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Abstract—This paper proposes a new formulation that relied
on the moment technique combined with the equivalent circuit
(MoM-GEC) to study a beamforming application for the coupled
periodic and quasi-periodic planar antenna array. Numerous
voltage designs are utilized to show the adequacy and unwavering
quality of the proposed approach. The radiators are viewed as
planar dipoles and consequently shared (mutual) coupling effects
are considered. The recommended array shows a noticeable
improvement against the current structures as far as size, 3-
D scanning, directivity, SLL reduction, and HPBW. The results
verify that multilayer feed-forward neural networks are vigorous
and can take care of complex antenna problems. Even so, an
artificial neural network (ANN) is ready to create quickly the
results of optimization and synthesis by utilizing generalization
with an early stopping method. Significant gain in the running
time consumption and memory used is acquired employing
this last technique for improving generalization (named early
stopping). Simulation results are carried out using MATLAB. To
approve this work, several simulation examples are shown.

Index Terms—Radiation pattern synthesis, quasi- periodic and
periodic structures, Mutual coupling effects, Artificial neural
network ANN algorithm, Early stopping method.

I. INTRODUCTION

Actually, the steering radiation pattern of coupled periodic
and quasi-periodic planar structures becomes the topic of
various scientific research, especially in defense and space
applications, communication systems, mobile communications
and electronics devices such as MIMO beamforming smart
antennas, 5G Mobile Base Stations, microphone array beam-
forming, wireless communications, radio astronomy. Here,
the main point of beamforming is the capacity to adapt the
radiation pattern of the antenna array to a specific scenario.
Such us, in the radio cellular communications space, many
people think of beamforming as the controlling of fundamental
radiation beam (main lobe of power) in a specific direction
toward a user, as shown in figure (1) [11], [14].
To study the chosen coupled planar antenna arrays, the mo-
ment technique jointed to the generalized equivalent circuit
(MoM-GEC) is more adopted than other numerical methods

Fig. 1. 3D beamforming from a planar array example

to calculate the required radiation pattern [12] in terms of cal-
culation complexity (storage memory and time consumption).
A simple technique based on the Fourier transformation used
to transform electric near field (radiation from waveguide aper-
tures) to far-field in order to scan the antenna array patterns
in the desired signal directions and to put nulls in interference
directions [8], [9]. At that point, to achieve the optimization
technique for radiation pattern synthesis, various smart sys-
tems such that genetic algorithms and neural networks are
needed. Then, to accomplish the optimization technique for
radiation pattern synthesis, different insightful smart systems
such that genetic algorithms and neural networks are required.
Many articles have shown that a genetic algorithm (GA) was
fundamentally employed for side lobe reduction in the array
pattern synthesis [13]. Yet, artificial neural network (ANN)
has been evaluated in many applications like example pattern
recognition applications and used for input-output mapping,
for system identification and adaptive prediction, etc... In this
paper, we are intrigued to display the neural network’s process
that will be applied to the array pattern synthesis, featuring
their most significant roles [4], [5], [10], [11].
This fact grows up the difficulty of the problem under setting
fitting the neural network pattern, as an example, training
function, design, and parameter, which would ameliorate and
result in more exactness about input-output yield relations
[11]. As indicated by its quick convergence, neural networks
applications are having an increasingly significant role in
the direction of arrivals DOA, what’s more, beamforming



applications [11], [14]. Subsequently, neural systems (NN)
present great accordance with these necessities, and it can
simply be implemented for these coupled periodic and quasi-
periodic planar antenna arrays application [1], [2], [3].
The principle idea is next to construct a backpropagation
neural network algorithm with supervised learning that es-
timates the proposed scanned array pattern’s response [4],
[5]. This investigation can give some essential insights about
the ideal dimension of a feedforward Neural Network to
stay away from over-fitting problems, particularly, when an
enormous number of tests are required. Thus, sub-datasets will
be examined for training, test, and validation, and then a feed-
forward neural network is made and trained [10], [11].The
output values will be created and regulated (denormalized),
and lastly, the efficiency of the neural network will be checked
in comparison to the output values with numerical target
values. As a consequence, the prepared neural network will be
effectively utilized for periodic and aperiodic planar antenna
arrays beamforming [4], [5], [10], [11].
This work is arranged as follows: The initial step is to
remind the fundamental theoretical background about the
studied problem and its formulation using an integral equation
built on the formalism of admittance (or impedance) operator
related to Generalized Equivalent Circuit (GEC), that cited in
[2], [3], [7], [8], [9], and the used Fourier representation to
synthesize the required radiation with a scanned beam. Next,
the fundamentals of artificial neural networks (ANN) using
their main principles are recalled in the following section (III).
It clarifies how to introduce artificial neural networks (ANN)
using early stopping technique for synthesis and optimization,
some essential networks are analysed in detail for their po-
tential to solve simple scanned pattern synthesis problem in
periodic and aperiodic antenna configurations. Then, in section
(IV) numerical results are presented and evaluated for many
applications. Finally, in the last section, some conclusions are
described.

