Proof of Riemann hypothesis

By Toshihiko Ishiwata

Mar. 15, 2022

Abstract

This paper is a trial to prove Riemann hypothesis according to the following process. 1 . We make $(N+1) / 2$ infinite series from one equation that gives $\zeta(s)$ analytic continuation and 2 formulas $(1 / 2+a+b i, 1 / 2-a-b i)$ that show non-trivial zero point of $\zeta(s) .(N=1,3,5,7, \cdots \cdots) 2$. We find that a cannot have any value but zero from the above infinite series by performing $N \rightarrow \infty$. 3. Therefore non-trivial zero point of $\zeta(s)$ must be $1 / 2 \pm b i$.

1. Introduction

The following (1) gives Riemann zeta function $\zeta(s)$ analytic continuation to $\operatorname{Re}(s)>0$. " $+\cdots \ldots$..." means infinite series in all equations in this paper.

$$
\begin{equation*}
1-2^{-s}+3^{-s}-4^{-s}+5^{-s}-6^{-s}+\cdots \cdots=\left(1-2^{1-s}\right) \zeta(s) \tag{1}
\end{equation*}
$$

The following (2) shows the zero point of the left side of (1) and also non-trivial zero point of $\zeta(s)$.

$$
\begin{equation*}
S_{0}=1 / 2+a+b i \tag{2}
\end{equation*}
$$

The range of a is $0 \leq a<1 / 2$ by the critical strip of $\zeta(s)$. The range of b is $b>14$ due to the following reasons. And i is $\sqrt{-1}$.
1.1 (Conjugate complex number of $\left.S_{0}\right)=1 / 2+a-b i$ is also non-trivial zero point of $\zeta(s)$. Therefore $b \geq 0$ is necessary and sufficient range for investigation.
1.2 The range of b of non-trivial zero points found until now is $b>14$.

The following (3) also shows non-trivial zero point of $\zeta(s)$ by the functional equation of $\zeta(s)$.

$$
\begin{equation*}
S_{1}=1-S_{0}=1 / 2-a-b i \tag{3}
\end{equation*}
$$

We have the following (4) and (5) by substituting S_{0} for s in the left side of (1) and putting both the real part and the imaginary part of the left side of (1) at zero respectively.

$$
\begin{align*}
& 1=\frac{\cos (b \log 2)}{2^{1 / 2+a}}-\frac{\cos (b \log 3)}{3^{1 / 2+a}}+\frac{\cos (b \log 4)}{4^{1 / 2+a}}-\frac{\cos (b \log 5)}{5^{1 / 2+a}}+\cdots \cdots \tag{4}\\
& 0=\frac{\sin (b \log 2)}{2^{1 / 2+a}}-\frac{\sin (b \log 3)}{3^{1 / 2+a}}+\frac{\sin (b \log 4)}{4^{1 / 2+a}}-\frac{\sin (b \log 5)}{5^{1 / 2+a}}+\cdots \cdots \tag{5}
\end{align*}
$$

[^0]We also have the following (6) and (7) by substituting S_{1} for s in the left side of (1) and putting both the real part and the imaginary part of the left side of (1) at zero respectively.

$$
\begin{align*}
& 1=\frac{\cos (b \log 2)}{2^{1 / 2-a}}-\frac{\cos (b \log 3)}{3^{1 / 2-a}}+\frac{\cos (b \log 4)}{4^{1 / 2-a}}-\frac{\cos (b \log 5)}{5^{1 / 2-a}}+\cdots \cdots \tag{6}\\
& 0=\frac{\sin (b \log 2)}{2^{1 / 2-a}}-\frac{\sin (b \log 3)}{3^{1 / 2-a}}+\frac{\sin (b \log 4)}{4^{1 / 2-a}}-\frac{\sin (b \log 5)}{5^{1 / 2-a}}+\cdots \cdots \tag{7}
\end{align*}
$$

2. $(N+1) / 2$ infinite series

We define $f(n)$ as follows.

$$
\begin{equation*}
f(n)=\frac{1}{n^{1 / 2-a}}-\frac{1}{n^{1 / 2+a}} \geq 0 \quad(n=2,3,4,5, \cdots \cdots) \tag{8}
\end{equation*}
$$

We have the following (9) from (4) and (6) with the method shown in item 1.1 of [Appendix 1: Equation construction].

$$
\begin{equation*}
0=f(2) \cos (b \log 2)-f(3) \cos (b \log 3)+f(4) \cos (b \log 4)-f(5) \cos (b \log 5)+\cdots \cdots \tag{9}
\end{equation*}
$$

We also have the following (10) from (5) and (7) with the method shown in item 1.2 of [Appendix 1].

$$
\begin{equation*}
0=f(2) \sin (b \log 2)-f(3) \sin (b \log 3)+f(4) \sin (b \log 4)-f(5) \sin (b \log 5)+\cdots \cdots \tag{10}
\end{equation*}
$$

We can have the following (11) (which is the function of real number x) from the above (9) and (10) with the method shown in item 1.3 of [Appendix 1]. And the value of (11) is always zero at any value of x.

$$
\begin{align*}
0 \equiv & \cos x\{\text { right side of }(9)\}+\sin x\{\text { right side of }(10)\} \\
= & \cos x\{f(2) \cos (b \log 2)-f(3) \cos (b \log 3)+f(4) \cos (b \log 4)-\cdots \cdots\} \\
& +\sin x\{f(2) \sin (b \log 2)-f(3) \sin (b \log 3)+f(4) \sin (b \log 4)-\cdots \cdots\} \\
= & f(2) \cos (b \log 2-x)-f(3) \cos (b \log 3-x)+f(4) \cos (b \log 4-x) \\
& -f(5) \cos (b \log 5-x)+f(6) \cos (b \log 6-x)-\cdots \cdots \tag{11}
\end{align*}
$$

We have the following (12-1) by substituting $b \log 1$ for x in (11).

$$
\begin{align*}
0= & f(2) \cos (b \log 2-b \log 1)-f(3) \cos (b \log 3-b \log 1)+f(4) \cos (b \log 4-b \log 1) \\
& -f(5) \cos (b \log 5-b \log 1)+f(6) \cos (b \log 6-b \log 1)-\cdots \cdots \tag{12-1}
\end{align*}
$$

We have the following (12-3) by substituting $b \log 3$ for x in (11).

$$
\begin{align*}
0= & f(2) \cos (b \log 2-b \log 3)-f(3) \cos (b \log 3-b \log 3)+f(4) \cos (b \log 4-b \log 3) \\
& -f(5) \cos (b \log 5-b \log 3)+f(6) \cos (b \log 6-b \log 3)-\cdots \cdots \tag{12-3}
\end{align*}
$$

We have the following (12-5) by substituting $b \log 5$ for x in (11).

$$
0=f(2) \cos (b \log 2-b \log 5)-f(3) \cos (b \log 3-b \log 5)+f(4) \cos (b \log 4-b \log 5)
$$

$$
\begin{equation*}
-f(5) \cos (b \log 5-b \log 5)+f(6) \cos (b \log 6-b \log 5)-\cdots \cdots \tag{12-5}
\end{equation*}
$$

In the same way as above we can have the following (12-N) by substituting $b \log N$ for x in (11). $\quad(N=7,9,11,13, \cdots \cdots)$

$$
\begin{align*}
0= & f(2) \cos (b \log 2-b \log N)-f(3) \cos (b \log 3-b \log N)+f(4) \cos (b \log 4-b \log N) \\
& -f(5) \cos (b \log 5-b \log N)+f(6) \cos (b \log 6-b \log N)-\cdots \cdots \tag{12-N}
\end{align*}
$$

3. Verification of $\boldsymbol{F}(\boldsymbol{a})=\mathbf{0}$

We define $g(k, N)$ as follows. $\quad(k=2,3,4,5, \cdots \cdots . \quad N=1,3,5,7, \cdots \cdots)$

$$
\begin{align*}
g(k, N) & =\cos (b \log k-b \log 1)+\cos (b \log k-b \log 3)+\cos (b \log k-b \log 5)+\cdots+\cos (b \log k-b \log N) \\
& =\cos (b \log 1-b \log k)+\cos (b \log 3-b \log k)+\cos (b \log 5-b \log k)+\cdots+\cos (b \log N-b \log k) \\
& =\cos (b \log 1 / k)+\cos (b \log 3 / k)+\cos (b \log 5 / k)+\cdots+\cos (b \log N / k) \tag{13}
\end{align*}
$$

We can have the following (14) from the equations of (12-1), (12-3), (12-5), $\cdots \cdots,(12-\mathrm{N})$ with the method shown in item 1.4 of [Appendix 1].

$$
\begin{align*}
0= & f(2)\{\cos (b \log 2-b \log 1)+\cos (b \log 2-b \log 3)+\cos (b \log 2-b \log 5)+\cdots+\cos (b \log 2-b \log N)\} \\
& -f(3)\{\cos (b \log 3-b \log 1)+\cos (b \log 3-b \log 3)+\cos (b \log 3-b \log 5)+\cdots+\cos (b \log 3-b \log N)\} \\
& +f(4)\{\cos (b \log 4-b \log 1)+\cos (b \log 4-b \log 3)+\cos (b \log 4-b \log 5)+\cdots+\cos (b \log 4-b \log N)\} \\
& -f(5)\{\cos (b \log 5-b \log 1)+\cos (b \log 5-b \log 3)+\cos (b \log 5-b \log 5)+\cdots+\cos (b \log 5-b \log N)\} \\
& +\cdots \cdots \\
= & f(2) g(2, N)-f(3) g(3, N)+f(4) g(4, N)-f(5) g(5, N)+f(6) g(6, N)-\cdots \cdots \tag{14}
\end{align*}
$$

Here we define $F(a)$ as follows.

$$
\begin{equation*}
F(a)=f(2)-f(3)+f(4)-f(5)+f(6)-\cdots \cdots \tag{15}
\end{equation*}
$$

We can have the following (16) by dividing the above (14) by $g(2, N)$. Because $g(2, N) \neq$ 0 is true in $\left(N_{1}<N N\right.$: odd number) as shown in [Appendix 2: Proof of $g(2, N) \neq 0$]. N_{1} is the odd number that holds (41) in item 2.2.5 of [Appendix 2].

$$
\begin{gather*}
0=f(2)-\frac{f(3) g(3, N)}{g(2, N)}+\frac{f(4) g(4, N)}{g(2, N)}-\frac{f(5) g(5, N)}{g(2, N)}+\cdots \cdots \\
\left(N_{1}<N \quad N: \text { odd number }\right) \tag{16}
\end{gather*}
$$

We can have the following (17) from the above (16) by performing $N \rightarrow \infty$. Because $\lim _{N \rightarrow \infty} \frac{g(k, N)}{g(2, N)}=1 \quad(k=3,4,5,6, \cdots \cdots)$ is true as shown in [Appendix 4 : Proof of

$$
\begin{align*}
& \left.\lim _{N \rightarrow \infty} \frac{g(k, N)}{g(2, N)}=1\right] . \\
& \qquad \begin{array}{l}
0=\lim _{N \rightarrow \infty}\left\{f(2)-\frac{f(3) g(3, N)}{g(2, N)}+\frac{f(4) g(4, N)}{g(2, N)}-\frac{f(5) g(5, N)}{g(2, N)}+\cdots \cdots\right\} \\
=
\end{array} \begin{array}{l}
f(2)-f(3)+f(4)-f(5)+f(6)-\cdots \cdots=F(a) \\
\\
\quad\left(N_{1}<N \quad N: \text { odd number }\right)
\end{array}
\end{align*}
$$

4. Conclusion

$F(a)=0$ has the only solution of $a=0$ as shown in [Appendix 5 : Solution for $F(a)=0] . a$ has the range of $0 \leq a<1 / 2$ by the critical strip of $\zeta(s)$. However, a cannot have any value but zero because a is the solution for $F(a)=0$. Due to $a=0$ nontrivial zero point of Riemann zeta function $\zeta(s)$ shown by (2) and (3) must be $1 / 2 \pm b i$. Therefore Riemann hypothesis which says" All non-trivial zero points of Riemann zeta function $\zeta(s)$ exist on the line of $\operatorname{Re}(s)=1 / 2$." is true.

