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Abstract. This paper is a trial to prove Riemann hypothesis according
to the following process. 1. We make (N+1)/2 infinite series from one equation
that gives ((s) analytic continuation and 2 formulas (1/2+a+bi, 1/2 —a — bi)
that show non-trivial zero point of {(s). (N =1,3,5,7,------ ) 2. We find that
a cannot have any value but zero from the above infinite series by performing
N — oco. 3. Therefore non-trivial zero point of ((s) must be 1/2 + bi.

1. Introduction

The following (1) gives Riemann zeta function ¢(s) analytic continuation to Re(s) > 0.

2

R means infinite series in all equations in this paper.
1—27°437° 47545 °—6 5+ =(1-2"%)¢(s) (1)

The following (2) shows the zero point of the left side of (1) and also non-trivial zero
point of {(s).

So=1/2+a+bi (2)

The range of a is 0 < a < 1/2 by the critical strip of ((s). The range of b is b > 14 due
to the following reasons. And i is v—1 .

1.1 (Conjugate complex number of Sp) = 1/2 + a — bi is also non-trivial zero point of
¢(s). Therefore b > 0 is necessary and sufficient range for investigation.

1.2 The range of b of non-trivial zero points found until now is b > 14.

The following (3) also shows non-trivial zero point of {(s) by the functional equation of

¢(s).
Sy =1-S8y=1/2—a— bi (3)

We have the following (4) and (5) by substituting Sy for s in the left side of (1) and putting
both the real part and the imaginary part of the left side of (1) at zero respectively.

) _cos(blog2)  cos(blog3) = cos(blog4) cos(blogh)

9l/24a 31/2+a 41/2+a gl/24a T (4)
_sin(blog2) sin(blog3) = sin(blog4) sin(blog5) 5
T 9l/2ta  3l/2+a 41/2+a yl/24a 7T ()
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We also have the following (6) and (7) by substituting S; for s in the left side of (1)
and putting both the real part and the imaginary part of the left side of (1) at zero
respectively.

_cos(blog2)  cos(blog3) = cos(blog4) cos(blog5)

91/2—a 31/2—a 41/2—a 51/2—a 7 (6)
_sin(blog2) sin(blog3)  sin(blog4) sin(blogh)
T 9l/2—=a 31/2-a 41/2—=a glj2—a 77 (7)

2. (NN 4+ 1)/2 infinite series
We define f(n) as follows.

1 1
f(n) = ~oms ~ iata >0 (n=2,3,4,5,----- ) (8)

We have the following (9) from (4) and (6) with the method shown in item 1.1 of [Ap-
pendix 1: Equation construction].

0 = f(2)cos(blog?2) — f(3) cos(blog3) + f(4) cos(blog4) — f(5) cos(blogh) + - ----- (9)

We also have the following (10) from (5) and (7) with the method shown in item 1.2 of
[Appendix 1].

0= f(2)sin(blog2) — f(3)sin(blog3) + f(4)sin(blog4) — f(5)sin(blogh) + - ---- (10)

We can have the following (11) (which is the function of real number z) from the above
(9) and (10) with the method shown in item 1.3 of [Appendix 1]. And the value of (11)
is always zero at any value of x.

0 = cos z{right side of (9)} + sin z{right side of (10)}
=cosz{f(2) cos(blog2) — f(3) cos(blog3) + f(4) cos(blogd) — ------ }
+sinz{f(2)sin(blog 2) — f(3)sin(blog3) + f(4)sin(blog4) —------ }
=f(2)cos(blog2 — z) — f(3) cos(blog3 — ) + f(4) cos(blog4 — x)
— f(5) cos(blogb — ) + f(6) cos(blogb —z) —------ (11)

We have the following (12-1) by substituting blog1 for x in (11).

0 =f(2)cos(blog2 —blog1) — f(3)cos(blog3 — blog1) + f(4) cos(blog4 — blog1)
— f(5) cos(blog5 — blog1) + f(6) cos(blogb —blogl) —------ (12-1)

We have the following (12-3) by substituting blog 3 for x in (11).

0 =f(2) cos(blog2 — blog3) — f(3) cos(blog3 — blog3) + f(4) cos(blog4 — blog 3)
— f(5) cos(blog5 — blog 3) + f(6) cos(blog6 — blog3) —------ (12-3)

We have the following (12-5) by substituting blog5 for x in (11).

0 =f(2) cos(blog2 — blog5) — f(3) cos(blog3 — blog5) + f(4) cos(blog4 — blog5)
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— f(5) cos(blogb — blog 5) 4+ f(6) cos(blog6 — blogh) —------ (12-5)

In the same way as above we can have the following (12-N) by substituting blog N for x
in (11). (N =17,9,11,13,------ )

0 =f(2) cos(blog2 —blog N) — f(3) cos(blog3 — blog N) + f(4) cos(blog4 — blog N)
— f(5) cos(blog5 — blog N) + f(6) cos(blog6 — blogN) —------ (12-N)
3.  Verification of F(a) =0
We define g(k, N) as follows. (k=2,3,4,5,------ N=1,3,57--- )

g(k,N) = cos(blogk — blog1) + cos(blog k — blog 3) + cos(blogk — blog5) + - - 4 cos(blog k — blog N)
= cos(blog1 - blogk) + cos(blog3 — blog k) + cos(blog5 — blog k) + - - + cos(blog N — blog k)
= cos(blog 1/k) + cos(blog 3/k) + cos(blog 5/k) + - -+ + cos(blog N/k) (13)

We can have the following (14) from the equations of (12-1), (12-3), (12-5), «----- , (12-N)
with the method shown in item 1.4 of [Appendix 1].

cos(blog3 — blog 1) + cos(blog3 — blog 3) + cos(blog3 — blog5) + -+ + cos(blog3 — blog N)}

{ )
{cos(blog4 — blog 1) + cos(blog 4 — blog 3) + cos(blog4 — blog5) + -+ + cos(blog4 — blog N)}
{ )}

=f(2)9(2,N) = f3)g(3,N) + f(4)g(4, N) — f(5)g(5,N) + f(6)g(6,N) —------ (14)

Here we define F(a) as follows.

Fa) = f(2) = f3) + f(4) = ) + f(6) —------ (15)

We can have the following (16) by dividing the above (14) by g(2, N). Because g(2, N) #
0 is true in (N3 < N N : odd number) as shown in [Appendix 2 : Proof of g(2, N) # 0].
N is the odd number that holds (41) in item 2.2.5 of [Appendix 2].
LG9 N)  [G6.N)
9(2,N) 9(2,N) 9(2,N)

(N7 < N N :odd number) (16)

We can have the following (17) from the above (16) by performing N — oo. Because
g(k, N)

im
N—o00 g(2, N)

=1 (k=3,456,------ ) is true as shown in [Appendix 4 : Proof of
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g(k,N) _
ey
b _fB)gB.N) | fA)g4,N)  f(Bg(5,N)
C=m V=T e N T e ey T
=f(2) = f3) + f(4) = f(B) + f(6) — -+ = F(a)
(N1 < N N :odd number) (17)

4. Conclusion

F(a) = 0 has the only solution of ¢ = 0 as shown in [Appendix 5 : Solution for
F(a) = 0]. a has the range of 0 < a < 1/2 by the critical strip of {(s). However, a
cannot have any value but zero because a is the solution for F'(a) = 0. Due to a = 0 non-
trivial zero point of Riemann zeta function ¢(s) shown by (2) and (3) must be 1/2 + bi.
Therefore Riemann hypothesis which says “ All non-trivial zero points of Riemann zeta
function ((s) exist on the line of Re(s) = 1/2.” is true.
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Appendix 1. : Equation construction

We can construct (9), (10), (11) and (14) by applying the following Theorem 1[1].

~ Theorem 1 ~N

On condition that the following (Series 1) and (Series 2) converge respectively, the
following (Series 3) and (Series 4) are true.