II. STATEMENT OF THE PROBLEM

This section presents an MoM-GEC formulation problem
to modelize the coupled planar dipoles of periodic and
quasi-periodic structures, that used to compute the resultant
radiation pattern in any direction needed using a far-field
transformation algorithm for plane-rectangular scanning [15],
[16]. The picked (or considered) structure schematically
appears in [2], [3] that made out of finite coupled aperiodic
(or periodic) phased array planar antenna with their self
excitations (arbitrarily located voltage sources). All antenna
array components are shielded in waveguide composed by
adequate boundaries conditions along the x and y directions
which can be browsed the accompanying choices: (a)
Perfect Electric boundaries, (b) Perfect Magnetic boundaries,
(c) Periodic boundaries with null phases shift, and (d) a
combination of these boundary conditions. The top and the
bottom are respectively an open circuit and a ground plane.
The considered planar circuit is lossless.
Note that periodic example (with equivalent voltage

amplitude) is studied with the identical spatial formulation
manner, as shown in the published work [1,2]. To explain
the electromagnetic calculation, the same details given in
[2], [3] are reminded. As the suggested spatial periodic
design in [2], [3], we define the direct manner that extracts
an integral equation to calculate the impedance matrix
which constitutes also the mutual impedance in aperiodic
configuration (respectively for regular periodic configuration).
Next, let consider Nx non-uniform with distinct voltage
amplitude sources to excite planar dipoles that belong to the
whole array configuration.
The excitation fields (for elements with turn on
states):E(i, s) ∈ [−Nx

2 , Nx

2 − 1][−Ny

2 ,
Ny

2 − 1] are indicated
as follows E(i, s) = V f(i, s), where f(i, s) = 1

δ correspond
to the fundamental excitations modes.
Consequently, getting back to the Kirchhoff representation
and according to relations given in [2], [3], it’s possible to
deduce the electromagnetic states in terms of current and
electric fields that verify the suggested boundary conditions
of the proposed structures. It is noticed that the proposed
formulation stays legitimate to study leaky waves and their
supporting impacts. This investigation is chosen to clarify
the periodic group of identical assembly elements placed in
a one-dimensional arrangement. Then, the bi-dimensional
example can without much of a stretch be given, as shown in
[2], [3], [7], [8], [9].

A. Radiation pattern (using the Fourier representation)

The goal of this section is to develop a sampling repre-
sentation of the radiated far EM field based on the Fourier
transform. As explained in [7], [8], [9], the far-field expres-
sion is computed in comparison to far-field transformation
algorithm for plane-rectangular scanning with ideal probes (or
radiation from apertures by plane wave spectrum method). For
more details, let consider a rectangular aperture XY of open-
ended waveguide that contains a periodic planar antenna array
(discontinuity plane (at z=0)), as illustrated in figure (1), where
their near electric field elements are expressed in terms of
|fTE,TM

mn ⟩ of basis functions (the guide modes) with:

|E(x, y)⟩ =
∑
m,n

∑
p

∑
q

[Z]pqXpq⟨fmn|gpq⟩|fmn⟩ (1)

Where:

[Ẑupper,down
pq,st ] = [

∑
m,n

⟨gpq|fmn⟩zupper,down
mn ⟨fmn|gst⟩] (2)

Then, the far radiating field in the region z > 0, is written as:

Ẽx,y(θ, ϕ) =

∫ c

−c

{
∫ L

0

Eaperture(x, y) (3)

e(−jk0(sin(θ)cos(ϕ)−sin(θ0)cos(ϕ0))x)dx}
e(−jk0(sin(θ)sin(ϕ)−sin(θ0)sin(ϕ0))y)dy

Where Eaperture is the radiating field calculated at the waveg-
uide’s aperture (discontinuity plane) through the moment



method combined by the equivalent circuit (see in [2], [3],
[12]).
So, this latter relation leads to denote that normalized absolute
radiation pattern in dB can be demonstrated as:

E(dB) = 20× log10(
| E(θ, ϕ) |

| E(θ, ϕ) |max
) (4)

The indication of u,v specifies the unit direction:

u = sin(θ)sin(ϕ)− sin(θ0)sin(ϕ0) (5)
v = sin(θ)cos(ϕ)− sin(θ0)cos(ϕ0)

The couple (θ0, ϕ0) is given as the beam-steering and the
couple (θ, ϕ) shows the arrival direction. Here, two types of the
u-v domain were considered for SLL decrease: one is regular
UV space with the controlling of steering direction(θ0, ϕ0) =
(0, 0), and u,v ∈ [-1, 1]. The other is extended u-v space where
the scanned direction(θ0, ϕ0) ̸= (0, 0). Thus, the estimation
value of u and v changes against the steering direction and
is defined in [-2, 2] for any union of the arrival and steering
directions. Given that the u-v space permits one to synthesize
an array structure that confirms a beam pattern with a preferred
profile for every steering direction [11].

III. ARTIFICIAL NEURAL NETWORK ANN
PRINCIPLE

As explained in a past work [11], in which a detailed de-
scription of the ANN principle using early stopping technique
is given to study the neural network synthesis beamforming
model for adaptive planar antenna arrays [4], [5], [6].

IV. RESULTS AND DISCUSSIONS

A. Numerical results

• Verification of the boundaries conditions through the
MoM-GEC:
To verify the boundary conditions of the proposed coupled
periodic and quasi-periodic structures, various numerical re-
sults are drawn in terms of current and electric fields (cal-
culated using the MoM-GEC method), as obtained in figures
(2)and (3). In this study, the coupling effects are taken into
account when the array spacing is less than or equal to λ

2 , as
proven in [2], [7], [8], [9]. The figures (2) and (3) describe
an electromagnetic behavior (E,J) at the waveguide aperture
for different voltage configurations examples (periodic and
aperiodic structures).
• Radiation pattern characteristics computed using the

MoM-GEC:
Based on the radiation pattern expression (4) given in the past
section, many results concerning the radiation performance of
the given structures are obtained. The beamforming charac-
teristic of the array radiation patterns with directivity values
in different scanning angles at 5.4 GHz is shown in figures
(4) and (5). As viewed, the proposed antenna arrays has an
excellent beam scanned property which is greatly efficient to
cover the spherical beam-range(coverage) for electronic instru-
ments. Figure (5) illustrates the simulated realized gains of the
antenna array in the scanning range of 0◦to +90◦. As given

Fig. 2. Distribution of the current field for (5x1) aperiodic phased half-
wavelength planar dipoles (with (1,0,1,0,1) voltage configuration) evaluated
with the basis functions (guide’s modes) at f=5.4 GHz (using EEEE electric
walls)

Fig. 3. Distribution of the electric field for (5x1) aperiodic phased half-
wavelength planar dipoles (with (1,0,1,0,1) voltage configuration) described
with the basis functions (guide’s modes) at f=5.4 GHz (using EEEE electric
walls)
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Fig. 4. Beam pattern (dB) expressed in (u,v) space for periodic planar antenna
array at different scanning angles, θs = 0◦, θs = 45◦ and θs = 90◦

in Fig.(5), the periodic antenna array has a high orientable
beam characteristic with suitable gain level at distinct steering
angles.

Figure(6) shows how voltage amplitudes of array sources
contribute to construct the main radiation beam, where their
effects are more explained in the previously work [11] in
terms of directivity, SLL and HPBW values. So, a good
validation of aperiodic configurations compared to known
periodic case(using electromagnetic or analytic formulations)
is illustrated in figure(6).