Appendix 1. : Equation construction

We can construct (9), (10), (11) and (14) by applying the following Theorem 1[1].
Theorem 1
On condition that the following (Series 1) and (Series 2) converge respectively, the following (Series 3) and (Series 4) are true.

$$
\begin{aligned}
& \left(\text { Series 1) }=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+\cdots \cdots=A\right. \\
& \left(\text { Series 2) }=b_{1}+b_{2}+b_{3}+b_{4}+b_{5}+\cdots \cdots=B\right. \\
& \left(\text { Series 3) }=\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right)+\left(a_{3}+b_{3}\right)+\left(a_{4}+b_{4}\right)+\cdots \cdots=A+B\right. \\
& (\text { Series } 4)=\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right)+\left(a_{3}-b_{3}\right)+\left(a_{4}-b_{4}\right)+\cdots \cdots=A-B
\end{aligned}
$$

1.1. Construction of (9)

We can have the following (9) as (Series 4) by regarding (6) and (4) as (Series 1) and (Series 2) respectively.

$$
\begin{align*}
(\text { Series } 1) & =\frac{\cos (b \log 2)}{2^{1 / 2-a}}-\frac{\cos (b \log 3)}{3^{1 / 2-a}}+\frac{\cos (b \log 4)}{4^{1 / 2-a}}-\frac{\cos (b \log 5)}{5^{1 / 2-a}}+\cdots \cdots=1 \tag{6}\\
(\text { Series } 2) & =\frac{\cos (b \log 2)}{2^{1 / 2+a}}-\frac{\cos (b \log 3)}{3^{1 / 2+a}}+\frac{\cos (b \log 4)}{4^{1 / 2+a}}-\frac{\cos (b \log 5)}{5^{1 / 2+a}}+\cdots \cdots=1 \tag{4}\\
(\text { Series } 4) & =f(2) \cos (b \log 2)-f(3) \cos (b \log 3)+f(4) \cos (b \log 4)-f(5) \cos (b \log 5) \\
& +\cdots \cdots=1-1=0 \tag{9}
\end{align*}
$$

Here $f(n)$ is defined as follows.

$$
\begin{equation*}
f(n)=\frac{1}{n^{1 / 2-a}}-\frac{1}{n^{1 / 2+a}} \geq 0 \quad(n=2,3,4,5, \cdots \cdots) \tag{8}
\end{equation*}
$$

1.2. Construction of (10)

We can have the following (10) as (Series 4) by regarding (7) and (5) as (Series 1) and (Series 2) respectively.
(Series 1$)=\frac{\sin (b \log 2)}{2^{1 / 2-a}}-\frac{\sin (b \log 3)}{3^{1 / 2-a}}+\frac{\sin (b \log 4)}{4^{1 / 2-a}}-\frac{\sin (b \log 5)}{5^{1 / 2-a}}+\cdots \cdots=0$
$($ Series 2$)=\frac{\sin (b \log 2)}{2^{1 / 2+a}}-\frac{\sin (b \log 3)}{3^{1 / 2+a}}+\frac{\sin (b \log 4)}{4^{1 / 2+a}}-\frac{\sin (b \log 5)}{5^{1 / 2+a}}+\cdots \cdots=0$
$($ Series 4$)=f(2) \sin (b \log 2)-f(3) \sin (b \log 3)+f(4) \sin (b \log 4)-f(5) \sin (b \log 5)$

$$
\begin{equation*}
+\cdots \cdots=0-0 \tag{10}
\end{equation*}
$$

1.3. Construction of (11)

We can have the following (11) as (Series 3) by regarding the following equations as (Series 1) and (Series 2).

$$
\begin{aligned}
(\text { Series } 1)= & \cos x\{\text { right side of }(9)\} \\
= & \cos x\{f(2) \cos (b \log 2)-f(3) \cos (b \log 3)+f(4) \cos (b \log 4) \\
& -f(5) \cos (b \log 5)+\cdots \cdots\} \equiv 0
\end{aligned}
$$

```
\((\) Series 2\()=\sin x\{\) right side of (10) \(\}\)
    \(=\sin x\{f(2) \sin (b \log 2)-f(3) \sin (b \log 3)+f(4) \sin (b \log 4)\)
    \(-f(5) \sin (b \log 5)+\cdots \cdots\} \equiv 0\)
(Series 3) \(=f(2) \cos (b \log 2-x)-f(3) \cos (b \log 3-x)+f(4) \cos (b \log 4-x)\)
    \(-f(5) \cos (b \log 5-x)+\cdots \cdots \equiv 0+0\)
```


1.4. Construction of (14)

1.4.1 We can have the following $\left(12-1^{*} 3\right)$ as (Series 3) by regarding (12-1) and (12-3) as (Series 1) and (Series 2) respectively.

$$
\begin{align*}
(\text { Series } 1)= & f(2) \cos (b \log 2-b \log 1)-f(3) \cos (b \log 3-b \log 1) \\
& +f(4) \cos (b \log 4-b \log 1)-f(5) \cos (b \log 5-b \log 1) \\
& +f(6) \cos (b \log 6-b \log 1)-\cdots \cdots=0 \tag{12-1}\\
(\text { Series } 2)= & f(2) \cos (b \log 2-b \log 3)-f(3) \cos (b \log 3-b \log 3) \\
& +f(4) \cos (b \log 4-b \log 3)-f(5) \cos (b \log 5-b \log 3) \\
& +f(6) \cos (b \log 6-b \log 3)-\cdots \cdots=0 \tag{12-3}\\
(\text { Series } 3)= & f(2)\{\cos (b \log 2-b \log 1)+\cos (b \log 2-b \log 3)\} \\
& -f(3)\{\cos (b \log 3-b \log 1)+\cos (b \log 3-b \log 3)\} \\
& +f(4)\{\cos (b \log 4-b \log 1)+\cos (b \log 4-b \log 3)\} \\
& -f(5)\{\cos (b \log 5-b \log 1)+\cos (b \log 5-b \log 3)\} \\
& +\cdots \cdots=0+0 \tag{12-1*3}
\end{align*}
$$

1.4.2 We can have the following $(12-1 * 5)$ as (Series 3) by regarding (12-1*3) and (12-5) as (Series 1) and (Series 2) respectively.

$$
\begin{align*}
(\text { Series } 2)= & f(2) \cos (b \log 2-b \log 5)-f(3) \cos (b \log 3-b \log 5) \\
& +f(4) \cos (b \log 4-b \log 5)-f(5) \cos (b \log 5-b \log 5) \\
& +f(6) \cos (b \log 6-b \log 5)-\cdots \cdots=0 \tag{12-5}
\end{align*}
$$

(Series 3)

$$
\begin{align*}
= & f(2)\{\cos (b \log 2-b \log 1)+\cos (b \log 2-b \log 3)+\cos (b \log 2-b \log 5)\} \\
& -f(3)\{\cos (b \log 3-b \log 1)+\cos (b \log 3-b \log 3)+\cos (b \log 3-b \log 5)\} \\
& +f(4)\{\cos (b \log 4-b \log 1)+\cos (b \log 4-b \log 3)+\cos (b \log 4-b \log 5)\} \\
& -f(5)\{\cos (b \log 5-b \log 1)+\cos (b \log 5-b \log 3)+\cos (b \log 5-b \log 5)\} \\
& +\cdots \cdots=0+0 \tag{12-1*5}
\end{align*}
$$

1.4.3 We can have the following $(12-1 * 7)$ as (Series 3) by regarding (12-1*5) and (12-7) as (Series 1) and (Series 2) respectively.
$($ Series 2) $=f(2) \cos (b \log 2-b \log 7)-f(3) \cos (b \log 3-b \log 7)$

$$
\begin{align*}
& +f(4) \cos (b \log 4-b \log 7)-f(5) \cos (b \log 5-b \log 7) \\
& +f(6) \cos (b \log 6-b \log 7)-\cdots \cdots=0 \tag{12-7}
\end{align*}
$$

(Series 3)

$$
\begin{align*}
= & f(2)\{\cos (b \log 2-b \log 1)+\cos (b \log 2-b \log 3)+\cos (b \log 2-b \log 5)+\cos (b \log 2-b \log 7)\} \\
& -f(3)\{\cos (b \log 3-b \log 1)+\cos (b \log 3-b \log 3)+\cos (b \log 3-b \log 5)+\cos (b \log 3-b \log 7)\} \\
& +f(4)\{\cos (b \log 4-b \log 1)+\cos (b \log 4-b \log 3)+\cos (b \log 4-b \log 5)+\cos (b \log 4-b \log 7)\} \\
& -f(5)\{\cos (b \log 5-b \log 1)+\cos (b \log 5-b \log 3)+\cos (b \log 5-b \log 5)+\cos (b \log 5-b \log 7)\} \\
& +\cdots \cdots=0+0 \tag{12-1*7}
\end{align*}
$$

1.4.4 In the same way as above we can have the following $(12-1 * N)=(14)$ as (Series 3) by regarding ($12-1 * \mathrm{~N}-2$) and ($12-\mathrm{N}$) as (Series 1) and (Series 2) respectively. $(N=9,11,13,15, \cdots \cdots) \quad g(k, N)$ is defined in page $3 .(k=2,3,4,5, \cdots \cdots)$
$f(2)\{\cos (b \log 2-b \log 1)+\cos (b \log 2-b \log 3)+\cos (b \log 2-b \log 5)+\cdots+\cos (b \log 2-b \log N)\}$
$-f(3)\{\cos (b \log 3-b \log 1)+\cos (b \log 3-b \log 3)+\cos (b \log 3-b \log 5)+\cdots+\cos (b \log 3-b \log N)\}$
$+f(4)\{\cos (b \log 4-b \log 1)+\cos (b \log 4-b \log 3)+\cos (b \log 4-b \log 5)+\cdots+\cos (b \log 4-b \log N)\}$
$-f(5)\{\cos (b \log 5-b \log 1)+\cos (b \log 5-b \log 3)+\cos (b \log 5-b \log 5)+\cdots+\cos (b \log 5-b \log N)\}$
$+\cdots \cdots$.
$=f(2) g(2, N)-f(3) g(3, N)+f(4) g(4, N)-f(5) g(5, N)+f(6) g(6, N)-\cdots \cdots$.
$=0+0$
$(12-1 * N)$

Appendix 2. : Proof of $g(2, N) \neq 0$

2.1. Investigation of $g(k, N)$
2.1.1 We define G and H as follows. $(N=1,3,5,7, \cdots \cdots)$

$$
\begin{align*}
G & =\lim _{N \rightarrow \infty} \frac{1}{N}\left\{\cos \left(b \log \frac{1}{N}\right)+\cos \left(b \log \frac{3}{N}\right)+\cos \left(b \log \frac{5}{N}\right)+\cdots+\cos \left(b \log \frac{N}{N}\right)\right\} \\
& =\frac{1}{2} \int_{0}^{1} \cos (b \log x) d x \tag{20-1}\\
H & =\lim _{N \rightarrow \infty} \frac{1}{N}\left\{\sin \left(b \log \frac{1}{N}\right)+\sin \left(b \log \frac{3}{N}\right)+\sin \left(b \log \frac{5}{N}\right)+\cdots+\sin \left(b \log \frac{N}{N}\right)\right\} \\
& =\frac{1}{2} \int_{0}^{1} \sin (b \log x) d x \tag{20-2}
\end{align*}
$$

We calculate G and H by Integration by parts.

$$
\begin{aligned}
2 G & =[x \cos (b \log x)]_{0}^{1}+2 b H=1+2 b H \\
2 H & =[x \sin (b \log x)]_{0}^{1}-2 b G=-2 b G
\end{aligned}
$$

Then we can have the values of G and H from the above equations as follows.

$$
\begin{equation*}
G=\frac{1}{2\left(1+b^{2}\right)} \quad H=\frac{-b}{2\left(1+b^{2}\right)} \tag{21}
\end{equation*}
$$

2.1.2 We define as follows.

$$
\begin{equation*}
\frac{\cos \left(b \log \frac{1}{N}\right)+\cos \left(b \log \frac{3}{N}\right)+\cos \left(b \log \frac{5}{N}\right)+\cdots+\cos \left(b \log \frac{N}{N}\right)}{N}-G=E_{c}(N) \tag{22-1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\sin \left(b \log \frac{1}{N}\right)+\sin \left(b \log \frac{3}{N}\right)+\sin \left(b \log \frac{5}{N}\right)+\cdots+\sin \left(b \log \frac{N}{N}\right)}{N}-H=E_{s}(N) \tag{22-2}
\end{equation*}
$$