(Series 1) = a1 +as +as+as+as+ -+ =A

(Series 2) = by +ba+ b3 +bg+bs+ -+ =B

(Series 3) = (a1 + b1) + (a2 + b2) + (ag +b3) + (ag + bg) + -+~ =A+B

(Series 4) = (a1 — b1) + (ag — b2) + (a3 —b3) + (ag —bg) + -+ -~ =A-B )
-

1.1. Construction of (9)
We can have the following (9) as (Series 4) by regarding (6) and (4) as (Series 1) and
(Series 2) respectively.

cos(blog2) cos(blog3) = cos(blogd) cos(blogb)

(Series 1) = 91/2—a  31/2-a + 41/2—a gl/2—a T =1 (6)
) cos(blog2) cos(blog3) cos(blogd) cos(blogh)
(Series 2) = ol/2+a  31/2+a + 41/2+a pl/2+a T =1 (4
(Series 4) = f(2) cos(blog2) — f(3) cos(blog3) + f(4) cos(blog4) — f(5) cos(blog5)
_|_ ...... = 1 — 1 = 0 (9)

Here f(n) is defined as follows.

1 1
f(n) = nl/2—a ~ pi/2+a >0 (n=2,3,4,5,------ ) (8)

1.2. Construction of (10)
We can have the following (10) as (Series 4) by regarding (7) and (5) as (Series 1)
and (Series 2) respectively.

sin(blog2)  sin(blog3) sin(blog4) sin(blogh)

(Series 1) = 91/2—a 31/2-a 41/2—a 5i/2—a T =0 (7)
i sin(blog2) sin(blog3) sin(blog4) sin(blogbh)
(Series 2) = Sizre T 313t W~ syme =0 (5
(Series 4) =f(2) sin(blog2) — f(3) sin(blog 3) + f(4) sin(blog4) — f(5) sin(blog5)
b —0-0 (10)

1.3. Construction of (11)
We can have the following (11) as (Series 3) by regarding the following equations as
(Series 1) and (Series 2).

(Series 1) = cos z{right side of (9)}
=cosz{f(2) cos(blog2) — f(3) cos(blog3) + f(4) cos(blog4)
— f(5) cos(blogh) 4 ------ } =
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(Series 2) =sin z{right side of (10)}
=sina{f(2)sin(blog2) — f(3) sin(blog3) + f(4) sin(blog4)

— f(5)sin(blogb) +------ 1=
(Series 3) =f(2) cos(blog2 — x) — f(3) cos(blog3 — x) + f(4) cos(blog4d — x)
— f(5)cos(blogh —x) +------ =0+0 (11)

1.4. Construction of (14)
1.4.1 We can have the following (12-1*3) as (Series 3) by regarding (12-1) and (12-3) as
(Series 1) and (Series 2) respectively.

(Series 1) =f(2) cos(blog2 — blog1) — f(3) cos(blog3 — blog1)

+ f(4) cos(blog4 — blog 1) — f(5) cos(blogh —blog1)

+ f(6) cos(blog6 —blog1) —------ =0 (12-1)
(Series 2) =f(2) cos(blog2 — blog 3) — f(3) cos(blog3 — blog 3)

+ f(4) cos(blog4 — blog 3) — f(5) cos(blog5 — blog 3)

+ f(6) cos(blog6 —blog3) —------ =0 (12-3)
(Series 3) =f(2){cos(blog2 — blog1) + cos(blog2 — blog 3)}

— f(3){cos(blog3 — blog 1) + cos(blog3 — blog3)}

+ f(4){cos(blog4 — blog 1) + cos(blog4 — blog3)}
— f(5){cos(blogh — blog 1) + cos(blog5 — blog3)}
TR =0+0 (12-1%3)

1.4.2 We can have the following (12-1*5) as (Series 3) by regarding (12-1*3) and (12-5)
as (Series 1) and (Series 2) respectively.

(Series 2) = f(2) cos(blog2 — blog5) — f(3) cos(blog3 — blog 5)
+ f(4) cos(blog4 — blog5) — f(5) cos(blog5 — blogh)
+ f(6) cos(blog6 — blogh) — -« --- =0 (12-5)
(Series 3)
= f(2){cos(blog2 — blog 1) + cos(blog2 — blog 3) + cos(blog2 — blog5)}
— f(3){cos(blog3 — blog 1) + cos(blog3 — blog3) + cos(blog3 — blog5)}
+ f(4){cos(blog4 — blog 1) 4 cos(blog4 — blog3) + cos(blog4 — blog5)}
— f(5){cos(blog5 — blog 1) + cos(blog b — blog 3) 4 cos(blogh — blog5)}
o =040 (12-1*5)

1.4.3 We can have the following (12-1*7) as (Series 3) by regarding (12-1*5) and (12-7)
as (Series 1) and (Series 2) respectively.
(Series 2) = f(2) cos(blog2 — blog7) — f(3) cos(blog3 — blog7)

+ f(4) cos(blog4 — blog7) — f(5) cos(blog5 — blog7)
+ f(6) cos(blog6 — blog7) —------ =0 (12-7)
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(Series 3)
= f(2){cos(blog2 — blog 1) + cos(blog 2 — blog 3) + cos(blog2 — blog 5) + cos(blog 2 — blog 7)}
—f(3){cos(blog3 — blog 1) + cos(blog 3 — blog3) + cos(blog 3 — blog5) + cos(blog3 — blog 7)}
+f(4){cos(blog4 — blog 1) + cos(blog4 — blog3) + cos(blog 4 — blog5) + cos(blog4 — blog 7)}
—f(5){cos(blog5 — blog1) + cos(blog 5 — blog 3) + cos(blog5 — blog5) + cos(blog 5 — blog 7)}
foonn =040 (12-1*7)
1.4.4 In the same way as above we can have the following (12-1*N)=(14) as (Series
3) by regarding (12-1*N-2) and (12-N) as (Series 1) and (Series 2) respectively.
(N =09,11,13,15,--- - ) gk, N) is defined in page 3. (k =2,3,4,5,----- )
f(2){cos(blog2 — blog1) + cos(blog2 — blog3) + cos(blog 2 — blog 5) + - - + cos(blog 2 — blog N)}
—f(3){cos(blog3 — blog1) + cos(blog3 — blog3) + cos(blog3 — blogh) + -+ + cos(blog 3 — blog N)}
+f(4){cos(blog4 — blog 1) + cos(blog4 — blog 3) 4 cos(blog4 — blog5) + - - 4 cos(blog4 — blog N )}
(5){cos(blog5 — blog 1) + cos(blog 5 — blog 3) + cos(blog5 — blog5) + -+ - + cos(blog5 — blog N)}
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Appendix 2. : Proof of g(2, N) # 0

2.1. Investigation of g(k, N)

21.1

2.1.2

2.1.3

We define G and H as follows. (N =1,3,5,7,------ )

.1 1 3 5 N
G = lim N{cos(blog N) + cos(blog N) + cos(blog N) + -+ 4 cos(blog N)}

N—00
1t

25/ cos(blog x)dx (20-1)
0

.1 1 ) 3 ) 5 ) N
H = lim N{sm(blog N) + sin(blog N) + sin(blog N) + -+ +sin(blog N)}

N—o00
1t
=— / sin(blog z)dx (20-2)
2 Jo
We calculate G and H by Integration by parts.

2G = [z cos(blog )] + 2bH = 1+ 2bH
2H = [zsin(blogz)]§ — 2bG = —2bG

Then we can have the values of G and H from the above equations as follows.

