterminal symbols is
F={+-%*1}

and the set of terminal symbols is

T ={po, P1,--., Pg}.

Algorithm parameters are given in Table 8.

Population size 50

Chromosome length 50 genes

Mutation probability 0.05

Crossover type Two-point-crossover
Selection Binary tournament
Elitism size 1

Table 8 Algorithm parameters for TTT game.

The MEP algorithm is able to evolveperfect, non-loosing, game strategy in 11 generationss phbcess
requires less than 10 seconds when an Intel Peipracessor at 1GHz is used.

In Figure 11 the fitness of the best individuathe best run and average fitness of the best ha$ over
all runs are depicted.

24



30

— Best
— Average
251
1]
8151
=
E
104

0

LA BLALE RALE ILLE RALE RALE RALE RALE RALE RALE ILALE RALE RLLE RALE RLLE RALE RLLE ILLE RALE LU
0 51013 202530332404550 556065 Y075 8055 9095
Mumbetr of generations

Figure 11 Fitness of the best individual in the best rund the average fitness of the best individuals @leruns.
The results are taken over 30 runs.

Form Figure 11 we may see that an individual représg a non-loosing strategy appears in the ptipala
at generation 14.

Some functions evolved by the MEP algorithm aregitzelow:

F1(P) = ((04-Ps-(Ps+Ps))* PstPa* P3)*(Pa-P7), (19)
F2(P) = p2-(Ps* Pr-Pa)-pr-(P2* Ps), (20)
F3(P) = (p4* P1+P2)* Pr-(Pr-P2+Pp7* Ps)-(Ps-(Ps* Ps)).- (21)

These functions do not force the win when it issiiae, but they never lose. This is a consequeh@tess
assignment process. However, proposed techniqualsamenerate a function that forces the win whene
it is possible.

It is not easy to compare this result with the ftesiitained by Chellapilla and Fogel [4] as the exxment
conditions were not the same. In [4] evolved syigte play against a heuristic procedure, but heEPM
formulas play against an all-moves procedure. Rajoul size was the same (50 individuals). Individua
sizes are difficult to be compared. All MEP indival have the same size: 148 symbols. Neural netsvork
sizes used in [4] are variable since the hiddeerlgpntains a variable number of nodes. If the remab
nodes in the hidden layer is 9 then the size ohthaal network (biases + connection weights) 199 9 *
9*9+9*9=2324.

MEP approach seems to be faster as MEP was alidisdover a non-losing strategy in no more than 17
generations. As noted in [4] neural network apphaaguires 800 generations.

5.4. A good TTT heuristic vs. MEP

25



A good heuristic for Tic-Tac-Toe is described inavfollows:

S1.1f awinning move is available make that move, else

S2.If awinning move is available for the opponent, move to block it, else

S3.1f a move of the opponent that leads to two winning ways is available, block that move, else
S4.1f the board center isavailable, move in the board center,

S5.1f one ore more corners of the table are available, move in one of them, else

S6.Move randomly in an available square.

This heuristic performs well on most of the gamsitians. But applying one of the formulas evolvedtie
MEP algorithm some benefits are obtained:

* easy implementation in programming languages,
* MEP evolved formula is an algorithm faster thanvmresly shown heuristic.
5.5. Applying MEP for generating complex game stragies

Using the “all-possibilities” technique (a backtkam procedure that plays all the moves for theosdc
player) allows us to compute the absolute qualitg game position.

For complex games a different fithess assignmeinigue is needed since the moves for the secayempl
can not be simulated by an “all-possibilities” pgdare (the number of moves that needs to be sietllat
too large).

One fitness assignment possibility is to use aibgtiprocedure that acts as the second playertHéue are
several difficulties related to this approach.hé theuristic is very good it is possible that nohevolved
strategy could ever beat the heuristic. If the istiarprocedure plays as a novice then many evattedegy
could beat the heuristic from the earlier stagethefsearch process. In the last case fitnesstisancectly
assigned to population members and thus we capenfatrm a correct selection.

A good heuristic must play on several levels of plaxity. At the beginning of the search process the
heuristic procedure must play on easy level. Assterch process advances the difficulty level airiséc
procedure must increases.

However for complex games such a procedure iscdiffto implement.

Another possibility is to search for a game strataging a coevolutionary algorithm [4]. This apmlba

seems to offer the most spectacular results. Bidase MEP population must develop intelligent tiena
based only on internal competition.

7. Conclusions and further work

Multi Expression Programming is a new evolutionggghnique that may be used for evolving computer
programs. MEP technique uses a new solution repiasen and specific search operators.

It is documented that MEP technique can be usesdieing various classes of difficult problems.
MEP correctly identified several important trendsiowadays Evolutionary Algorithms:
- encoding multiple solutions in single chromosome,

- individual encoding is similar to nowadays machaoele (MEP representation is similar with the
way in which C and Pascal compilers evaluate esgioes),
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- low complexity of fithess assignment process (ME#hiiduals are parsed only once for computing
the fitness).

Several numerical experiments have been perfornibdMEP. For the considered problems MEP algorithm
performs better than similar evolutionary techngj(articularly GEP and CGP).

Further efforts will be dedicated applying MEP feolving other real world difficult problems namely
prediction of complex phenomena, classificatiorscdiering heuristics for NP-Complete [7] problems,
discovering strategies for complex games, etc.
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