From (20-1), (20-2), (22-1) and (22-2) we have the following (23).

$$
\begin{equation*}
\lim _{N \rightarrow \infty} E_{c}(N)=0 \quad \lim _{N \rightarrow \infty} E_{s}(N)=0 \tag{23}
\end{equation*}
$$

2.1.3 From (13) we can calculate $g(k, N)$ as follows. $(N=1,3,5,7, \cdots \cdots)$

$$
\begin{aligned}
& g(k, N)=\cos (b \log 1 / k)+\cos (b \log 3 / k)+\cos (b \log 5 / k)+\cdots+\cos (b \log N / k) \\
&= N \frac{1}{N}\left\{\cos \left(b \log \frac{1}{N} \frac{N}{k}\right)+\cos \left(b \log \frac{3}{N} \frac{N}{k}\right)+\cos \left(b \log \frac{5}{N} \frac{N}{k}\right)+\cdots+\cos \left(b \log \frac{N}{N} \frac{N}{k}\right)\right\} \\
&= N \frac{1}{N}\left\{\cos \left(b \log \frac{1}{N}+b \log \frac{N}{k}\right)+\cos \left(b \log \frac{3}{N}+b \log \frac{N}{k}\right)\right. \\
&\left.+\cos \left(b \log \frac{5}{N}+b \log \frac{N}{k}\right)+\cdots \cdots+\cos \left(b \log \frac{N}{N}+b \log \frac{N}{k}\right)\right\} \\
&= N \frac{1}{N} \cos \left(b \log \frac{N}{k}\right)\left\{\cos \left(b \log \frac{1}{N}\right)+\cos \left(b \log \frac{3}{N}\right)+\cos \left(b \log \frac{5}{N}\right)+\cdots+\cos \left(b \log \frac{N}{N}\right)\right\} \\
&-N \frac{1}{N} \sin \left(b \log \frac{N}{k}\right)\left\{\sin \left(b \log \frac{1}{N}\right)+\sin \left(b \log \frac{3}{N}\right)+\sin \left(b \log \frac{5}{N}\right)+\cdots+\sin \left(b \log \frac{N}{N}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
&= N \cos \left(b \log \frac{N}{k}\right) G \\
&+N \cos \left(b \log \frac{N}{k}\right)\left\{\frac{\cos (b \log 1 / N)+\cos (b \log 3 / N)+\cos (b \log 5 / N)+\cdots+\cos (b \log N / N)}{N}-G\right\} \\
&-N \sin \left(b \log \frac{N}{k}\right) H \\
&-N \sin \left(b \log \frac{N}{k}\right)\left\{\frac{\sin (b \log 1 / N)+\sin (b \log 3 / N)+\sin (b \log 5 / N)+\cdots+\sin (b \log N / N)}{N}-H\right\} \tag{24-1}\\
&= N \cos \left(b \log \frac{N}{k}\right) G+N \cos \left(b \log \frac{N}{k}\right) E_{c}(N)-N \sin \left(b \log \frac{N}{k}\right) H \\
&-N \sin \left(b \log \frac{N}{k}\right) E_{s}(N) \tag{24-2}\\
&= N \cos \left(b \log \frac{N}{k}\right) \frac{1}{2\left(1+b^{2}\right)}+N \cos \left(b \log \frac{N}{k}\right) E_{c}(N) \\
&+N \sin \left(b \log \frac{N}{k}\right) \frac{b}{2\left(1+b^{2}\right)}-N \sin \left(b \log \frac{N}{k}\right) E_{s}(N) \tag{24-3}\\
&= \frac{N}{2 \sqrt{1+b^{2}}}\left\{\cos \left(b \log \frac{N}{k}\right) \frac{1}{\sqrt{1+b^{2}}}+\sin \left(b \log \frac{N}{k}\right) \frac{b}{\sqrt{1+b^{2}}}\right\} \\
&+N \cos \left(b \log \frac{N}{k}\right) E_{c}(N)-N \sin \left(b \log \frac{N}{k}\right) E_{s}(N) \tag{24-4}\\
&= N \sin (b \log N / k+\tan -1 / b) \\
& 2 \sqrt{1+b^{2}} \tag{24-5}\\
&+N \cos \left(b \log \frac{N}{k}\right) E_{c}(N)-N \sin \left(b \log \frac{N}{k}\right) E_{s}(N)
\end{align*}
$$

2.1.4 From (22-1), (22-2) and (24-1) we have (24-2). From (21) and (24-2) we have (24-3).

2.2. Verification of $R_{\mathbf{3}} \neq 0$

We investigate the the condition of $R_{3}=0$ in the following 4 cases.
2.2.1 $\left\{E_{c}(N) \geq 0, E_{s}(N) \geq 0\right\}$ i.e. $\left\{E_{c}(N)=\left|E_{c}(N)\right|, E_{s}(N)=\left|E_{s}(N)\right|\right\}$
2.2.1.1 We have the followsing (25-1), (25-2), (25-3) and (25-4) from (24-5).

$$
\begin{aligned}
& (24-5)=\frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}} \\
& \quad+N \cos \left(b \log \frac{N}{k}\right) E_{c}(N)-N \sin \left(b \log \frac{N}{k}\right) E_{s}(N) \\
& =\frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}} \\
& \quad+N \cos \left(b \log \frac{N}{k}\right)\left|E_{c}(N)\right|-N \sin \left(b \log \frac{N}{k}\right)\left|E_{s}(N)\right| \\
& =\frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}} \\
& \quad-N \sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}\left\{\sin \left(b \log \frac{N}{k}\right) \frac{\left|E_{s}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}-\cos \left(b \log \frac{N}{k}\right) \frac{\left|E_{c}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}\right\}
\end{aligned}
$$

$$
\begin{align*}
= & \frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}} \tag{25-1}\\
& -N \sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \sin \left(b \log \frac{N}{k}-\tan ^{-1}\left|\frac{E_{c}(N)}{E_{s}(N)}\right|\right) \tag{25-2}\\
= & N R_{1} \sin \left(b \log N / k+\theta_{1}\right)-N R_{2} \sin \left(b \log N / k-\theta_{2}\right) \tag{25-3}\\
= & N R_{3} \sin \left(b \log N / k+\theta_{3}\right) \tag{25-4}
\end{align*}
$$

We define as follows to have the above (25-3) from (25-2).

$$
\begin{align*}
R_{1} & =\frac{1}{2 \sqrt{1+b^{2}}}>0 \tag{26-1}\\
\theta_{1} & =\tan ^{-1} 1 / b \tag{26-2}\\
R_{2} & =\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \geq 0 \tag{26-3}\\
\theta_{2} & =\tan ^{-1}\left|\frac{E_{c}(N)}{E_{s}(N)}\right| \tag{26-4}
\end{align*}
$$

From (24-4) we have $\cos \theta_{a}=b / \sqrt{1+b^{2}}>0$ and $\sin \theta_{a}=1 / \sqrt{1+b^{2}}>0$. And from the above 2 equations we have the following (26-5). The range of θ_{1} is given from $14<b$ shown in page 1 .

$$
\begin{align*}
& \theta_{a}=\tan ^{-1} 1 / b=\theta_{1}+2 n \pi \quad(n=0, \pm 1, \pm 2, \pm 3, \cdots) \tag{26-5}\\
& 0<\theta_{1}<0.023 \pi=\tan ^{-1} 1 / 14
\end{align*}
$$

Even if we define the above (26-2), there is no contradiction in the above (25-3) because of the following (26-6).

$$
\begin{align*}
\sin \left(b \log N / k+\tan ^{-1} 1 / b\right) & =\sin \left(b \log N / k+\theta_{1}+2 n \pi\right) \\
& =\sin \left(b \log N / k+\theta_{1}\right) \tag{26-6}
\end{align*}
$$

Similarly we have $\cos \theta_{b}=\frac{\left|E_{s}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}} \geq 0$ and $\sin \theta_{b}=\frac{\left|E_{c}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}} \geq 0$ from (25-1). And we have the following (26-7). The range of θ_{2} is given from $0 \leq\left|\frac{E_{c}(N)}{E_{s}(N)}\right|$.

$$
\begin{align*}
& \theta_{b}=\tan ^{-1}\left|\frac{E_{c}(N)}{E_{s}(N)}\right|=\theta_{2}+2 n \pi \quad(n=0, \pm 1, \pm 2, \pm 3, \cdots) \tag{26-7}\\
& 0 \leq \theta_{2}<\pi / 2
\end{align*}
$$

We can define (26-4) from the above (26-7).
2.2.1.2 If in the complex number $R_{x} \exp \left(\theta_{x} i\right), R_{y} \exp \left(\theta_{y} i\right)$ and $R_{z} \exp \left(\theta_{z} i\right)$ the following (27-1) holds, the following (27-2) also holds.

$$
\begin{align*}
& R_{x} \exp \left(\theta_{x} i\right) \pm R_{y} \exp \left(\theta_{y} i\right)=R_{z} \exp \left(\theta_{z} i\right) \tag{27-1}\\
& R_{x} \sin \theta_{x} \pm R_{y} \sin \theta_{y}=R_{z} \sin \theta_{z} \tag{27-2}
\end{align*}
$$

So we can calculate the following (28-1) and (28-2) from the following (Figure 1). R_{3} can be calculated by Cosine theorem. We have the above (25-4) from (25-3), (28-1) and (28-2).

$$
\begin{align*}
R_{3} & =\sqrt{R_{1}^{2}+R_{2}^{2}-2 R_{1} R_{2} \cos \left(\theta_{1}+\theta_{2}\right)} \tag{28-1}\\
\theta_{3} & =\tan ^{-1} \frac{R_{1} \sin \theta_{1}+R_{2} \sin \theta_{2}}{R_{1} \cos \theta_{1}-R_{2} \cos \theta_{2}} \tag{28-2}
\end{align*}
$$

Figure $1: R_{3} \sin \left(b \log N / k+\theta_{3}\right)$ in $\left\{E_{c}(N) \geq 0, E_{s}(N) \geq 0\right\}$
2.2.1.3 From the above (28-1) we can confirm that $1 \geq \cos \left(\theta_{1}+\theta_{2}\right)>0$ must be true in order for $R_{3}=0$ to hold. Due to (Arithmetic mean) \geq (Geometric mean) we have the following (29).

$$
\begin{equation*}
R_{1}^{2}+R_{2}^{2} \geq 2 R_{1} R_{2} \geq 2 R_{1} R_{2} \cos \left(\theta_{1}+\theta_{2}\right) \tag{29}
\end{equation*}
$$

In order for $R_{3}=0$ to hold the 2 equal signs in the above (29) must hold. Therefore the following (30-1) and (30-2) are the condition of $R_{3}=0$.

$$
\begin{align*}
& R_{1}=R_{2} \tag{30-1}\\
& \theta_{1}+\theta_{2}=0 \tag{30-2}
\end{align*}
$$

2.2.2 $\left\{E_{c}(N) \geq 0, E_{s}(N) \leq 0\right\}$ i.e. $\left\{E_{c}(N)=\left|E_{c}(N)\right|, E_{s}(N)=-\left|E_{s}(N)\right|\right\}$
2.2.2.1 We have the followsing (31-1), (31-2) and (31-3) from (24-5).

$$
\begin{align*}
& (24-5)=\frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}} \\
& \quad+N \cos \left(b \log \frac{N}{k}\right) E_{c}(N)-N \sin \left(b \log \frac{N}{k}\right) E_{s}(N) \\
& =\frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}} \\
& \quad+N \cos \left(b \log \frac{N}{k}\right)\left|E_{c}(N)\right|+N \sin \left(b \log \frac{N}{k}\right)\left|E_{s}(N)\right| \\
& =\frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}} \\
& \quad+N \sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \sin \left(b \log \frac{N}{k}+\tan ^{-1}\left|\frac{E_{c}(N)}{E_{s}(N)}\right|\right) \tag{31-1}\\
& =N R_{1} \sin \left(b \log N / k+\theta_{1}\right)+N R_{2} \sin \left(b \log N / k+\theta_{2}\right) \tag{31-2}\\
& =N R_{3} \sin \left(b \log N / k+\theta_{3}\right) \tag{31-3}
\end{align*}
$$