1 —b
G=——5 H=——-—+— 21
2(1+b2) 2(1+b%) (1)
We define as follows.
cos(blog +) + cos(blog £ ) + ﬁs(blog 2) 4+ +cos(blog &) G = E(N)
(22-1)
sin(blog +) + sin(blog %) + s]i\lfn(blog 2)+ - +sin(blog &) CH—EW)
(22-2)
From (20-1), (20-2), (22-1) and (22-2) we have the following (23).
lim E.(N) =0 lim E,(N) =0 (23)
N —o00 N —o00
From (13) we can calculate g(k, N) as follows. (N =1,3,5,7,------ )

g(k,N) = cos(blog 1/k) + cos(blog 3/k) + cos(blog5/k) + - - - + cos(blog N/k)

= N3-{cos(blog + ) + cos(blog 2 &) + cos(blog 2 &) + -+ + cos(blog K5}

= N+-{cos(blog + + blog %) + cos(blog & + blog %)
+cos(blog & +blog ) 4+ + cos(blog & + blog &)}

= N3 cos(blog &) {cos(blog &) + cos(blog 2 ) + cos(blog 2) + - - + cos(blog )}
—N+ sin(blog ) {sin(blog +) + sin(blog &) + sin(blog =) + -+ + sin(blog X )}
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= N cos(blog ¥)G

cos(blog 1/N)+cos(blog3/N)+cos(blogh/N)+---+cos(blog N/N
{ (blog1/N)+cos(blog3/ )+N< g 5/N)+Fcos( g/)_G}

~—

4N cos(blog
—N sin(blog
—N sin(blog

=2 w2
=

sin(blog 1/N)+sin(blog 3/N)+sin(blog5/N)+---+sin(blog N/N)
{ N - H}

(24-1)

= N cos(blog

~—

G + N cos(blog %)EC(N) — Nsin(blog %)H

=

— Nsin(blog —)Es(N) (24-2)

~— =

= N cos(blog

==z 2 ==

1 N
m + N COS(blOg ?)EC(N)

b
Nsin(blog —) ——<
+ Nsin(blog )2(1+b2)

N
{cos(blog ?)

=

— Nsin(blog %)ES(N) (24-3)

o~

N L S
= —— —————— Sin 0g — | ———
N VIt R VIR

N N
+ N cos(blog ?)EC(N) — Nsin(blog ?)ES(N) (24-4)
_ Nsin(blog N/k + tan™'1/b)
- 2V1+ 02
N . N
+ N cos(blog ?)EF(N) — Nsin(blog ?)Eg(N) (24-5)

2.1.4 From (22-1), (22-2) and (24-1) we have (24-2). From (21) and (24-2) we have
(24-3).

2.2. Verification of Rz # 0
We investigate the the condition of R3 = 0 in the following 4 cases.

221 {EC(N) >0, ES(N) > O} Le. {EC(N) = |EC(N)|? ES(N) = |ES(N)|}
2.2.1.1 We have the followsing (25-1), (25-2), (25-3) and (25-4) from (24-5).

N sin(blog N/k + tan~! 1/b)
2v1+ b2
N ) N
+ N cos(blog Z)EC(N) — Nsin(blog ?)ES(N)
_ Nsin(blog N/k + tan'1/b)
- 2VT+02
N . N
+ N cos(blog ?) |E.(N)| — N sin(blog ?) |Es(N)|
_ Nsin(blog N/k + tan—'1/b)

(24-5) =

21+ 02
_ 2 2{q ﬁ |ES(N)‘ _ M ‘EC(N)‘
Ny/Ec(N)? + Ey(N)*{sin(blog ) YA cos(blog ) EC<N)2+ES<N)2}
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(25-1)
_ Nsin(blog N/k + tan—'1/b)
a 2V1 412
. N 1| Ee(N)
— NV/E.(N)?+ E4(N)? log — — H=E 25-2
VENF B (WP sintviog .~ tan~t| 20 ) (252)
= NR;sin(blog N/k + 61) — NRysin(blog N/k — 02) (25-3)
= NRzsin(blog N/k + 03) (25-4)
We define as follows to have the above (25-3) from (25-2).
Ri=—t >0 (26-1)
TN
0; =tan"'1/b (26-2)
Ry = \/E.(N)2+E,(N)2>0 (26-3)
_1 | Ee(N)
_ 1| Le i
02 = tan E.(N) ‘ (26-4)

From (24-4) we have cosf, = b/v1+b%> > 0 and sinf, = 1/vV/1+5b2 > 0.
And from the above 2 equations we have the following (26-5). The range of
0, is given from 14 < b shown in page 1.

0, =tan" ' 1/b = 0; + 2n7 (n=0,41,42,43,--+) (26-5)

0 < 6; <0.0237 = tan" ' 1/14
Even if we define the above (26-2), there is no contradiction in the above
(25-3) because of the following (26-6).

sin(blog N/k + tan™' 1/b) = sin(blog N/k + 6 + 2n7)

= sin(blog N/k + 6;) (26-6)

[Es (V)] >0 and

Similarly we have cos @, = BN BN 2

sin 0, = % > 0 from (25-1). And we have the following (26-7).
The range of 65 is given from 0 < ‘?E%; ’
0, = tan~! Ee(N) ’ =0y + 2nmw (n=0,£1,£2,43,---) (26-7)
ES(N) ’ ’ , ’
0<6y<m/2

We can define (26-4) from the above (26-7).

If in the complex number R, exp(0,1), R, exp(8,i) and R, exp(8,7) the follow-
ing (27-1) holds, the following (27-2) also holds.

Ry exp(0,1) + Ry exp(8yi) = R, exp(0.1) (27-1)
R,sinf, £ R,sinf, = R.sinf, (27-2)
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So we can calculate the following (28-1) and (28-2) from the following (Figure
1). Rs can be calculated by Cosine theorem. We have the above (25-4) from

(25-3), (28-1) and (28-2).

Ry = /R + R} — 2Ry Ry cos(0: + 02) (28-1)
_1 Risinf; + Ry sinfs

03 = tan 28-2
R cosfy — Ry cosby ( )
Im(s)
W07
w
20xpi(a-02)i} ’
k>
o = blogN/k % %
fav)
002 g
N
" Resin(a- 0 2)
v A
o
. O
D
3
\g ) S 5
R Y + +
YA O S| 3
R S = =
A Z [z
e)(d\ ~ &
02, 0056 '
49 R2
\ e A
=
o= blogN/k R
0 - Re(s)

Figure 1 . R3sin(blog N/k 4 03) in {E.(N) > 0, E,(N) > 0}

2.2.1.3 From the above (28-1) we can confirm that 1 > cos(f; 4 62) > 0 must be true
in order for R3 = 0 to hold. Due to (Arithmetic mean)> (Geometric mean)

we have the following (29).
R? + R32 > 2R Ry > 2R, Ry cos(0; + 02) (29)

In order for R3 = 0 to hold the 2 equal signs in the above (29) must hold.
Therefore the following (30-1) and (30-2) are the condition of R3 = 0.

Ry =R, (30-1)
0y + 6y =0 (30-2)

222 {E(N) > 0, By(N) <0} ice. {E(N) = |E(N)], E(N) = — |E,(N)]}
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2.2.2.1 We have the followsing (31-1), (31-2) and (31-3) from (24-5).
N sin(blog N/k + tan=1 1/b)
2v/1+ b2
N . N
+ N cos(blog ?)EC(N) — Nsin(blog ?)ES(N)
_ Nsin(blog N/k + tan~'1/b)
a 2V1+ 12
N . N
+ N cos(blog ?) |Ec(N)|+ N sin(blog ?) |Es(N)]

_ Nsin(blog N/k + tan™'1/b)
- 2V1+ b2

(24-5) =

. N 1 | Ee(N)
2 2 & 1| Ze 1-1
+ N\/E.(N)2 4+ E,(N)2sin(blog ’ + tan ES(N)‘) (31-1)
= NR;ysin(blog N/k + 61) + NRysin(blog N/k + 63) (31-2)
= NRssin(blog N/k + 03) (31-3)

R1,01, Ry and 05 are defined in item 2.2.1.1.

2.2.2.2 We can calculate the following (32-1) and (32-2) from the following (FIgure
2). We have the above (31-3) from (31-2), (32-1) and (32-2).