B. ANN results

After using the neural network architecture given in [11],
the mentioned periodic and quasi-periodic arrays should ab-
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Fig. 6. Radiation pattern for distinct aperiodic configurations compared to
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solutely fellow the similar network technique. After a few
tests, an artificial neural network (ANN) with the following
geometries was held: Two typically used strategies applied to
defeat the over-training problem, to choose when to stop the
training procedure, are early stopping (ES) and regularization
methods. ES is sufficiently utilized because it is facile to
understand and execute. Additionally, it has been accounted
for to be better than regularization strategies. To use the ES
method, the available radiation array pattern’s data must be
divided into three sets, as presented in the figure (7) : For
the model building process, the available dataset consisted of
70% for the pure network learning process, 15% for validation
(making decisions concerning oversizing), and 15% for testing
purposes. Precisely:

• Training (preparing ) group used to decide artificial neural
network (ANN) weights.

• Validation group used to check the artificial neural net-
work (ANN) execution and performance, and choose
when to stop the training procedure.

• Test group used to evaluate execution performance capa-
bilities of created artificial neural network (ANN) model.

More detailed information about the ES technique is graph-
ically drawn in figure(8). The methodology of ES strategy can
be clarified in [11].

C. ANN performance

Generally, we assessed the execution performance of the
ANN model dependent on the error squared error MSE and
efficiency coefficient “R” (regression plot). The MSE relation
of the network is characterized as in equation 6, which is used

-100 -80 -60 -40 -20 0 20 40 60 80 100

 (deg)

-70

-60

-50

-40

-30

-20

-10

0

 R
a

d
ia

ti
o

n
 P

a
tt

e
rn

 (
d

B
)

 The numerical radiation pattern is  data  divided into three subsets:

Training set, Validation set and Testing set

train

validate

test

Fig. 7. Radiation patterns data partitioned into three collections: Training
group, Validation group and Testing group at the scanning angles ϕs =
0◦, θs = 45◦ (aperiodic case)
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to show the performance of the network training. Performance
of the best ANN is shown in figure (9), which means this



model gets the lowest validation error after 6 iterations.

MSE = 1/2(

G∑
k=1

m∑
i=1

[Yj(k)− Tj(k)]
2) (6)

Where m is the number of output nodes, G is the number
of training samples, Yj(k) is the expected output, and Tj(k)
is the actual output. As it can be seen, the training process
for artificial neural network (ANN) models is terminated at 6
training epochs when MSE reaches the value of 2.828 and the
gradient descent value 0.179, with reasonable Mu value 0.0001
which would produce the convergence level of the network fast
(see figure (14)). For that, it could be predicted that too little
Mu value would make the network converge too gradually [6],
[11].
The next step in validating the network is to make a regres-
sion plot, which shows the connection between the outputs
of the network and the targets (objectives). If the training
were perfect, the network outputs and the targets would be
equivalent, however, the relationship is rarely perfect in reality.
So, figure (10) shows the regression plot of ROP against field
data. The efficiency coefficient value R of training, validation,
and testing subsets shown in the diagram are R=1, R=0.98378,
and R=0.99994, respectively. The overall efficiency coefficient
R is 0.99446. At the testing regression result, the regression
equation is:

output ∼= 1 ∗ Target± 0.0038 (7)

Which means the best model does not have an overfitting
problem.
This proves that the developed model and the network proce-
dure of training, testing and validation are successfully valid
[4], [5], [11].

V. CONCLUSION

This work contains a novel formulation method based on
the moment method jointed to the equivalent circuit (MoM-
GEC) to study beamforming application for planar periodic
and aperiodic structures when elements are strongly or weakly
coupled. It presents the benefit of these phased arrays antenna
structures to enhance the gain and the directivity pattern
when the interaction effects are considered. A good validation
of the proposed structures is taken into consideration in the
previously published works [2] and [3].
Also, this paper is interested to synthesize the obtained
radiation pattern using an artificial neural network (ANN)
algorithm.
Many advantages are shown for synthesizing the calculated
numerical scanned array radiation pattern using Artificial
Neural Network algorithm, for example,
• The reduction of computational time and storage memory
using the early stopping method which permits to remove the
over-fitting problem.
• Ability to be used for coupled and complex aperiodic
configuration.
• High electromagnetic performance is obtained using the

finite periodic and aperiodic antenna arrays.
• Simple for implementation and coding than other
optimization techniques (genetic, LMS,...etc).
• Easy to modelize complex electromagnetic calculation that
taken into consideration the interaction effects.
This investigation is an essential beginning way for future
research work of neural network solutions for coupled
complex antenna array synthesis.
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