R_{1}, θ_{1}, R_{2} and θ_{2} are defined in item 2.2.1.1.
2.2.2.2 We can calculate the following (32-1) and (32-2) from the following (FIgure $2)$. We have the above (31-3) from (31-2), (32-1) and (32-2).

$$
\begin{align*}
R_{3} & =\sqrt{R_{1}^{2}+R_{2}^{2}-2 R_{1} R_{2} \cos \left(\pi+\theta_{1}-\theta_{2}\right)} \tag{32-1}\\
\theta_{3} & =\tan ^{-1} \frac{R_{1} \sin \theta_{1}+R_{2} \sin \theta_{2}}{R_{1} \cos \theta_{1}+R_{2} \cos \theta_{2}} \tag{32-2}
\end{align*}
$$

Figure $2: R_{3} \sin \left(b \log N / k+\theta_{3}\right)$ in $\left\{E_{c}(N) \geq 0, E_{s}(N) \leq 0\right\}$
2.2.2.3 Through the same discussion as in item 2.2.1.3 we can confirm the condition of $R_{3}=0$ as follows.

$$
\begin{align*}
& R_{1}=R_{2} \tag{34-1}\\
& \theta_{2}-\theta_{1}=\pi \tag{34-2}
\end{align*}
$$

2.2.3 $\left\{E_{c}(N) \leq 0, E_{s}(N) \leq 0\right\}$ i.e. $\left\{E_{c}(N)=-\left|E_{c}(N)\right|, E_{s}(N)=-\left|E_{s}(N)\right|\right\}$
2.2.3.1 We have the followsing (35-1), (35-2) and (35-3) from (24-5).

$$
\begin{align*}
(24-5) & =\frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}} \\
& +N \cos \left(b \log \frac{N}{k}\right) E_{c}(N)-N \sin \left(b \log \frac{N}{k}\right) E_{s}(N) \\
= & \frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}} \\
& -N \cos \left(b \log \frac{N}{k}\right)\left|E_{c}(N)\right|+N \sin \left(b \log \frac{N}{k}\right)\left|E_{s}(N)\right| \\
= & \frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}} \\
& +N \sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \sin \left(b \log \frac{N}{k}-\tan ^{-1}\left|\frac{E_{c}(N)}{E_{s}(N)}\right|\right) \tag{35-1}\\
= & N R_{1} \sin \left(b \log N / k+\theta_{1}\right)+N R_{2} \sin \left(b \log N / k-\theta_{2}\right) \tag{35-2}
\end{align*}
$$

$$
\begin{equation*}
=N R_{3} \sin \left(b \log N / k+\theta_{3}\right) \tag{35-3}
\end{equation*}
$$

R_{1}, θ_{1}, R_{2} and θ_{2} are defined in item 2.2.1.1.
2.2.3.2 We can calculate the following (36-1) and (36-2) from the following (FIgure 3). We have the above (35-3) from (35-2), (36-1) and (36-2).

$$
\begin{align*}
R_{3} & =\sqrt{R_{1}^{2}+R_{2}^{2}-2 R_{1} R_{2} \cos \left(\pi-\theta_{1}-\theta_{2}\right)} \tag{36-1}\\
\theta_{3} & =\tan ^{-1} \frac{R_{1} \sin \theta_{1}-R_{2} \sin \theta_{2}}{R_{1} \cos \theta_{1}+R_{2} \cos \theta_{2}} \tag{36-2}
\end{align*}
$$

Figure $3: R_{3} \sin \left(b \log N / k+\theta_{3}\right)$ in $\left\{E_{c}(N) \leq 0, E_{s}(N) \leq 0\right\}$
2.2.3.3 Through the same discussion as in item 2.2.1.3 we can confirm the condition of $R_{3}=0$ as follows.

$$
\begin{align*}
& R_{1}=R_{2} \tag{37-1}\\
& \pi=\theta_{1}+\theta_{2} \tag{37-2}
\end{align*}
$$

2.2.4 $\left\{E_{c}(N) \leq 0, E_{s}(N) \geq 0\right\}$ i.e. $\left\{E_{c}(N)=-\left|E_{c}(N)\right|, E_{s}(N)=\left|E_{s}(N)\right|\right\}$
2.2.4.1 We have the followsing (38-1), (38-2) and (38-3) from (24-5).

$$
\begin{aligned}
&(24-5)=\frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}} \\
& \quad+N \cos \left(b \log \frac{N}{k}\right) E_{c}(N)-N \sin \left(b \log \frac{N}{k}\right) E_{s}(N)
\end{aligned}
$$

$$
\begin{align*}
= & \frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}} \\
& -N \cos \left(b \log \frac{N}{k}\right)\left|E_{c}(N)\right|-N \sin \left(b \log \frac{N}{k}\right)\left|E_{s}(N)\right| \\
= & \frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}} \\
& -N \sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \sin \left(b \log \frac{N}{k}+\tan ^{-1}\left|\frac{E_{c}(N)}{E_{s}(N)}\right|\right) \tag{38-1}\\
= & N R_{1} \sin \left(b \log N / k+\theta_{1}\right)-N R_{2} \sin \left(b \log N / k+\theta_{2}\right) \tag{38-2}\\
= & N R_{3} \sin \left(b \log N / k+\theta_{3}\right) \tag{38-3}
\end{align*}
$$

R_{1}, θ_{1}, R_{2} and θ_{2} are defined in item 2.2.1.1.
2.2.4.2 We can calculate the following (36-1) and (36-2) from the following (FIgure $4)$. We have the above (38-3) from (38-2), (39-1) and (39-2).

$$
\begin{align*}
R_{3} & =\sqrt{R_{1}^{2}+R_{2}^{2}-2 R_{1} R_{2} \cos \left(\theta_{2}-\theta_{1}\right)} \tag{39-1}\\
\theta_{3} & =\tan ^{-1} \frac{R_{1} \sin \theta_{1}-R_{2} \sin \theta_{2}}{R_{1} \cos \theta_{1}-R_{2} \cos \theta_{2}} \tag{39-2}
\end{align*}
$$

Figure $4: R_{3} \sin \left(b \log N / k+\theta_{3}\right)$ in $\left\{E_{c}(N) \leq 0, E_{s}(N) \geq 0\right\}$
2.2.4.3 Through the same discussion as in item 2.2.1.3 we can confirm the condition
of $R_{3}=0$ as follows.

$$
\begin{align*}
& R_{1}=R_{2} \tag{40-1}\\
& \theta_{1}=\theta_{2} \tag{40-2}
\end{align*}
$$

2.2.5 There is the odd number N_{1} that holds the following (41) because $\lim _{N \rightarrow \infty} \sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}=0$ is true from (23) in item 2.1.2.

$$
\begin{equation*}
\frac{1}{2 \sqrt{1+b^{2}}}=R_{1}>R_{2}=\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \quad\left(N_{1}<N\right) \tag{41}
\end{equation*}
$$

Therefore (30-1), (34-1), (37-1) and (40-1) do not hold in $\left(N_{1}<N\right)$. Now we can confirm the following (42).

$$
\begin{equation*}
R_{3} \neq 0 \quad\left(N_{1}<N\right) \tag{42}
\end{equation*}
$$

2.3. Verification of $\sin \left(b \log N / 2+\theta_{3}\right) \neq 0$

2.3.1 If we assume the following (51) is true, the following (52) is also supposed to be true.

$$
\begin{array}{ll}
\sin \left(b \log N / 2+\theta_{3}\right)=0 & (N=1,3,5,7, \cdots \cdots) \\
b \log N / 2+\theta_{3}=K \pi & (K: \text { integer }) \tag{52}
\end{array}
$$

2.3.2 We define as follows.

Type1 irrational number : Irrational number which consists of singular or plural irrational terms such as $2 \sqrt{2} / e, \sqrt{2} / e+\sqrt{3}$, etc.
Type2 irrational number : Irrational number which has the formation of (rational number) $+($ type 1 irrational number) such as $1+\sqrt{2}, 2+$ $2 \sqrt{2} / e+\sqrt{3}$, etc.
2.3.3 The above (52) holds in the following cases.

Case 1 : The following (53-1), (53-2) and (53-3) holds.

$$
\begin{array}{lc}
b \log N / 2=A \pi & \\
\theta_{3}=B \pi & (A, B: \text { rational number }) \\
A+B=K & (K: \text { integer }) \tag{53-3}
\end{array}
$$

Case 2 : The above (53-3), the following (53-4) and (53-5) holds.

$$
\begin{array}{lr}
b \log N / 2=(A+C) \pi & (A+C: \text { type2 irrational number }) \\
\theta_{3}=(B-C) \pi & (C: \text { type1 irrational number }) \tag{53-5}
\end{array}
$$

2.3.4 From $b \log N / 2=D \pi$ we have the following equation.

$$
D=\frac{b \log N / 2}{\pi}
$$

The formation of D becomes (type1 irratioal number) regardless of the formation of b as follows.

Case $3: b=($ rational number $)$

$$
D=(\text { rational number }) \frac{\log N / 2}{\pi}=\left(\text { type1 irratioal number }: Q_{1}\right)
$$

$(N=1,3,5,7, \cdots \cdots)$
Case $4: b=($ type1 irrational number)

$$
D=\left(\text { type1 irrational number : } Q_{2}\right) \frac{\log N / 2}{\pi}=\left(\text { type1 irratioal number }: Q_{3}\right)
$$

$(N=1,3,5,7, \cdots \cdots):$ When the following (conditoin 1) holds.
$\left(N=1,3,5,7, \cdots \cdots \quad N \neq N_{2}\right)$: When the following (condition
2) holds.

Condition $1: b$ does not have the term of $\frac{A \pi}{\log N_{2} / 2}$. Or b has the term of $\frac{A \pi}{\log N_{2} / 2}$ and N_{2} is an even number. A : (rational number)
Condition 2: b has the term of $\frac{A \pi}{\log N_{2} / 2}$ and N_{2} is an odd number.
Case $5: b=($ type2 irrational number $)=($ rational number $)+($ type 1 irrational number)

$$
\begin{aligned}
D & =\left\{(\text { rational number })+\left(\text { type1 irrational number : } Q_{4}\right)\right\} \frac{\log N / 2}{\pi} \\
& =\left(\text { type } 1 \text { irrational number }: Q_{5}\right)+\left(\text { type1 irratioal number : } Q_{6}\right) \\
& =\left(\text { type } 1 \text { irrational number }: Q_{7}\right)
\end{aligned}
$$

$$
\begin{aligned}
& (N=1,3,5,7, \cdots \cdots): \text { When (conditoin 1) holds. } \\
& \left(N=1,3,5,7, \cdots \cdots \quad N \neq N_{2}\right): \text { When (condition 2) holds. }
\end{aligned}
$$

2.3.5 As shown in the above item 2.3.4 D is not (rational number) or (type2 irrational number) but (type1 irrational number). Therefore (case 1) and (case 2) do not hold i.e. (52) does not hold in ($N=1,3,5,7, \cdots \cdots \quad N \neq N_{2}$).
2.3.6 At $N=N_{2}$ (52) does not holds when (condition 2) holds as shown in [Appendix 3 : Proof of $\left.b \log N_{2} / 2+\theta_{3} \neq K \pi\right]$.
2.3.7 Now we can confirm the following (54).

$$
\begin{equation*}
\sin \left(b \log N / 2+\theta_{3}\right) \neq 0 \quad(N=1,3,5,7, \cdots \cdots) \tag{54}
\end{equation*}
$$

2.4. Verification of $g(2, N) \neq 0$

We have the following (55) from (25-4) in item 2.2.1.1, (42) in item 2.2.5 and the above (54). We can confirm that $g(2, N)$ does not have the value of zero in $\left(N_{1}<N N\right.$: odd number).

$$
\begin{equation*}
g(2, N)=N R_{3} \sin \left(b \log N / 2+\theta_{3}\right) \neq 0 \quad\left(N_{1}<N \quad N: \text { odd number }\right) \tag{55}
\end{equation*}
$$