Ry = /R + R} — 2R\ Ry cos(r + 6, — o) (32-1)
_1 Risin6; + Ry sinbs

03 =t
3 a R cosf; + Ry cos by

(32-2)
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a = blogN/k

R2sin(a+ 6 2)

R3sin(a+ 63)

Risin(a+61)

o= blogN/k

Re(s)

Figure 2 : Rgsin(blog N/k + 63) in {E.(N) > 0, Es;(N) <0}

2.2.2.3 Through the same discussion as in item 2.2.1.3 we can confirm the condition
of Rz = 0 as follows.

Ry = Ry (34-1)
6‘2 - 91 =T (34—2)
223 {Ec(N) <0, Es(N) <0} ie. {Ec(N) =—[Ec(N)|, Es(N) = —|Es(N)|}
2.2.3.1 We have the followsing (35-1), (35-2) and (35-3) from (24-5).

N sin(blog N/k + tan=' 1/b)
2V1 402
N . N
+ N cos(blog Z)EC(N) — Nsin(blog ?)ES(N)
_ Nsin(blog N/k + tan'1/b)
- 2V1+102
N . N
— N cos(blog ?) |Ec(N)|+ N sin(blog ?) |Es(N)]
_ Nsin(blog N/k + tan~'1/b)

(24-5) =

2V1 + b2
+ N\/E.(N)2 4 E,(N)2 Sin(blog% —tan™! g:gx; ‘) (35-1)

= NR;sin(blog N/k + 61) + NRysin(blog N/k — 62) (35-2)
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= NRgsin(blog N/k + 03) (35-3)

R1,01, Ry and 05 are defined in item 2.2.1.1.

2.2.3.2 We can calculate the following (36-1) and (36-2) from the following (FIgure
3). We have the above (35-3) from (35-2), (36-1) and (36-2).

Ry = /R + R} — 2Ry Ry cos(m — 01 — 0) (36-1)
_ R1 sin 01 - RQ sin 92
63 = tan~? 36-2
3 an R cosfy + Rscos by ( )
Im(s)
a = blogN/k
Re2sin(a- 0 2)

Rasin(a+ 63)
Risin(a+61)

Figure 3 . R3sin(blog N/k 4 603) in {E.(N) <0, Es(N) <0}

2.2.3.3 Through the same discussion as in item 2.2.1.3 we can confirm the condition
of Rz = 0 as follows.

R = Ry (37-1)
T =01+ 02 (37-2)
2.24 {E.(N) <0, Es(N) >0} ie. {E.(N)=—|E.(N)|, Es(N)=|Es(N)|}
2.2.4.1 We have the followsing (38-1), (38-2) and (38-3) from (24-5).

N sin(blog N/k + tan=! 1/b)
2V1+ b2
N . N
+ N cos(blog Z)EC(Z\O — Nsin(blog ?)ES(N)

(24-5) =
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_ Nsin(blog N/k + tan~'1/b)
a 2y/1+ b2
N . N
— N cos(blog ?) |E.(N)| — N sin(blog ?) |Es(N)|
_ Nsin(blog N/k + tan'1/b)

2v/1 + b2
. N _1| Ee(N)
_ 2 2 v 1 c ~
N+/E.(N)2 + E,(N)2sin(blog -+ tan BV ‘) (38-1)
=NR; Sil’l(b log N/k + 91) — NRy sin(blog N/k‘ + 92) (38—2)
= NRgsin(blog N/k + 03) (38-3)

R1,01, Ry and 05 are defined in item 2.2.1.1.

2.2.4.2 We can calculate the following (36-1) and (36-2) from the following (FIgure
4). We have the above (38-3) from (38-2), (39-1) and (39-2).

Ry = \/ R} + R — 2R Ry cos(6 — 1) (39-1)
1 R1 sin 91 — R2 sin 92 (39_2)

03 = tan

Ry cosf; — Ry cos By

a = blogN/k

= i~

0. @
2 +
S 3
g =
B
Q
541

y

N
N =
q_: @
= £
c =
K] B
&= &

Re(s)

Figure 4 : Rgsin(blog N/k 4+ 03) in {E.(N) <0, E;(N) > 0}

2.2.4.3 Through the same discussion as in item 2.2.1.3 we can confirm the condition
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of Rz = 0 as follows.

Ry = Ry (40-1)
6, = 0, (40-2)

2.2.5 There is the odd number N; that holds the following (41) because
Jim VE(N)2+4 E,(N)2 =0 is true from (23) in item 2.1.2.
— 00

1
2v/1 + b2

Therefore (30-1), (34-1), (37-1) and (40-1) do not hold in (N; < N). Now we can
confirm the following (42).

=Ry > Ry=+/E.(N)2+E/(N)?2 (N, <N) (41)

R3 #0 (N1 < N) (42)

2.3.  Verification of sin(blog N/2 4 63) # 0
2.3.1 If we assume the following (51) is true, the following (52) is also supposed to be
true.
sin(blog N/2+65) =0 (N=1,3,5,7,------ ) (51)
blog N/2 + 05 = K (K : integer) (52)

2.3.2 We define as follows.

Typel irrational number : Irrational number which consists of singular or plural
irrational terms such as 2\/5/6, V2/e+ /3, etc.

Type?2 irrational number : Irrational number which has the formation of (rational
number)+(typel irrational number) such as 1 + v/2, 2 +

2\@/6 + /3, etc.
2.3.3 The above (52) holds in the following cases.

Case 1 : The following (53-1), (53-2) and (53-3) holds.

blog N/2 = Ar (53-1)
03 = Br (A, B: rational number ) (53-2)
A+B=K (K : integer) (53-3)

Case 2 : The above (53-3), the following (53-4) and (53-5) holds.

blogN/2=(A+C)r (A+ C: type2 irrational number ) (53-4)
03 =(B-C) (C : typel irrational number) (53-5)
2.3.4 From blog N/2 = Dm we have the following equation.

_ blog N/2

™

D
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The formation of D becomes (typel irratioal number) regardless of the formation
of b as follows.

Case 3 : b =(rational number)

log N/2

D = (rational number) = (typel irratioal number : Q1)

(N =1,3,57, )

Case 4 : b =(typel irrational number)

= (typel irratioal number : Q3)

log N/2
D = (typel irrational number : QQ)M
v

(N =1,3,5,7,---- ) : When the following (conditoin 1) holds.
(N=1,3,5,7,-+---- N # Nj) : When the following (condition
2) holds.
Condition 1 : b does not have the term of L. Or b has the term of
log No /2

logATﬂgﬂ and N5 is an even number.

A : (rational number)
Condition 2 : b has the term of _Ar and N5 is an odd number.
log No /2

Case 5 : b =(type2 irrational number)=(rational number)+(typel irra-
tional number)

log N/2

D ={(rational number)+(typel irrational number : Q4)}
=(typel irrational number : Q5) + (typel irratioal number : Q)
=(typel irrational number : Q7)

(N =1,3,5,7,--+--- ) : When (conditoin 1) holds.
(N =1,3,5,7,----- N # N3) : When (condition 2) holds.

2.3.5 As shown in the above item 2.3.4 D is not ( rational number ) or
(type2 irrational number ) but (typel irrational number). Therefore (case 1) and
(case 2) do not hold i.e. (52) does not hold in (N =1,3,5,7,------ N # Nj).

2.3.6 At N = Ny (52) does not holds when (condition 2) holds as shown in [Appendix 3
: Proof of blog No/2 + 05 # K.

2.3.7 Now we can confirm the following (54).

sin(blog N/2 + 05) # 0 (N=1,3,57---- ) (54)

2.4. Verification of g(2, N) # 0

We have the following (55) from (25-4) in item 2.2.1.1, (42) in item 2.2.5 and the
above (54). We can confirm that ¢g(2, N) does not have the value of zero in (N; < N N
: odd number).

9(2,N) = NRgsin(blog N/2 + 63) # 0 (N1 < N N :odd number) (55)
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Appendix 3. : Proof of blog N2/2 + 03 # K=

In this appendix we confim that the following (52) in item 2.3.1 does not hold at
N = N3 when (condition 2) holds.

blogN/2 + 603 = K= (K : integer) (52)
3.1 We confirm the value of 03 in the following 4 cases.
3.1.1 {E:(N) >0, Es(N) 2 0} ie. {Ec(N)=|E(N)[, Es(N)=[Es(N)|}

We have the following (61) from (21), (22-1) and (22-2) in item 2.1, (26-1),
(26-3) and (28-2) in item 2.2 and the following (61-1) and (61-2).