Appendix 3. : Proof of $b \log N_{2} / 2+\theta_{3} \neq K \pi$

In this appendix we confim that the following (52) in item 2.3.1 does not hold at $N=N_{2}$ when (condition 2) holds.

$$
\begin{equation*}
b \log N / 2+\theta_{3}=K \pi \quad(K: \text { integer }) \tag{52}
\end{equation*}
$$

3.1 We confirm the value of θ_{3} in the following 4 cases.
3.1.1 $\left\{E_{c}(N) \geq 0, E_{s}(N) \geq 0\right\}$ i.e. $\left\{E_{c}(N)=\left|E_{c}(N)\right|, E_{s}(N)=\left|E_{s}(N)\right|\right\}$

We have the following (61) from (21), (22-1) and (22-2) in item 2.1, (26-1), (26-3) and (28-2) in item 2.2 and the following (61-1) and (61-2).

$$
\begin{align*}
& \theta_{3}=\tan ^{-1} \frac{R_{1} \sin \theta_{1}+R_{2} \sin \theta_{2}}{R_{1} \cos \theta_{1}-R_{2} \cos \theta_{2}} \tag{28-2}\\
& =\tan ^{-1} \frac{\frac{1}{2 \sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}}+\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{\left|E_{c}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}}{\frac{1}{2 \sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}}-\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{\left|E_{s}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}} \\
& =\tan ^{-1} \frac{\frac{1}{2 \sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}}+\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{E_{c}(N)}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}}{\frac{1}{2 \sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}}-\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{E_{s}(N)}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}} \\
& =\tan ^{-1} \frac{G+E_{c}(N)}{-H-E_{s}(N)} \\
& =\tan ^{-1} \frac{\cos (b \log 1 / N)+\cos (b \log 3 / N)+\cos (b \log 5 / N)+\cdots+\cos (b \log N / N)}{-\{\sin (b \log 1 / N)+\sin (b \log 3 / N)+\sin (b \log 5 / N)+\cdots+\sin (b \log N / N)\}} \tag{61}
\end{align*}
$$

We have the following (61-1) and (62-2) from (26-2) and (26-4) in item 2.2.1.

$$
\begin{align*}
& \cos \theta_{1}=b / \sqrt{1+b^{2}} \quad \sin \theta_{1}=1 / \sqrt{1+b^{2}} \tag{61-1}\\
& \cos \theta_{2}=\frac{\left|E_{s}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}} \quad \sin \theta_{2}=\frac{\left|E_{c}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}} \tag{61-2}
\end{align*}
$$

3.1.2 $\left\{E_{c}(N) \geq 0, E_{s}(N) \leq 0\right\}$ i.e. $\left\{E_{c}(N)=\left|E_{c}(N)\right|, E_{s}(N)=-\left|E_{s}(N)\right|\right\}$

Similarly we have the following (62) from (32-2) in item 2.2.2.2.

$$
\begin{align*}
& \theta_{3}=\tan ^{-1} \frac{R_{1} \sin \theta_{1}+R_{2} \sin \theta_{2}}{R_{1} \cos \theta_{1}+R_{2} \cos \theta_{2}} \tag{32-2}\\
& =\tan ^{-1} \frac{\frac{1}{2 \sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}}+\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{\left|E_{c}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}}{\frac{1}{2 \sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}}+\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{\left|E_{s}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}} \\
& =\tan ^{-1} \frac{\frac{1}{2 \sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}}+\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{E_{c}(N)}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}}{\frac{1}{2 \sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}}-\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{E_{s}(N)}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}} \\
& =\tan ^{-1} \frac{G+E_{c}(N)}{-H-E_{s}(N)}
\end{align*}
$$

$$
\begin{equation*}
=\tan ^{-1} \frac{\cos (b \log 1 / N)+\cos (b \log 3 / N)+\cos (b \log 5 / N)+\cdots+\cos (b \log N / N)}{-\{\sin (b \log 1 / N)+\sin (b \log 3 / N)+\sin (b \log 5 / N)+\cdots+\sin (b \log N / N)\}} \tag{62}
\end{equation*}
$$

3.1.3 $\left\{E_{c}(N) \leq 0, E_{s}(N) \leq 0\right\}$ i.e. $\left\{E_{c}(N)=-\left|E_{c}(N)\right|, E_{s}(N)=-\left|E_{s}(N)\right|\right\}$

Similarly we have the following (63) from (36-2) in item 2.2.3.2.

$$
\begin{align*}
& \theta_{3}=\tan ^{-1} \frac{R_{1} \sin \theta_{1}-R_{2} \sin \theta_{2}}{R_{1} \cos \theta_{1}+R_{2} \cos \theta_{2}} \tag{36-2}\\
& =\tan ^{-1} \frac{\frac{1}{2 \sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}}-\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{\left|E_{c}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}}{\frac{1}{2 \sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}}+\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{\left|E_{s}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}} \\
& =\tan ^{-1} \frac{\frac{1}{2 \sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}}+\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{E_{c}(N)}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}}{\frac{1}{2 \sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}}-\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{E_{s}(N)}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}} \\
& =\tan ^{-1} \frac{G+E_{c}(N)}{-H-E_{s}(N)} \\
& =\tan ^{-1} \frac{\cos (b \log 1 / N)+\cos (b \log 3 / N)+\cos (b \log 5 / N)+\cdots+\cos (b \log N / N)}{-\{\sin (b \log 1 / N)+\sin (b \log 3 / N)+\sin (b \log 5 / N)+\cdots+\sin (b \log N / N)\}} \tag{63}
\end{align*}
$$

3.1.4 $\left\{E_{c}(N) \leq 0, E_{s}(N) \geq 0\right\}$ i.e. $\left\{E_{c}(N)=-\left|E_{c}(N)\right|, E_{s}(N)=\left|E_{s}(N)\right|\right\}$

Similarly we have the following (64) from (39-2) in item 2.2.4.2.

$$
\begin{align*}
& \theta_{3}=\tan ^{-1} \frac{R_{1} \sin \theta_{1}-R_{2} \sin \theta_{2}}{R_{1} \cos \theta_{1}-R_{2} \cos \theta_{2}} \tag{39-2}\\
& =\tan ^{-1} \frac{\frac{1}{2 \sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}}-\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{\left|E_{c}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}}{\frac{1}{2 \sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}}-\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{\left|E_{s}(N)\right|}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}} \\
& =\tan ^{-1} \frac{\frac{1}{2 \sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}}+\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{E_{c}(N)}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}}{\frac{1}{2 \sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}}-\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \frac{E_{s}(N)}{\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}}} \\
& =\tan ^{-1} \frac{G+E_{c}(N)}{-H-E_{s}(N)} \\
& =\tan ^{-1} \frac{\cos (b \log 1 / N)+\cos (b \log 3 / N)+\cos (b \log 5 / N)+\cdots+\cos (b \log N / N)}{-\{\sin (b \log 1 / N)+\sin (b \log 3 / N)+\sin (b \log 5 / N)+\cdots+\sin (b \log N / N)\}} \tag{64}
\end{align*}
$$

3.1.5 We have the following (65) from the above (61), (62), (63) and (64).

$$
\begin{equation*}
\theta_{3}=\tan ^{-1} \frac{\cos (b \log 1 / N)+\cos (b \log 3 / N)+\cos (b \log 5 / N)+\cdots+\cos (b \log N / N)}{-\{\sin (b \log 1 / N)+\sin (b \log 3 / N)+\sin (b \log 5 / N)+\cdots+\sin (b \log N / N)\}} \tag{65}
\end{equation*}
$$

3.2 If we add 2 sine functions which have the common term β, the result becomes
another sine function which has the common term β like the following (66). R_{Z} and θ_{Z} are culculated like the following (66-1) and (66-2) from the following (Figure $5)$.

$$
\begin{align*}
& R_{X} \sin \left(\beta-\theta_{X}\right)+R_{Y} \sin \left(\beta-\theta_{Y}\right)=R_{Z} \sin \left(\beta-\theta_{Z}\right) \tag{66}\\
& R_{Z}=\sqrt{R_{X}^{2}+R_{Y}^{2}-2 R_{X} R_{Y} \cos \left(\pi+\theta_{X}-\theta_{Y}\right)} \tag{66-1}\\
& \theta_{Z}=\tan ^{-1} \frac{R_{X} \sin \theta_{X}+R_{Y} \sin \theta_{Y}}{R_{X} \cos \theta_{X}+R_{Y} \cos \theta_{Y}} \tag{66-2}
\end{align*}
$$

Figure 5 : Sum of 2 sine functions
3.3 In the following (67-2) each sine function has the common term $\beta=b \log N$. And the sum of $(N+1) / 2$ sine functions becomes one sine function which has β, L and M like the following (67-3). L and M do not depend on β because R_{Z} and θ_{Z} do not depend on β but on R_{X}, R_{Y}, θ_{X} and θ_{Y} as shown in the above (66-1) and (66-2).

$$
\begin{align*}
- & \{\sin (b \log 1 / N)+\sin (b \log 3 / N)+\sin (b \log 5 / N)+\cdots+\sin (b \log N / N)\} \tag{67-1}\\
= & \sin (b \log N-b \log 1)+\sin (b \log N-b \log 3)+\sin (b \log N-b \log 5) \\
& +\cdots+\sin (b \log N-b \log N) \tag{67-2}\\
= & L \sin (b \log N-M) \tag{67-3}
\end{align*}
$$

3.4 In the following (68-3) each sine function has the common term $\gamma=b \log N+\pi / 2$. And the sum of $(N+1) / 2$ sine functions becomes one sine function which has γ, L and M like the following (68-4). Because L and M do not depend on common term β or γ but on R_{X}, R_{Y}, θ_{X} and θ_{Y} and each sine function in (67-2) has the same R_{X}, R_{Y}, θ_{X} and θ_{Y} as in (68-3).

$$
\begin{align*}
& \cos (b \log 1 / N)+\cos (b \log 3 / N)+\cos (b \log 5 / N)+\cdots+\cos (b \log N / N) \tag{68-1}\\
& =\cos (b \log N-b \log 1)+\cos (b \log N-b \log 3)+\cos (b \log N-b \log 5)+ \\
& \quad+\cdots+\cos (b \log N-b \log N) \tag{68-2}\\
& =\sin (b \log N+\pi / 2-b \log 1)+\sin (b \log N+\pi / 2-b \log 3) \\
& \quad+\sin (b \log N+\pi / 2-b \log 5)+\cdots+\sin (b \log N+\pi / 2-b \log N) \tag{68-3}\\
& =L \sin (b \log N+\pi / 2-M)=L \cos (b \log N-M) \tag{68-4}
\end{align*}
$$

3.5 From the above (65), (67-1,2,3) and (68-1,2,3,4) we have the following (70).

$$
\begin{align*}
\theta_{3}=\tan ^{-1} & \frac{\cos (b \log 1 / N)+\cos (b \log 3 / N)+\cos (b \log 5 / N)+\cdots+\cos (b \log N / N)}{-\{\sin (b \log 1 / N)+\sin (b \log 3 / N)+\sin (b \log 5 / N)+\cdots+\sin (b \log N / N)\}} \\
& =\tan ^{-1} \frac{L \cos (b \log N-M)}{L \sin (b \log N-M)}=\tan ^{-1} \cot (b \log N-M) \\
& =\tan ^{-1} \tan (\pi / 2+M-b \log N) \\
& =\pi / 2+M-b \log N+K_{1} \pi
\end{align*} \quad\left(K_{1}: \text { integer }\right) ~ \$
$$

3.6 We consider that b is (type2 irrational mumber) and has the term of $\frac{A \pi}{\log N_{2} / 2}$ like the following (71). If b is (type1 irrational mumber), $E=0$ holds.
$b=($ type 2 irrational number $)$
$=($ rational number $)+($ type1 irrational number $)$
$=E+\frac{A \pi}{\log N_{2} / 2}+F$
(E, A : rational number F : type1 irational number)
3.7 From (52) and the above (70) and (71) we have the following (72) at $N=N_{2}$.
left side of $(52)=b \log N_{2} / 2+\theta_{3}$

$$
\begin{align*}
& =\left(E+\frac{A \pi}{\log N_{2} / 2}+F\right) \log \frac{N_{2}}{2}+\frac{\pi}{2}+M-\left(E+\frac{A \pi}{\log N_{2} / 2}+F\right) \log N_{2}+K_{1} \pi \\
& =A \pi-(E+F) \log 2-\frac{A \pi \log N_{2}}{\log N_{2} / 2}+\frac{\pi}{2}+M+K_{1} \pi \\
& =\pi\left\{\frac{1}{2}+K_{1}-\frac{A \log 2}{\log N_{2} / 2}+\frac{M-(E+F) \log 2}{\pi}\right\}=J \pi \tag{72}
\end{align*}
$$