_1 Risinf; + Ry sinb,

03 = tan Ricosfy — Ry cos by -

= tan~! s v T VE(N)? + ES(N)Q%
A VBN T ES(N)Q\/%

it VRO BT e B
s e — VE(N)? + EANV%

= tan~ ! w
—H — E,(N)

— tap—! _cos(blog1/N)+cos(blog 3/N)tcos(blog 5/N)+--+cos(blog N/N)
~{sin(blog 1/N) +sin(blog /M) Fsin(b log 5/N) T +sim(blog N/N)]
(61)

We have the following (61-1) and (62-2) from (26-2) and (26-4) in item 2.2.1.

cosf; =b/+/1+ b? sinf; =1/v/1+ b2 (61-1)
B, (N)] g |BL(N)]
VEN)? + E,(N)? P VBN + B, (N

cos by =

(61-2)

312 {F.(N) >0, Bu(N) <0} ie. {E.(N) = |E(N)], Es(N) = — |Eo(N)]}
Similarly we have the following (62) from (32-2) in item 2.2.2.2.

_1 Risin@; + Ry sin 6y
Ricosfy + Ry cos by

1 1 2 2 [Ee(N)]
wvirE Ve T VEWNP + BN e s

T b B
wvire vige T VEW) + B (N)

1 1 \/EC(N)Q +ES(N)2¢

93 = tan

(32-2)

=tan~

_ tan_1 2V14b2 V1402 E.(N)2+Es(N)?
B 1 b —\/E (N2 ¥ E,(N)? Es(N)
21467 V1402 ¢ * VE:(N)2+E;(N)?
1 G+ E.(N)

=tan ' ——S- 7
M TH BN
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— tan~! cos(blog 1/N)+cos(blog3/N)+cos(blog5/N)+---4cos(blog N/N)
=" T (b log 1/N) Fsin(blog 3/N)+sin(blog 5/N )+ +sin(blog N/N )}

(62)

3.1.3 {E.(N) <0, Es(N) <0} ie. {E.(N)=—|E.(N)|, Es(N)=—|Es(N)|}
Similarly we have the following (63) from (36-2) in item 2.2.3.2.

_1 Risinf; — Rysinf,

03 =t 36-2
3 an Ricosfy + Ry cosbly ( )
11 2 2. BN
(o TP VI VEN)? + Ba(N)? e s
= tan
1 b 2 2 1BV
SVt VirE T VE(N)? + Eo(N) E.(N)2+E4(N)?
1 1 2 2. B0
o1 I VIR +VEN)? + E(NP e s
= tan
1 b E,(N)
21402 Vb2 VE(N)? + Ey(N)? VEc(N)2+Es(N)?
= tan~* 7G + Ec(N)
—H - Es (N)
— tan~! cos(blog1/N)+cos(blog3/N)+cos(blog5/N)+---+cos(blog N/N)
= tan —{sin(blog1/N)+sin(blog 3/N)+sin(blog5/N)+---+sin(blog N/N)}
(63)

3.14 {E.(N) <0, Es(N) 20} ie. {Ec(N)=—|E(N)|, Es(N)=|Es(N)[}
Similarly we have the following (64) from (39-2) in item 2.2.4.2.

1 Rl sin 01 - R2 sin 02

03 =t 39-2
3 a Ricosfy — Ry cos by ( )
L1 /E(NZ?+E (N)Z——LEM
_ gl 2V VI ‘ i Ec(N)?+E,(N)?
- 1 b |Es(N)|
wire vige ~ VBN + B (N
1 1 E.(N)
-y wame v VRN BN G
= tan
1 b Es(N)
avire vigm ~ VEN) + Bu(N) s
1 G+ E.N)
=tan t — &7
MOTH BN
— tan~! cos(blog 1/N)+cos(blog3/N)+cos(blog5/N)+---+cos(blog N/N)
= tan —{sin(blog 1/N)+sin(blog 3/N)+sin(blog5/N)+---+sin(blog N/N)}
(64)
3.1.5 We have the following (65) from the above (61), (62), (63) and (64).
02 — tan—! cos(blog1/N)+-cos(blog3/N)+cos(blog5/N)+:--4cos(blog N/N)
3 = W0 T G log 1/N) +sin(b log 3/N) +sin(b log 5/N)+—+sin(b log N/N)}
(65)

3.2 If we add 2 sine functions which have the common term [, the result becomes
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another sine function which has the common term f like the following (66). Rz
and 6z are culculated like the following (66-1) and (66-2) from the following (Figure
5).

Rx sin(ﬁ — 9)() + Ry sin(ﬁ — ey) =Rz sin(ﬁ — 92) (66)

Ry = \/R_QX + Rgf —2Rx Ry COS(’IT +0x — ey) (66—1)
_1 Rxsinfx + Ry sinfy
Rx cosfx + Ry cos Oy

07 = tan

(66-2)

Im(s)

p=blogN

Rysin(B-6y)

Rysin(-6y)
R,sin(g-0,)

Re(s)

Figure 5 : Sum of 2 sine functions

3.3 In the following (67-2) each sine function has the common term g = blog N. And
the sum of (N + 1)/2 sine functions becomes one sine function which has 8, L and
M like the following (67-3). L and M do not depend on § because Rz and 6z
do not depend on 8 but on Rx, Ry,0x and fy as shown in the above (66-1) and
(66-2).

— {sin(blog1/N) + sin(blog 3/N) + sin(blog 5/N) + - - - + sin(blog N/N)} (67-1)

= sin(blog N — blog 1) + sin(blog N — blog 3) + sin(blog N — blog5)
+---+sin(blog N —blog N) (67-2)

= Lsin(blog N — M) (67-3)
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3.4 In the following (68-3) each sine function has the common term v = blog N + /2.
And the sum of (N + 1)/2 sine functions becomes one sine function which has +, L
and M like the following (68-4). Because L and M do not depend on common term
B or v but on Rx,Ry,0x and 0y and each sine function in (67-2) has the same
Rx,Ry,0x and 0y as in (68-3).

cos(blog1/N) + cos(blog3/N) + cos(blogh5/N) + - - - 4+ cos(blog N/N)  (68-1)
= cos(blog N —blog 1) + cos(blog N — blog 3) + cos(blog N — blog 5)+

+ -+ cos(blog N —blog N) (68-2)
=sin(blog N + 7/2 — blog1) + sin(blog N + 7/2 — blog 3)

+sin(blog N 4+ 7/2 — blog5) 4 - - - + sin(blog N + 7/2 — blog N) (68-3)
= Lsin(blog N + /2 — M) = Lcos(blog N — M) (68-4)

3.5 From the above (65), (67-1,2,3) and (68-1,2,3,4) we have the following (70).

cos(blog1/N)+cos(blog3/N)+cos(blog5/N)+---+cos(blog N/N)
—{sin(blog 1/N)+sin(blog 3/N)+sin(blog 5/N)+---+sin(blog N/N)}

65 = tan™!

_1 Lcos(blog N — M)
Lsin(blog N — M)

=tan"!tan(n/2 + M — blog N)

=n/2+ M —blogN + K7 (K7 : integer) (70)

= tan = tan" ' cot(blog N — M)

3.6 We consider that b is (type2 irrational mumber) and has the term of k)gATWQ/Q like

the following (71). If b is (typel irrational mumber), E = 0 holds.
b =(type2 irrational number)

=(rational number)+(typel irrational number)

Arm
- E+logN2/2+F

(E, A : rational number F' : typel irational number) (71)

3.7 From (52) and the above (70) and (71) we have the following (72) at N = Na.

left side of (52) = blog N3/2 + 65

Ar Ar

N.
+F)log—2+z+M—(E

=(E+ ———= ———— + F)log Na + K
B g Va2 2 2 T lognga T loe Mo+ Ko
Arlog Ny 7
=Ar—(E+ F)log2 — ———+ -+ M+ K
m— (E+ F)log log Na/2 +2+ + Kum
1 Alog2 M —(E+ F)log2
7T{Z—’_ " log Ny /2 ™ f=Jm (72)

A, E : (rational number) F : (typel irrational number) Kj : (integer) M :
the value of arctangent function which has the range of —7/2 < M < 7/2 Na:
(odd number)
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In order for J = K to hold in the above (72) the following (73-1) and (73-2) must
hold.