$A, E:($ rational number $) \quad F:\left(\right.$ type1 irrational number) $\quad K_{1}:$ (integer) M : the value of arctangent function which has the range of $-\pi / 2<M<\pi / 2 \quad N_{2}$: (odd number)
3.8 In order for $J=K$ to hold in the above (72) the following (73-1) and (73-2) must hold.

$$
\begin{align*}
& J=\frac{1}{2}+K_{1}-\frac{A \log 2}{\log N_{2} / 2}+\frac{M-(E+F) \log 2}{\pi}=K \quad(K: \text { integer }) \tag{73-1}\\
& \frac{M-(E+F) \log 2}{\pi}-\frac{A \log 2}{\log N_{2} / 2}=K-K_{1}-\frac{1}{2} \tag{73-2}
\end{align*}
$$

$\frac{A \log 2}{\log N_{2} / 2}$ is (irrational number) and $\left(K-K_{1}-1 / 2\right)$ is (rational number). If $\frac{M-(E+F) \log 2}{\pi}$ is (rational number), the above (73-2) becomes the following (73-3) and this equation does not hold.

$$
\begin{equation*}
(\text { rational number })-(\text { irrational number })=(\text { rational number }) \tag{73-3}
\end{equation*}
$$

If $\frac{M-(E+F) \log 2}{\pi}$ is (irrational number), the following (74-1), (74-2) and (74-3) must hold in order for (73-2) to hold.

$$
\begin{align*}
& \frac{M-(E+F) \log 2}{\pi}=\left(\text { rational number }: P_{1}\right)+(\text { irrational number }: Q) \tag{74-1}\\
& \frac{A \log 2}{\log N_{2} / 2}=\left(\text { rational number }: P_{2}\right)+(\text { irrational number }: Q) \tag{74-2}\\
& P_{1}-P_{2}=K-K_{1}-1 / 2 \tag{74-3}
\end{align*}
$$

But $\frac{A \log 2}{\log N_{2} / 2}$ cannot be divided into (rational number) and (irrational number) like the above (74-2).
Then the above (73-3) and (74-2) do not hold i.e. (73-2) does not hold. Therefor (73-1) i.e. $J=K$ does not hold.
3.9 Now we can confim that the following (52) in item 2.3.1 does not hold at $N=N_{2}$ when (condition 2) holds.

$$
\begin{equation*}
b \log N / 2+\theta_{3}=K \pi \quad(K: \text { integer }) \tag{52}
\end{equation*}
$$

Appendix 4. : Proof of $\lim _{N \rightarrow \infty} \frac{g(k, N)}{g(2, N)}=1$
From (24-5) in item 2.1.3 we have the following (75).

$$
\begin{align*}
& \frac{g(k, N)}{g(2, N)} \\
& =\frac{\frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}}+N \cos \left(b \log \frac{N}{k}\right) E_{c}(N)-N \sin \left(b \log \frac{N}{k}\right) E_{s}(N)}{\frac{N \sin \left(b \log N / 2+\tan ^{-1} 1 / b\right)}{2 \sqrt{1+b^{2}}}+N \cos \left(b \log \frac{N}{2}\right) E_{c}(N)-N \sin \left(b \log \frac{N}{2}\right) E_{s}(N)} \\
= & \frac{\sin \left(b \log \frac{N}{k}+\tan ^{-1} \frac{1}{b}\right)+2 \sqrt{1+b^{2}}\left\{\cos \left(b \log \frac{N}{k}\right) E_{c}(N)-\sin \left(b \log \frac{N}{k}\right) E_{s}(N)\right\}}{\sin \left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)+2 \sqrt{1+b^{2}}\left\{\cos \left(b \log \frac{N}{2}\right) E_{c}(N)-\sin \left(b \log \frac{N}{2}\right) E_{s}(N)\right\}} \\
= & \frac{\sin \left\{\frac{b \log N / k+\tan ^{-1} 1 / b}{b \log N / 2+\tan ^{-1} 1 / b}\left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)\right\}+2 \sqrt{1+b^{2}}\left\{\cos \left(b \log \frac{N}{k}\right) E_{c}(N)-\sin \left(b \log \frac{N}{k}\right) E_{s}(N)\right\}}{\sin \left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)+2 \sqrt{1+b^{2}}\left\{\cos \left(b \log \frac{N}{2}\right) E_{c}(N)-\sin \left(b \log \frac{N}{2}\right) E_{s}(N)\right\}} \tag{75}
\end{align*}
$$

We can confirm that the following (76) holds from the above (75), the following (77) and the following (23) shown in item 2.1.2.

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \frac{g(k, N)}{g(2, N)}=\frac{\sin \left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)}{\sin \left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)}=1 \quad\left(N_{1}<N \quad N: \text { odd number }\right) \tag{76}\\
& \lim _{N \rightarrow \infty} \frac{b \log \frac{N}{k}+\tan ^{-1} \frac{1}{b}}{b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}}=\lim _{N \rightarrow \infty} \frac{1-\frac{\log k}{\log N}+\frac{\tan ^{-1} 1 / b}{b \log N}}{1-\frac{\log 2}{\log N}+\frac{\tan ^{-1} 1 / b}{b \log N}}=1 \tag{77}\\
& \lim _{N \rightarrow \infty} E_{c}(N)=0 \quad \lim _{N \rightarrow \infty} E_{s}(N)=0 \tag{23}
\end{align*}
$$

Appendix 5. : Solution for $F(a)=0$

5.1. Preparation for verification of $\boldsymbol{F}(a)>0$

5.1.1. Investigation of $f(n)$

$$
\begin{align*}
& f(n)=\frac{1}{n^{1 / 2-a}}-\frac{1}{n^{1 / 2+a}} \geq 0 \quad(n=2,3,4,5, \cdots \cdots) \tag{8}\\
& F(a)=f(2)-f(3)+f(4)-f(5)+f(6)-\cdots \cdots \tag{15}
\end{align*}
$$

$a=0$ is the solution for $F(a)=0$ due to $f(n) \equiv 0$ at $a=0$. Hereafter we define the range of a as $0<a<1 / 2$ to verify $F(a)>0$. The alternating series $F(a)$ converges due to $\lim _{n \rightarrow \infty} f(n)=0$.
We have the following (81) by differentiating $f(n)$ regarding n.

$$
\begin{equation*}
\frac{d f(n)}{d n}=\frac{1 / 2+a}{n^{a+3 / 2}}-\frac{1 / 2-a}{n^{3 / 2-a}}=\frac{1 / 2+a}{n^{a+3 / 2}}\left\{1-\left(\frac{1 / 2-a}{1 / 2+a}\right) n^{2 a}\right\} \tag{81}
\end{equation*}
$$

The value of $f(n)$ increases with increase of n and reaches the maximum value $f\left(n_{\max }\right)$ at $n=n_{\max }$. Afterward $f(n)$ decreases to zero with $n \rightarrow \infty$. $n_{\max }$ is one of the 2 consecutive natural numbers that sandwich $\left(\frac{1 / 2+a}{1 / 2-a}\right)^{\frac{1}{2 a}}$. (Graph 1) shows $f(n)$ in various value of a. At $a=1 / 2 f(n)$ does not have $f\left(n_{\max }\right)$ and increases to 1 with $n \rightarrow \infty$ due to $n_{\max }=\infty$.

Graph $1: f(n)$ in various a

5.1.2. Verification method for $\boldsymbol{F}(\boldsymbol{a})>\mathbf{0}$

We define $F(a, n)$ as the following (82).
$F(a, n)=f(2)-f(3)+f(4)-f(5)+\cdots+(-1)^{n} f(n) \quad(n=2,3,4,5, \cdots \cdots)$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F(a, n)=F(a) \tag{83}
\end{equation*}
$$

$F(a)$ is an alternating series. So $F(a, n)$ repeats increase and decrease by $f(n)$ with increase of n as shown in (Graph 2). In (Graph 2) upper points mean $F(a, 2 m) \quad(m=$ $1,2,3, \cdots \cdots)$ and lower points mean $F(a, 2 m+1) . F(a, 2 m)$ decreases and converges to $F(a)$ with $m \rightarrow \infty . F(a, 2 m+1)$ increases and also converges to $F(a)$ with $m \rightarrow \infty$ due to $\lim _{n \rightarrow \infty} f(n)=0$. From the above (83) we have the following (84).

$$
\begin{equation*}
\lim _{m \rightarrow \infty} F(a, 2 m)=\lim _{m \rightarrow \infty} F(a, 2 m+1)=F(a) \tag{84}
\end{equation*}
$$

Graph $2: F(0.1, n)$ from 1st to 100 th term

We define $F 1(a)$ and $F 1(a, 2 m+1)$ as follws.

$$
\begin{align*}
& F 1(a)=\{f(2)-f(3)\}+\{f(4)-f(5)\}+\{f(6)-f(7)\}+\cdots \cdots \tag{85}\\
& F 1(a, 2 m+1)=\{f(2)-f(3)\}+\{f(4)-f(5)\}+\cdots+\{f(2 m)-f(2 m+1)\} \\
& =f(2)-f(3)+f(4)-f(5)+\cdots+f(2 m)-f(2 m+1)=F(a, 2 m+1) \tag{86}\\
& \lim _{m \rightarrow \infty} F 1(a, 2 m+1)=F 1(a) \tag{87}
\end{align*}
$$

From the above (84), (86) and (87) we have $F(a)=F 1(a)$. We can use $F 1(a)$ instead of $F(a)$ to verify $F(a)>0$.
We enclose 2 terms of $F(a)$ each from the first term with $\left\}\right.$ as follows. If $n_{\max }$ is p or $p+1$ (p : odd number) , the inside sum of $\}$ from $f(2)$ to $f(p)$ has negative value and the inside sum of $\}$ after $f(p+1)$ has positive value.

$$
\begin{aligned}
& F(a)=f(2)-f(3)+f(4)-f(5)+f(6)-f(7)+\cdots \cdots \\
& =\{f(2)-f(3)\}+\{f(4)-f(5)\}+\cdots+\{f(p-1)-f(p)\}+\{f(p+1)-f(p+2)\}+\cdots \cdots
\end{aligned}
$$

$$
\begin{aligned}
& (\text { inside sum of }\})<0 \longleftarrow \mid \longrightarrow(\text { inside sum of }\{ \})>0 \\
& (\text { total sum of }\})=-B \longleftarrow \mid \longrightarrow(\text { total sum of }\{ \})=A
\end{aligned}
$$

We define as follows.
[the partial sum from $f(2)$ to $f(p)]=-B<0$
[the partial sum from $f(p+1)$ to $f(\infty)]=A>0$
$F(a)=A-B$
So we can verify $F(a)>0$ by verifying $A>B$.