1 Alog2 M —(E+ F)log2 .
L - K (K:int 1
Ry v i T (K : integer) — (73-1)
M- (E+F)log2  Alog2 1
- = K- K -~ 73-2
T log No /2 1T (73-2)

1:;1+g2/22 is (irrational number) and (K — K; — 1/2) is (rational number).

M—(E+F)log2
s

If is (rational number), the above (73-2) becomes the

following (73-3) and this equation does not hold.
(rational number) — (irrational number) = (rational number) (73-3)

M—(E+F)log2
s

If is (irrational number), the following (74-1), (74-2) and
(74-3) must hold in order for (73-2) to hold.

M — (E+ F)log2

= (rational number : P;) + (irrational number : Q)  (74-1)

7r
Alog 2
ﬁ = (rational number : P5) + (irrational number : @) (74-2)
Pi-Po=K K —1/2 (74-3)
Alog?2

But Tog N /2 cannot be divided into (rational number) and (irrational

number) like the above (74-2).
Then the above (73-3) and (74-2) do not hold i.e. (73-2) does not hold. Therefor
(73-1) i.e. J = K does not hold.

Now we can confim that the following (52) in item 2.3.1 does not hold at N = N;
when (condition 2) holds.

blog N/2+ 03 = K (K : integer) (52)
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: g(k,N)
Appendix 4. : Proof of llm
N—oo 9(2 N)

From (24-5) in item 2.1.3 we have the following (75).

g(k,N)
9(2,N)
N sin(blog N/kttan"11/b) | N cos(blog &1 )E.(N) — Nsin(blog &) E(N)

_ 2V1+b? e (
Nsm(bloiyﬁ%m—l /%) 4 N cos(blog & Y)E.(N) — Nsin(blog §)E(N)
)+ 2v1 + b?{cos(blog &) E.(N) — sin(blog £)E

og ¥

sin(blog & + tan™! 7 )
sin(blog & + tan=! 1) + 2v/1 + b2{cos(blog §) E.(N) — sin(blog &) E,(N)}

&
=
=

. ¢blog N/kttan ™11/ - .
sm{m(blog N ttan™! 1)}4+2v/1+6%{cos(blog ) E,(N)-sin(blog ¥)

sin(blog & +tan=" 1)+2/1+b%{cos(blog & )E.(N)-sin(blog &) Es(N)}

(75)

We can confirm that the following (76) holds from the above (75), the following (77) and
the following (23) shown in item 2.1.2.

g(k,N) sin(blog & + tan~' 1)

b
im = =1 N1 < N N :odd number 76
N—oog(2,N)  sin(blog & +tan~' 1) (M ) (76)
_ log k tan='1/b
blog & + tan™! ¢ . 1_1§§N+ abnlogN
N1—I>I<1>oblo N + tan— 11 - Nh_rgOI log 2 tan—11/b =1 (77>
8 2 b - log N + blog N

NRSN) =0 Jim E(N) =0 29)
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Appendix 5. : Solution for F(a) =0

5.1. Preparation for verification of F(a) > 0
5.1.1. Investigation of f(n)

1 1
f(n) :nl/Q—a T pl/24a >0 (n=2,3,4,5,----- ) (8)

Fla) =f2) = f3) + f(4) = f(5) + f(6) —----- (15)
a = 0 is the solution for F'(a) = 0 due to f(n) = 0 at a = 0. Hereafter we define the

range of a as 0 < a < 1/2 to verify F(a) > 0. The alternating series F'(a) converges due
to li_}In f(n)=0.

We have the following (81) by differentiating f(n) regarding n.

df(n) 1/2+a 1/2—a 1/2+a 1/2—a, o,
dn ~ net3/Z  p3/2—a T n“+3/2{ _(1/2+a)n }

(81)

The value of f(n) increases with increase of n and reaches the maximum value f(nmaz)

at n = Nypee. Afterward f(n) decreases to zero with n — 00. Nypas is one of the 2
1/2+a
1/2—a
value of a. At a =1/2 f(n) does not have f(n..) and increases to 1 with n — co due
t0 Nypaz = 0O.

1
consecutive natural numbers that sandwich ( )2a. (Graph 1) shows f(n) in various

1.2

//
RA
]

0.2

0
2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92

a=0.05

a=0.1 a=0.2 a=0.3 a=0.4 a=0.45

a=0.5

Graph 1 © f(n) in various a

5.1.2.  Verification method for F(a) > 0
We define F(a,n) as the following (82).

F(a’n>:f(2)_f(3)+f<4)_f(5)+"'+(_1)nf(n) (712273,4,5, """ ) (82)
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nler;oF(a, n) = F(a) (83)
F(a) is an alternating series. So F'(a,n) repeats increase and decrease by f(n) with
increase of n as shown in (Graph 2). In (Graph 2) upper points mean F(a,2m) (m =
1,2,3,------ ) and lower points mean F(a,2m+1). F(a,2m) decreases and converges to
F(a) with m — co. F(a,2m+ 1) increases and also converges to F(a) with m — oo due
to nh_}rr;of(n) = 0. From the above (83) we have the following (84).

lim F(a,2m)= lim F(a,2m+1) = F(a) (84)
m— 00 m— 00
0.14
0.12 Fla,2m)
277779006
0.1 Peee S
.ll"l'"0UIIO"lll'im"l'llll"illll'""“"ll"l
0.08
0.06
0.04
’
0.02
"
o
b ” ~ ST & 5835 .g.§'$. BT VDR BHBELHREDE
-0.02 Tiigesse
0.04 Y Y Y XX XA \
. e ] o
.06 Fl(a,2m+1)

Graph 2 : F(0.1,n) from 1st to 100th term

We define F'1(a) and F1(a,2m + 1) as follws.

Fl(a) ={f(2) = f@)} +{f(4) = fFO)} +{F6) = f(D} +----- (85)
Pl(a,2m+1) = {/2) — F3)} + {f(4) — (5)} + - + {f(2m) — f(2m+ 1)}

=f2) = fB)+f(4) = fOB)+---+f2m) = f2m +1) = F(a,2m +1) (86)
mli_r}rlooFl(a, 2m+1) = F1(a) (87)

From the above (84), (86) and (87) we have F(a) = F1(a). We can use F1(a) instead of
F(a) to verify F(a) > 0.

We enclose 2 terms of F(a) each from the first term with { } as follows. If 14, is p or
p+1 (p: odd number) , the inside sum of { } from f(2) to f(p) has negative value and
the inside sum of { } after f(p+ 1) has positive value.

Fla)= £(2)— £3)+ F(4) ~ (5) 4 F(6) — F(T) 4~
={f2) - f3}+{f4)-fO)}+--+{fe-1) - flp) } +{ flp+1) —flp+2)}+------

(inside sum of { }) < 0 ¢—|—(inside sum of { }) >0
(total sum of { }) = =B «—|—(total sum of { }) = 4
We define as follows.



26 T. ISHIWATA

[the partial sum from f(2) to f(p)] = —B <0

[the partial sum from f(p+ 1) to f(c0)] =A >0

F(a)=A-B (88)
So we can verify F'(a) > 0 by verifying A > B.

5.1.3. Investigation of {f(n) — f(n + 1)}
We have the following (89) by differentiating {f(n) — f(n + 1)} regarding n.

df(n) df(n+1) 1/2+a n 1/2—a n
dn ~ dn n3/2+“{ 7(n+1 n3/2—“{ 7(n+1)
= C(n) — D(n) (89)

)3/2+a} _ 3/270,}

When n is a small natural number the value of { f(n)— f(n+1)} increases with increase of
n due to C(n) > D(n). With increase of n the value reaches the maximum value {¢mnqz }
at C'(n) = D(n). (n is a natural number. The situation cannot be C(n) = D(n).) After
that the situation changes to C(n) < D(n) and the value decreases to zero with n — oo.
(Graph 3) shows the value of {f(n) — f(n+ 1)} in various value of a. (Graph 4) shows
the value of {f(n) — f(n+1)} at a = 0.1. We can find the following from (Graph 3) and
(Graph 4).

5.1.3.1 When ‘M becomes the maximum value |f(n) — f(n + 1)| also becomes the

dn
maximum value at same value of a. From (Graph 1) we can find that %
becomes the maximum value at n = 2. Therefore the maximum value of

|f(n) — f(n+1)] is {f(3) — f(2)} at same value of a as shown in (Graph 3).

5.1.3.2 With increase of n the sign of {f(n) — f(n+ 1)} changes from minus to plus at

N = Npmazr (M= Nmaz + 1) when n,,q. is even(odd) number as shown in (Graph
4).

5.1.3.3 After that the value reaches the maximum value {gmq.} and the value decreases
to zero with n — oo as shown in (Graph 4).
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5.2.  Verification of A > B (Nymae is odd number.)
Nmaz 1S 0dd number as follows.

Fla) = f(2) = f(3) + f(4) = f(5) + f(6) =+~
= {1 = £} + £~ S} -+ {Fnan =3) = Fmaz =21+ {Fmas =1) = Slnae) )
Hf (tunaz +1) = (tnaz + 2} + {F(unas +3) = Fmas + 4} + {f Manaz +5) = f(naz +6)} ++--+-
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We can have A and B as follows.
B={f(3) - f@}+{f) = fO}+{f(T) = FO6)} + -+ {f(maw = 2) = f(rmaz = 3)} +{ f(Wmas) — f(nmac = 1)}
A = {f(nmaz + 1) - f(nmaz + 2)} + {f(nmaz + 3) - f(nmax + 4)} + {f(nmaz + 5) - f("maz + 6)} Foee
5.2.1. Condition for B
We define as follows.
{ }: the term which is included within B.

{" '} : the term which is not included within B.
We have the following (90).

f(maz) = £(2) = { fnmaz) = f(tmas = 1) } + {{ f(maz = 1) = f(maz = 2) } + { f(nmaz = 2) = f(maz = 3) }
o+ { ) = 1(6) } + {F6) = £6) } + { FO) = F(0) } + {FE) = SC) } +{[B) -/} (90)
And we have the following inequalities from (Graph 3) and (Graph 4).
{FG3)= @)} > (@ =FC)} > { f5) = (4 } > {£(6) = f6)} > { £(7) = f(6) } >------
>{f(nmax_2)_f(nmaw_3)}>{f(nmaz_1>_f(nmax_2)}>{f(nmaw)_f("maz_1)}>0
From the above (90) we have the following (91).
f(maz) = f2) +{3) = f2)}
={fQ3)=f@) }+{ fO) = f4) } +{ f(T) = £(6) } + - +{ f(maz = 2) = f(maz = 3) } +{ f(maz) = f(maz = 1) }

I A A A <Value comparison— A
H{fB) = @) 1+ { ) = fG) } + { £(6) = £6) } + + { flrumaw = 3) = flrumaz =4) } + { flmao = 1) = flmas = 2) }
> 2B (91)

Due to [Total sum of upper row of the above (91) = B < Total sum of lower row of (91)]
we have the following (92).

f(maz) = F(2) +{f(3) - f(2)} > 2B (92)

5.2.2. Condition for A ({gmaz} is included within A.)
We abbreviate {f(nmaz + @) — f(Mmaz + ¢ + 1)} to {¢} for easy description.
(¢=0,1,2,3,------ ) All {¢q} has positive value as shown in item 5.1.2.
We define as follows.
{ }: the term which is included within A.
{" '} : the term which is not included within A.
{@maz} has the maximum value in all {¢}. And {@¢mnas} is included within A. Then
value comparison of {¢} is as follows.

(U< (@) < (3) << [T} < {grur =2} < (T} < (s > (QED) > (g #2) > (T} 5o o
We have the following (93).
F gz +1) = { f(tmaz +1) = f(maz +2) } + { flmaz +2) = flmaz +3)1} + { f(ma +3) = f(maz +4) }

H Sz +4) = f(Ras £5) 0
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:{1}+{2}+{3}+{4}+"‘+{qmar—3}+{qmz—2}+{qma,;—1}+{(Imaz}+{Qmaz+1}+{qmaz+2}+{qmaz+3}+ """

(93)
From the above (93) we have the following (94).
f(nmaz+1)7{Qmaz_1}
:{1}+{2}+{3}+{4}+"'+{‘]max_3}+{%mz_2}+{Qmax}+{q"m+1}+{Qmaz+2}+{%aw+3}+ """ (94)

— e Range ]_ ............ *>|(f ............ Range 2 ............

(Range 1) and (Range 2) are determined as above. In (Range 1) value comparison is as
follows.

{1}<{2}<{3}<{4}<"'<{Qmaz_4}<{Qmaz_3}<{qmaz_z}
And we can find the following.

Total sum of {  }={L1}+{3}+ {0} +{7}+  +{tnar—4}+{ e -2}
\Y \Y \Y \Y, V  «+Value comparison
Total sum of { '} = {2} +{4}+{6}+  +{tmax =5} +{ tmaz =3 }

Therefore [Total sum of {  } > Total sum of {{ }] holds.
In (Range 2) value comparison is as follows.

{qm‘”}>{qm”+1}>{qm%+2}>{qmzw+3}>{qmaa:+4}>{Qmaz+5}>{qmaz+6}> """

And we can find the following.

Totalsum of {  } = {Gmaz } +{ Gmaz T2} + { Gmaz +4 } + { Graz +6 } + -+
\% \% \% vV +Value comparison

TOtalsumOf{ }:{qmax‘l'l}+{Qmaz+3}+{qmax+5}+{qmaz+7}+ """

Therefore [Total sum of {  } > Total sum of {{ }] holds.
In (Range 1)+(Range 2) we have [Total sum of { } = A > Total sum of {{ }].
We have the following (95).

f(nmaz + 1) - {Qmaz - 1} < 2A (95)

5.2.3. Condition for A ({gmaz} is not included within A.)
We have the following (96). {gmas} is not included within A.

f(nmaz+1) = { f(nmaz+1>_f(nmaz+2) }+{ f(nmaz+2)_f<nmaz+3) }+{f(nmaz+3)_f(ﬂm”+4) }
H f("maw +4) -f(nmm +5) }+ .....

= (0} +{2+{3)+ {4} 4+ {Gnao =3} + {Gmas =2} + { Gra =1} + (G} + { oo+ 1} + (e T2 + { e $3 )+~

From the above (96) we have the following (97).

f(nmaz + 1) - { (maz }

:{1}+{2}+{3}+{4}+”'+{Qma1_3}+{qmaz_2}+{(Imaz_1}+{qmaz+1}+{qmam+2}+{qmaz+3}+ """" (97)
e e Range | _>|<_ ......... Range Do



30 T. ISHIWATA

(Range 1) and (Range 2) are determined as above. In (Range 1) value comparison is as
follows.

{1}<{2}<{3}<{4}<"'<{Qmaz_4}<{Qmaz_3}<{qmaz_2}<{qmaz_1}
And we can find the following.

Total sum of {  }={L1}+{3}+{6}+{7}+  +{tnaxr =3} +{ tmax -1}
\Y \Y \Y Vv V  «Value comparison
Total sum of { '} = {2} +{4}+{6}+  +{tmar =4} +{ tmaz =2}

Therefore [Total sum of {  } > Total sum of {{ }] holds.
In (Range 2) value comparison is as follows.

{qma73+1}>{qm01+2}>{qmﬂz+3}>{qmaz+4}>{qmaz+5}>{qmaz+6}>{qmaz+7}> """

And we can find the following.