5.1.3. Investigation of $\{f(n)-f(n+1)\}$

We have the following (89) by differentiating $\{f(n)-f(n+1)\}$ regarding n.

$$
\begin{align*}
& \frac{d f(n)}{d n}-\frac{d f(n+1)}{d n}=\frac{1 / 2+a}{n^{3 / 2+a}}\left\{1-\left(\frac{n}{n+1}\right)^{3 / 2+a}\right\}-\frac{1 / 2-a}{n^{3 / 2-a}}\left\{1-\left(\frac{n}{n+1}\right)^{3 / 2-a}\right\} \\
& =C(n)-D(n) \tag{89}
\end{align*}
$$

When n is a small natural number the value of $\{f(n)-f(n+1)\}$ increases with increase of n due to $C(n)>D(n)$. With increase of n the value reaches the maximum value $\left\{q_{\max }\right\}$ at $C(n) \risingdotseq D(n)$. (n is a natural number. The situation cannot be $C(n)=D(n)$.) After that the situation changes to $C(n)<D(n)$ and the value decreases to zero with $n \rightarrow \infty$. (Graph 3) shows the value of $\{f(n)-f(n+1)\}$ in various value of a. (Graph 4) shows the value of $\{f(n)-f(n+1)\}$ at $a=0.1$. We can find the following from (Graph 3) and (Graph 4).
5.1.3.1 When $\left|\frac{d f(n)}{d n}\right|$ becomes the maximum value $|f(n)-f(n+1)|$ also becomes the maximum value at same value of a. From (Graph 1) we can find that $\left|\frac{d f(n)}{d n}\right|$ becomes the maximum value at $n=2$. Therefore the maximum value of $|f(n)-f(n+1)|$ is $\{f(3)-f(2)\}$ at same value of a as shown in (Graph 3).
5.1.3.2 With increase of n the sign of $\{f(n)-f(n+1)\}$ changes from minus to plus at $n=n_{\max }\left(n=n_{\max }+1\right)$ when $n_{\max }$ is even(odd) number as shown in (Graph 4).
5.1.3.3 After that the value reaches the maximum value $\left\{q_{\max }\right\}$ and the value decreases to zero with $n \rightarrow \infty$ as shown in (Graph 4).

Graph $3:\{f(n)-f(n+1)\}$ in various a

Graph $4:\{f(n)-f(n+1)\}$ at $a=0.1$

5.2. Verification of $A>B$ ($n_{\max }$ is odd number.)

$n_{\max }$ is odd number as follows.
$F(a)=f(2)-f(3)+f(4)-f(5)+f(6)-\cdots \cdots$
$=\{f(2)-f(3)\}+\{f(4)-f(5)\}+\cdots+\left\{f\left(n_{\max }-3\right)-f\left(n_{\max }-2\right)\right\}+\left\{f\left(n_{\max }-1\right)-f\left(n_{\max }\right)\right\}$
$+\left\{f\left(n_{\max }+1\right)-f\left(n_{\max }+2\right)\right\}+\left\{f\left(n_{\max }+3\right)-f\left(n_{\max }+4\right)\right\}+\left\{f\left(n_{\max }+5\right)-f\left(n_{\max }+6\right)\right\}+\cdots \cdots$

We can have A and B as follows.
$B=\{f(3)-f(2)\}+\{f(5)-f(4)\}+\{f(7)-f(6)\}+\cdots+\left\{f\left(n_{\max }-2\right)-f\left(n_{\max }-3\right)\right\}+\left\{f\left(n_{\max }\right)-f\left(n_{\max }-1\right)\right\}$
$A=\left\{f\left(n_{\max }+1\right)-f\left(n_{\max }+2\right)\right\}+\left\{f\left(n_{\max }+3\right)-f\left(n_{\max }+4\right)\right\}+\left\{f\left(n_{\max }+5\right)-f\left(n_{\max }+6\right)\right\}+\cdots \cdots$

5.2.1. Condition for B

We define as follows.
$\{\quad\}$: the term which is included within B.
$\{\square$: the term which is not included within B.
We have the following (90).

$$
\begin{align*}
f\left(n_{\max }\right)-f(2)= & \left\{f\left(n_{\max }\right)-f\left(n_{\max }-1\right)\right\}+\left\{f\left(n_{\max }-1\right)-f\left(n_{\max }-2\right)\right\}+\left\{f\left(n_{\max }-2\right)-f\left(n_{\max }-3\right)\right\} \\
& +\cdots+\{f(7)-f(6)\}+\{f(6)-f(5)\}+\{f(5)-f(4)\}+\{f(4)-f(3)\}+\{f(3)-f(2)\} \tag{90}
\end{align*}
$$

And we have the following inequalities from (Graph 3) and (Graph 4).
$\{f(3)-f(2)\}>\{f(4)-f(3)\}>\{f(5)-f(4)\}>\{f(6)-f(5)\}>\{f(7)-f(6)\}>\cdots \cdots$

$$
>\left\{f\left(n_{\max }-2\right)-f\left(n_{\max }-3\right)\right\}>\left\{f\left(n_{\max }-1\right)-f\left(n_{\max }-2\right)\right\}>\left\{f\left(n_{\max }\right)-f\left(n_{\max }-1\right)\right\}>0
$$

From the above (90) we have the following (91).
$f\left(n_{\max }\right)-f(2)+\{f(3)-f(2)\}$
$=\{f(3)-f(2)\}+\{f(5)-f(4)\}+\{f(7)-f(6)\}+\cdots+\left\{f\left(n_{\max }-2\right)-f\left(n_{\text {max }}-3\right)\right\}+\left\{f\left(n_{\max }\right)-f\left(n_{\text {max }}-1\right)\right\}$
$\stackrel{\|}{\|} \stackrel{\wedge}{\| f(3)-f(2)\}+\{f(4)-f(3)\}+\{f(6)-f(5)\}+\cdots+\left\{f\left(n_{\max }-3\right)-f\left(n_{\max }-4\right)\right\}+\left\{f\left(n_{\max }-1\right)-f\left(n_{\max }-2\right)\right\}}$
$>2 B$
Due to [Total sum of upper row of the above (91) $=B<$ Total sum of lower row of (91)] we have the following (92).

$$
\begin{equation*}
f\left(n_{\max }\right)-f(2)+\{f(3)-f(2)\}>2 B \tag{92}
\end{equation*}
$$

5.2.2. Condition for $\boldsymbol{A}\left(\left\{q_{\max }\right\}\right.$ is included within A.)

We abbreviate $\left\{f\left(n_{\max }+q\right)-f\left(n_{\max }+q+1\right)\right\}$ to $\{q\}$ for easy description. $(q=0,1,2,3, \cdots \cdots)$ All $\{q\}$ has positive value as shown in item 5.1.2.
We define as follows.
$\{\quad$ \} : the term which is included within A.
$\{\square\}$: the term which is not included within A.
$\left\{q_{\max }\right\}$ has the maximum value in all $\{q\}$. And $\left\{q_{\max }\right\}$ is included within A. Then value comparison of $\{q\}$ is as follows.
$\{1\}<\{2\}<\{3\}<\cdots<\left\{q_{\max }-3\right\}<\left\{q_{\max }-2\right\}<\left\{q_{\max }-1\right\}<\left\{q_{\max }\right\}>\left\{q_{\max }+1\right\}>\left\{q_{\max }+2\right\}>\left\{q_{\max }+3\right\}>\cdots \cdots$
We have the following (93).
$f\left(n_{\max }+1\right)=\left\{f\left(n_{\max }+1\right)-f\left(n_{\max }+2\right)\right\}+\left\{f\left(n_{\max }+2\right)-f\left(n_{\max }+3\right)\right\}+\left\{f\left(n_{\max }+3\right)-f\left(n_{\max }+4\right)\right\}$
$+\left\{f\left(n_{\max }+4\right)-f\left(n_{\max }+5\right)\right\}+\cdots \cdots$

$$
\begin{equation*}
=\{1\}+\{2\}+\{3\}+\{4\}+\cdots+\left\{q_{\max }-3\right\}+\left\{q_{\max }-2\right\}+\left\{q_{\max }-1\right\}+\left\{q_{\max }\right\}+\left\{q_{\max }+1\right\}+\left\{q_{\max }+2\right\}+\left\{q_{\max }+3\right\}+\cdots \cdots \tag{93}
\end{equation*}
$$

From the above (93) we have the following (94).

$$
\begin{align*}
& f\left(n_{\max }+1\right)-\left\{q_{\max }-1\right\} \\
& =\{1\}+\{2\}+\{3\}+\{4\}+\cdots+\left\{q_{\max }-3\right\}+\left\{q_{\max }-2\right\}+\left\{q_{\max }\right\}+\left\{q_{\max }+1\right\}+\left\{q_{\max }+2\right\}+\left\{q_{\max }+3\right\}+\cdots \cdots \tag{94}\\
& \quad \leftarrow \cdots \cdots \cdots \cdots \cdot \text { Range } 1 \cdots \cdots \cdots \cdots \cdots \rightarrow \mid \leftarrow \cdots \cdots \cdots \cdots \cdot \text { Range } 2 \cdots \cdots \cdots \cdots \cdots
\end{align*}
$$

(Range 1) and (Range 2) are determined as above. In (Range 1) value comparison is as follows.

$$
\{1\}<\{2\}<\{3\}<\{4\}<\cdots<\left\{q_{\max }-4\right\}<\left\{q_{\max }-3\right\}<\left\{q_{\max }-2\right\}
$$

And we can find the following.
Total sum of $\{\square\}=\{1\}+\{3\}+\{5\}+\{7\}+\cdots+\left\{q_{\max }-4\right\}+\left\{q_{\max }-2\right\}$
Total sum of $\{\square\}=\{2\}+\{4\}+\{6\}+\cdots+\left\{q_{\text {max }}-5\right\}+\left\{q_{\text {max }}-3\right\}$
Therefore [Total sum of $\{\square\}>$ Total sum of $\{\square\}$] holds. In (Range 2) value comparison is as follows.

$$
\left\{q_{\max }\right\}>\left\{q_{\max }+1\right\}>\left\{q_{\max }+2\right\}>\left\{q_{\max }+3\right\}>\left\{q_{\max }+4\right\}>\left\{q_{\max }+5\right\}>\left\{q_{\max }+6\right\}>\cdots \cdots
$$

And we can find the following.
Total sum of $\{\square\}=\frac{\left\{q_{\max }\right\}}{\vee}+\frac{\left\{q_{\max }+2\right\}}{\vee}+\frac{\left\{q_{\max }+4\right\}}{\vee}+\frac{\left\{q_{\max }+6\right\}}{V}+\cdots .$.
Total sum of $\{\quad\}=\left\{q_{\max }+1\right\}+\left\{q_{\max }+3\right\}+\left\{q_{\max }+5\right\}+\left\{q_{\max }+7\right\}+\cdots \cdots$.
Therefore [Total sum of $\{\square\}>$ Total sum of $\{\square\}$] holds.
In (Range 1) + (Range 2) we have [Total sum of $\{\square\}=A>$ Total sum of $\{\square\}$]. We have the following (95).

$$
\begin{equation*}
f\left(n_{\max }+1\right)-\left\{q_{\max }-1\right\}<2 A \tag{95}
\end{equation*}
$$

5.2.3. Condition for A ($\left\{q_{\max }\right\}$ is not included within A.)

We have the following (96). $\left\{q_{\max }\right\}$ is not included within A.

$$
\begin{align*}
& f\left(n_{\max }+1\right)=\left\{f\left(n_{\max }+1\right)-f\left(n_{\max }+2\right)\right\}+\left\{f\left(n_{\max }+2\right)-f\left(n_{\max }+3\right)\right\}+\left\{f\left(n_{\max }+3\right)-f\left(n_{\max }+4\right)\right\} \\
& \quad+\left\{f\left(n_{\max }+4\right)-f\left(n_{\max }+5\right)\right\}+\cdots \cdots \\
& =\{1\}+\{2\}+\{3\}+\{4\}+\cdots+\left\{q_{\max }-3\right\}+\left\{q_{\max }-2\right\}+\left\{q_{\max }-1\right\}+\left\{q_{\max }\right\}+\left\{q_{\max }+1\right\}+\left\{q_{\max }+2\right\}+\left\{q_{\max }+3\right\}+\cdots \cdots \tag{96}
\end{align*}
$$

From the above (96) we have the following (97).

$$
\begin{align*}
& f\left(n_{\max }+1\right)-\left\{q_{\text {max }}\right\} \\
& =\{1\}+\{2\}+\{3\}+\{4\}+\cdots+\left\{q_{\max }-3\right\}+\left\{q_{\max }-2\right\}+\left\{q_{\max }-1\right\}+\left\{q_{\max }+1\right\}+\left\{q_{\max }+2\right\}+\left\{q_{\max }+3\right\}+\cdots \cdots \tag{97}\\
& \text { Range } 1 \cdots \cdots \cdots \cdots \cdots \rightarrow \mid \leftarrow \cdots \cdots \cdots \cdot \text { Range } 2 \ldots \ldots \ldots
\end{align*}
$$

(Range 1) and (Range 2) are determined as above. In (Range 1) value comparison is as follows.

$$
\{1\}<\{2\}<\{3\}<\{4\}<\cdots<\left\{q_{\max }-4\right\}<\left\{q_{\max }-3\right\}<\left\{q_{\max }-2\right\}<\left\{q_{\max }-1\right\}
$$

And we can find the following.