TOtalsumOf{ }:{qmaw+1}+{qm¢w+3}+{qmax+5}+{qmaz+7}+ """
\ \% \% \% +Value comparison

TOtalsumOf{ }:{qmax—l—z}+{qmaz+4}+{qma:c+6}+{qmaz+8}+ """

Therefore [Total sum of {  } > Total sum of {{ }] holds.
In (Range 1)+(Range 2) we have [Total sum of { } = A > Total sum of {{ }].
We have the following (98).

f(nmaz + ]-) - {Qmaz} < 2A (98)

5.2.4. Condition for A > B
From (95) and (98) we have the following inequality.

f(nmaz + 1) - [{Qmam} or {qmam - 1}] < 2A

As shown in item 5.1.3.1 {f(3) — f(2)} is the maximum in all |f(n) — f(n 4+ 1)|. Then
the following holds.

{£3) = £(2)} >[{@maz} or {gmaz — 1}]
{f3) = f2)} >f(maz) — f(Nmaz + 1)

We have the following inequality from the above 3 inequalities.

2A > f(nmaz + 1) = {@maz} o {@maz — 1} > f(maz +1) = {f(3) = f(2)}
> f(nmaz) = {f3) = f(2)} = {f(3) = f(2)} = f(nmaa) — 2{f(3) = f(2)}  (99)

We have the following (100) for A > B from (92) and (99).
2A > f(nmaw) - Q{f(?)) - f(2)} > f(nma:v) - f(2) + {f(?)) - f(2)} >2B (1()0)
From the above (100) we can have the final condition for A > B as follows.

(4/3)1(2) > f3) (101)
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(Graph 5) shows (4/3)(2) — £(3) = (4/3) (37— ~5r7e7s) — (375 —30757%)-
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Graph 5 : (4/3)f(2) — f(3)

o
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0.001903| 0.003694]| 0.005257] 0.00648] 0.007246] 0.007437] 0.006933| 0.005611] 0.003343 0

a
(4/3)f(2)-(3)

o

Table 1 : The values of (4/3)f(2) — f(3)

(Graph 6) shovgs [diﬁere:lntiated {(4/3)f(2)1— f(3)} regarding a] i.e. (4/3)f'(2) — f'(3) =
(4/3){log 2(5175=a + 517374} — {log3(3r77=a + 317372 ) -

0.06
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0.02 \\
(o]
) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.02 \
-0.04 \
-0.06 \
-0.08

Graph 6 © (4/3)f'(2) — f'(3)
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a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
(4/3)F(2)-f(3) | 0.038443] 0.037313] 0.033921| 0.02825] 0.020277] 0.009967| -0.00272| -0.01785| -0.03547] -0.05567| -0.07852

Table 2 . The values of (4/3)f'(2) — f'(3)
From (Graph 5) and (Graph 6) we can find [(4/3)f(2) — f(3) > 0in 0 < a < 1/2] that
means A > Bie. F(a)>0in0<a<1/2.

5.3. Verification of A > B (Nnae is even number.)
Nmae 18 even number as follows.

Fla)=f(2) = f(3)+ f(4) = f(5) + f(6) =+
= {2 = FO}+{F) = SO} 4+ {f ez —4) = F(unaz = 3)} + {F (maw = 2) = f(mas — 1)}
H{ fmaz) — Fmas + D} + {f umaz +2) = F (e +3)} + {f(Rmaw +4) = f(nas +5)} ++- -
We can have A and B as follows.
B={fG) = @)} +{f6) = F4)} +{F(1) - f(6)}
+o0 + {f(Mmas = 3) = f(maz = 4} + {f (o = 1) = f(maa = 2)}
A={f(tmaz ) = f(nmaz + D} + {f ("maz +2) = f(tmaz +3)} + {f (mao +4) = f(maz +5)} +---++-
f(maz) = { f(tmaz) — f(maz + 1)} + {f (Rmaz +1) = f(naw +2)} +{F (tmoa +2) = f(Rmaz +3)}
HF (maa +3) = f(Mmas + 4} 40+
= {0+ {1} + {2} + 3} + {4}
+ A {Gmar = 3} + {Gmar = 2} + {Gmaz = U+ {@maa} + {@maz + 13 + {Gmaz + 2} + {gmaz +3}+--- -

After the same process as in item 5.2.1 we can have the following (102).

f(nmaz = 1) = f(2) +{f(3) — f(2)} > 2B (102)

As shown in item 5.1.3.1 {f(3) — f(2)} is the maximum in all |f(n) — f(n + 1)|. Then
the following holds.

{f(3) = £(2)} >[{dmaz} or {gmaz — 1}]
f(nmam) >f(nmam - ]-)

We have the following (103) from the above inequalities and the same process as in item
5.2.2 and item 5.2.3.

2A >f(nmaz) - [{Qmaz} or {qmar - ]-}] > f(nmaac) - {f(?)) - f(2)}
> f(nmae —1) = {f(3) = f(2)} (103)

We have the following (104) for A > B from (102) and (103).

24> f(nmaz —1) = {f(3) = f(2)} > f(nmaa — 1) = f(2) +{f(3) = f(2)} > 2B (104)
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From (104) we can have the final condition for A > B as follows.

(3/2)f(2) > f(3) (105)

In the inequality of [(3/2)f(2) > (4/3)f(2) > f(3) > 0], (3/2)f(2) > (4/3)f(2) is true
self-evidently and in item 5.2.4 we already confirmed that the following (101) was true
in0<a<1/2

(4/3)£(2) > f(3) (101)

Therefore the above (105) is true in 0 < @ < 1/2. Now we can confirm F(a) > 0 in
0<a<1/2

5.4. Conclusion
As shown in item 5.2 and item 5.3 [F(a) > 0in 0 < a < 1/2] is true. Therefore
F(a) = 0 has the only solution of ¢ = 0 from [0 < a < 1/2] and [F(0) = 0].

5.5. Graph of F(a)

We can approximate F'(a) with the average of {F(a,n — 1) + F(a,n)}/2. But we
approximate F'(a) by the following (106) for better accuracy. (Graph 7) shows F'(a),
calculated at 3 cases of n = 500, 1000, 5000.

F(a,n—1)+F(a,n) F(a,n)+F(a,n+1)
2 2

+
2

~ F(a), (106)
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0.15 /

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

n=500

n=1,000

n=5,000

Graph 7 : F(a), at 3 cases
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0 0.05 0.1 0.15 02 0.25 0.3 0.35 04 045 0.5
n=500 0] 0.01932876) 003865677 0.05798326| 0.0773074| 0.09662832 | 0.11594507) 0.13525658 | 0.15456168 | 0.173859041 0.19314718

0

0

n=1,000 0.01932681) 0.03865282 | 0.05797725| 0.0772993 | 0.09661821] 0.11593325 | 0.13524382 | 0.15454955 0.17385049 | 0.19314743
n=5,000 0.01932876 003865676 0.05798324] 0.07730738 | 0.09662829 0.11594504 | 0.13525655| 0.15456165] 0.17385902 0.19314718

Table 3 : The values of F(a), at 3 cases

3 line graphs overlapped. Because F'(a),, calculated at 3 cases of n =500, 1000, 5000 are
equal to 4 digits after the decimal point. The range of ¢ is 0 < a < 1/2. a = 1/2 is not
included in the range. But we added F(1/2),, to calculation due to the following reason.
[f(n)ata=1/2]is (1—1/n) and F(1/2) fluctuates due to nh—>H;of(n) = 1. But the value of
the above (106) converges to the fixed value on the condition of nh%rréo{f(n—i—l) —f(n)} =0.
The condition holds due to f(n + 1) — f(n) = 1/(n + n?).

F(a) is a monotonically increasing function as shown in (Graph 7). So F(a) = 0 has
the only solution and the solution must be a = 0 due to the following facts. Therefore
Riemann hypothesis must be true.

5.5.1 In 1914 G. H.Hardy proved that there are infinite non-trivial zero points on the
line of Re(s) =1/2.

5.5.2 All non-trivial zero points found until now exist on the line of Re(s) = 1/2.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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