Therefore [Total sum of $\{\square\}>$ Total sum of $\{\square\}$] holds.
In (Range 2) value comparison is as follows.

$$
\left\{q_{\max }+1\right\}>\left\{q_{\max }+2\right\}>\left\{q_{\max }+3\right\}>\left\{q_{\max }+4\right\}>\left\{q_{\max }+5\right\}>\left\{q_{\max }+6\right\}>\left\{q_{\max }+7\right\}>\cdots \cdots
$$

And we can find the following.

Therefore [Total sum of $\{\square \quad\}>$ Total sum of $\{\square\}$] holds.
In (Range 1) + (Range 2) we have [Total sum of $\{\square\}=A>$ Total sum of $\{\square\}$].
We have the following (98).

$$
\begin{equation*}
f\left(n_{\max }+1\right)-\left\{q_{\max }\right\}<2 A \tag{98}
\end{equation*}
$$

5.2.4. Condition for $A>B$

From (95) and (98) we have the following inequality.

$$
f\left(n_{\max }+1\right)-\left[\left\{q_{\max }\right\} \text { or }\left\{q_{\max }-1\right\}\right]<2 A
$$

As shown in item 5.1.3.1 $\{f(3)-f(2)\}$ is the maximum in all $|f(n)-f(n+1)|$. Then the following holds.

$$
\begin{aligned}
& \{f(3)-f(2)\}>\left[\left\{q_{\max }\right\} \text { or }\left\{q_{\max }-1\right\}\right] \\
& \{f(3)-f(2)\}>f\left(n_{\max }\right)-f\left(n_{\max }+1\right)
\end{aligned}
$$

We have the following inequality from the above 3 inequalities.

$$
\begin{align*}
2 A & >f\left(n_{\max }+1\right)-\left[\left\{q_{\max }\right\} \text { or }\left\{q_{\max }-1\right\}\right]>f\left(n_{\max }+1\right)-\{f(3)-f(2)\} \\
& >f\left(n_{\max }\right)-\{f(3)-f(2)\}-\{f(3)-f(2)\}=f\left(n_{\max }\right)-2\{f(3)-f(2)\} \tag{99}
\end{align*}
$$

We have the following (100) for $A>B$ from (92) and (99).

$$
\begin{equation*}
2 A>f\left(n_{\max }\right)-2\{f(3)-f(2)\}>f\left(n_{\max }\right)-f(2)+\{f(3)-f(2)\}>2 B \tag{100}
\end{equation*}
$$

From the above (100) we can have the final condition for $A>B$ as follows.

$$
\begin{equation*}
(4 / 3) f(2)>f(3) \tag{101}
\end{equation*}
$$

(Graph 5) shows $(4 / 3) f(2)-f(3)=(4 / 3)\left(\frac{1}{2^{1 / 2-a}}-\frac{1}{2^{1 / 2+a}}\right)-\left(\frac{1}{3^{1 / 2-a}}-\frac{1}{3^{1 / 2+a}}\right)$.

Graph $5:(4 / 3) f(2)-f(3)$

a	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
$(4 / 3) f(2)-f(3)$	0	0.001903	0.003694	0.005257	0.00648	0.007246	0.007437	0.006933	0.005611	0.003343	0

Table 1: The values of $(4 / 3) f(2)-f(3)$
(Graph 6) shows [differentiated $\{(4 / 3) f(2)-f(3)\}$ regarding a] i.e. $(4 / 3) f^{\prime}(2)-f^{\prime}(3)=$ $(4 / 3)\left\{\log 2\left(\frac{1}{2^{1 / 2-a}}+\frac{1}{2^{1 / 2+a}}\right)\right\}-\left\{\log 3\left(\frac{1}{3^{1 / 2-a}}+\frac{1}{3^{1 / 2+a}}\right)\right\}$.

Graph $6:(4 / 3) f^{\prime}(2)-f^{\prime}(3)$

a	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
$(4 / 3) f^{\prime}(2)-f^{\prime}(3)$	0.038443	0.037313	0.033921	0.02825	0.020277	0.009967	-0.00272	-0.01785	-0.03547	-0.05567	-0.07852

Table 2 : The values of $(4 / 3) f^{\prime}(2)-f^{\prime}(3)$
From (Graph 5) and (Graph 6) we can find [(4/3)f(2)-f(3)>0 in $0<a<1 / 2$] that means $A>B$ i.e. $F(a)>0$ in $0<a<1 / 2$.

5.3. Verification of $A>B \quad\left(n_{\max }\right.$ is even number.)

$n_{\max }$ is even number as follows.

$$
\begin{aligned}
& F(a)=f(2)-f(3)+f(4)-f(5)+f(6)-\cdots \cdots \\
& =\{f(2)-f(3)\}+\{f(4)-f(5)\}+\cdots+\left\{f\left(n_{\max }-4\right)-f\left(n_{\max }-3\right)\right\}+\left\{f\left(n_{\max }-2\right)-f\left(n_{\max }-1\right)\right\} \\
& +\left\{f\left(n_{\max }\right)-f\left(n_{\max }+1\right)\right\}+\left\{f\left(n_{\max }+2\right)-f\left(n_{\max }+3\right)\right\}+\left\{f\left(n_{\max }+4\right)-f\left(n_{\max }+5\right)\right\}+\cdots \cdots
\end{aligned}
$$

We can have A and B as follows.

$$
\begin{aligned}
& B=\{f(3)-f(2)\}+\{f(5)-f(4)\}+\{f(7)-f(6)\} \\
&+\cdots+\left\{f\left(n_{\max }-3\right)-f\left(n_{\max }-4\right)\right\}+\left\{f\left(n_{\max }-1\right)-f\left(n_{\max }-2\right)\right\} \\
& A=\left\{f\left(n_{\max }\right)-f\left(n_{\max }+1\right)\right\}+\left\{f\left(n_{\max }+2\right)-f\left(n_{\max }+3\right)\right\}+\left\{f\left(n_{\max }+4\right)-f\left(n_{\max }+5\right)\right\}+\cdots \cdots \\
& f\left(n_{\max }\right)=\left\{f\left(n_{\max }\right)-f\left(n_{\max }+1\right)\right\}+\left\{f\left(n_{\max }+1\right)-f\left(n_{\max }+2\right)\right\}+\left\{f\left(n_{\max }+2\right)-f\left(n_{\max }+3\right)\right\} \\
& \quad+\left\{f\left(n_{\max }+3\right)-f\left(n_{\max }+4\right)\right\}+\cdots \cdots \\
&=\{0\}+\{1\}+\{2\}+\{3\}+\{4\} \\
&+ \cdots+\left\{q_{\max }-3\right\}+\left\{q_{\max }-2\right\}+\left\{q_{\max }-1\right\}+\left\{q_{\max }\right\}+\left\{q_{\max }+1\right\}+\left\{q_{\max }+2\right\}+\left\{q_{\max }+3\right\}+\cdots \cdots
\end{aligned}
$$

After the same process as in item 5.2.1 we can have the following (102).

$$
\begin{equation*}
f\left(n_{\max }-1\right)-f(2)+\{f(3)-f(2)\}>2 B \tag{102}
\end{equation*}
$$

As shown in item 5.1.3.1 $\{f(3)-f(2)\}$ is the maximum in all $|f(n)-f(n+1)|$. Then the following holds.

$$
\begin{aligned}
\{f(3)-f(2)\} & >\left[\left\{q_{\max }\right\} \text { or }\left\{q_{\max }-1\right\}\right] \\
f\left(n_{\max }\right) & >f\left(n_{\max }-1\right)
\end{aligned}
$$

We have the following (103) from the above inequalities and the same process as in item 5.2.2 and item 5.2.3.

$$
\begin{align*}
2 A & >f\left(n_{\max }\right)-\left[\left\{q_{\max }\right\} \text { or }\left\{q_{\max }-1\right\}\right]>f\left(n_{\max }\right)-\{f(3)-f(2)\} \\
& >f\left(n_{\max }-1\right)-\{f(3)-f(2)\} \tag{103}
\end{align*}
$$

We have the following (104) for $A>B$ from (102) and (103).

$$
\begin{equation*}
2 A>f\left(n_{\max }-1\right)-\{f(3)-f(2)\}>f\left(n_{\max }-1\right)-f(2)+\{f(3)-f(2)\}>2 B \tag{104}
\end{equation*}
$$

From (104) we can have the final condition for $A>B$ as follows.

$$
\begin{equation*}
(3 / 2) f(2)>f(3) \tag{105}
\end{equation*}
$$

In the inequality of $[(3 / 2) f(2)>(4 / 3) f(2)>f(3)>0],(3 / 2) f(2)>(4 / 3) f(2)$ is true self-evidently and in item 5.2 .4 we already confirmed that the following (101) was true in $0<a<1 / 2$.

$$
\begin{equation*}
(4 / 3) f(2)>f(3) \tag{101}
\end{equation*}
$$

Therefore the above (105) is true in $0<a<1 / 2$. Now we can confirm $F(a)>0$ in $0<a<1 / 2$.

5.4. Conclusion

As shown in item 5.2 and item $5.3[F(a)>0$ in $0<a<1 / 2]$ is true. Therefore $F(a)=0$ has the only solution of $a=0$ from $[0 \leq a<1 / 2]$ and $[F(0)=0]$.

5.5. Graph of $\boldsymbol{F}(a)$

We can approximate $F(a)$ with the average of $\{F(a, n-1)+F(a, n)\} / 2$. But we approximate $F(a)$ by the following (106) for better accuracy. (Graph 7) shows $F(a)_{n}$ calculated at 3 cases of $n=500,1000,5000$.

$$
\begin{equation*}
\frac{\frac{F(a, n-1)+F(a, n)}{2}+\frac{F(a, n)+F(a, n+1)}{2}}{2}=F(a)_{n} \tag{106}
\end{equation*}
$$

Graph 7: $F(a)_{n}$ at 3 cases

a	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
$\mathrm{n}=500$	0	0.01932876	0.03865677	0.05798326	0.0773074	0.09662832	0.11594507	0.13525658	0.15456168	0.17385904	0.19314718
$\mathrm{n}=1,000$	0	0.01932681	0.03865282	0.05797725	0.0772993	0.09661821	0.11593325	0.13524382	0.15454955	0.17385049	0.19314743
$\mathrm{n}=5,000$	0	0.01932876	0.03865676	0.05798324	0.07730738	0.09662829	0.11594504	0.13525655	0.15456165	0.17385902	0.19314718

Table 3: The values of $F(a)_{n}$ at 3 cases

3 line graphs overlapped. Because $F(a)_{n}$ calculated at 3 cases of $n=500,1000,5000$ are equal to 4 digits after the decimal point. The range of a is $0 \leq a<1 / 2 . a=1 / 2$ is not included in the range. But we added $F(1 / 2)_{n}$ to calculation due to the following reason. [$f(n)$ at $a=1 / 2$] is $(1-1 / n)$ and $F(1 / 2)$ fluctuates due to $\lim _{n \rightarrow \infty} f(n)=1$. But the value of the above (106) converges to the fixed value on the condition of $\lim _{n \rightarrow \infty}\{f(n+1)-f(n)\}=0$. The condition holds due to $f(n+1)-f(n)=1 /\left(n+n^{2}\right)$.
$F(a)$ is a monotonically increasing function as shown in (Graph 7). So $F(a)=0$ has the only solution and the solution must be $a=0$ due to the following facts. Therefore Riemann hypothesis must be true.
5.5.1 In 1914 G. H.Hardy proved that there are infinite non-trivial zero points on the line of $\operatorname{Re}(s)=1 / 2$.
5.5.2 All non-trivial zero points found until now exist on the line of $\operatorname{Re}(s)=1 / 2$.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

[1] Yukio Kusunoki, Introduction to infinite series, Asakura syoten, (1972), page 22, (written in Japanese)

Toshihiko Ishiwata

E-mail: toshihiko.ishiwata@gmail.com

[^0]: 2020 Mathematics Subject Classification. Primary 11M26.
 Key Words and Phrases. Riemann hypothesis.

