Proof of Riemann hypothesis

By Toshihiko Ishiwata

Mar. 15, 2022

This paper is a trial to prove Riemann hypothesis according Abstract. to the following process. 1. We make (N+1)/2 infinite series from one equation that gives $\zeta(s)$ analytic continuation and 2 formulas (1/2+a+bi, 1/2-a-bi)that show non-trivial zero point of $\zeta(s)$. $(N=1,3,5,7,\cdots)$ 2. We find that a cannot have any value but zero from the above infinite series by performing $N \to \infty$. 3. Therefore non-trivial zero point of $\zeta(s)$ must be $1/2 \pm bi$.

1. Introduction

The following (1) gives Riemann zeta function $\zeta(s)$ analytic continuation to Re(s) > 0. "+····" means infinite series in all equations in this paper.

$$1 - 2^{-s} + 3^{-s} - 4^{-s} + 5^{-s} - 6^{-s} + \dots = (1 - 2^{1-s})\zeta(s)$$
 (1)

The following (2) shows the zero point of the left side of (1) and also non-trivial zero point of $\zeta(s)$.

$$S_0 = 1/2 + a + bi (2)$$

The range of a is $0 \le a < 1/2$ by the critical strip of $\zeta(s)$. The range of b is b > 14 due to the following reasons. And i is $\sqrt{-1}$.

- 1.1 (Conjugate complex number of S_0) = 1/2 + a bi is also non-trivial zero point of $\zeta(s)$. Therefore $b \geq 0$ is necessary and sufficient range for investigation.
- 1.2 The range of b of non-trivial zero points found until now is b > 14.

The following (3) also shows non-trivial zero point of $\zeta(s)$ by the functional equation of $\zeta(s)$.

$$S_1 = 1 - S_0 = 1/2 - a - bi (3)$$

We have the following (4) and (5) by substituting S_0 for s in the left side of (1) and putting both the real part and the imaginary part of the left side of (1) at zero respectively.

$$1 = \frac{\cos(b \log 2)}{2^{1/2+a}} - \frac{\cos(b \log 3)}{3^{1/2+a}} + \frac{\cos(b \log 4)}{4^{1/2+a}} - \frac{\cos(b \log 5)}{5^{1/2+a}} + \dots$$

$$0 = \frac{\sin(b \log 2)}{2^{1/2+a}} - \frac{\sin(b \log 3)}{3^{1/2+a}} + \frac{\sin(b \log 4)}{4^{1/2+a}} - \frac{\sin(b \log 5)}{5^{1/2+a}} + \dots$$

$$(5)$$

$$0 = \frac{\sin(b\log 2)}{2^{1/2+a}} - \frac{\sin(b\log 3)}{3^{1/2+a}} + \frac{\sin(b\log 4)}{4^{1/2+a}} - \frac{\sin(b\log 5)}{5^{1/2+a}} + \dots$$
 (5)

We also have the following (6) and (7) by substituting S_1 for s in the left side of (1) and putting both the real part and the imaginary part of the left side of (1) at zero respectively.

$$1 = \frac{\cos(b \log 2)}{2^{1/2 - a}} - \frac{\cos(b \log 3)}{3^{1/2 - a}} + \frac{\cos(b \log 4)}{4^{1/2 - a}} - \frac{\cos(b \log 5)}{5^{1/2 - a}} + \cdots$$

$$0 = \frac{\sin(b \log 2)}{2^{1/2 - a}} - \frac{\sin(b \log 3)}{3^{1/2 - a}} + \frac{\sin(b \log 4)}{4^{1/2 - a}} - \frac{\sin(b \log 5)}{5^{1/2 - a}} + \cdots$$
(6)

$$0 = \frac{\sin(b\log 2)}{2^{1/2-a}} - \frac{\sin(b\log 3)}{3^{1/2-a}} + \frac{\sin(b\log 4)}{4^{1/2-a}} - \frac{\sin(b\log 5)}{5^{1/2-a}} + \dots$$
 (7)

(N+1)/2 infinite series 2.

We define f(n) as follows.

$$f(n) = \frac{1}{n^{1/2-a}} - \frac{1}{n^{1/2+a}} \ge 0 \qquad (n = 2, 3, 4, 5, \dots)$$
 (8)

We have the following (9) from (4) and (6) with the method shown in item 1.1 of [Appendix 1: Equation construction].

$$0 = f(2)\cos(b\log 2) - f(3)\cos(b\log 3) + f(4)\cos(b\log 4) - f(5)\cos(b\log 5) + \cdots$$
 (9)

We also have the following (10) from (5) and (7) with the method shown in item 1.2 of [Appendix 1].

$$0 = f(2)\sin(b\log 2) - f(3)\sin(b\log 3) + f(4)\sin(b\log 4) - f(5)\sin(b\log 5) + \dots$$
 (10)

We can have the following (11) (which is the function of real number x) from the above (9) and (10) with the method shown in item 1.3 of [Appendix 1]. And the value of (11) is always zero at any value of x.

$$0 \equiv \cos x \{ \text{right side of } (9) \} + \sin x \{ \text{right side of } (10) \}$$

$$= \cos x \{ f(2) \cos(b \log 2) - f(3) \cos(b \log 3) + f(4) \cos(b \log 4) - \cdots \}$$

$$+ \sin x \{ f(2) \sin(b \log 2) - f(3) \sin(b \log 3) + f(4) \sin(b \log 4) - \cdots \}$$

$$= f(2) \cos(b \log 2 - x) - f(3) \cos(b \log 3 - x) + f(4) \cos(b \log 4 - x)$$

$$- f(5) \cos(b \log 5 - x) + f(6) \cos(b \log 6 - x) - \cdots$$

$$(11)$$

We have the following (12-1) by substituting $b \log 1$ for x in (11).

$$0 = f(2)\cos(b\log 2 - b\log 1) - f(3)\cos(b\log 3 - b\log 1) + f(4)\cos(b\log 4 - b\log 1) - f(5)\cos(b\log 5 - b\log 1) + f(6)\cos(b\log 6 - b\log 1) - \cdots$$
(12-1)

We have the following (12-3) by substituting $b \log 3$ for x in (11).

$$0 = f(2)\cos(b\log 2 - b\log 3) - f(3)\cos(b\log 3 - b\log 3) + f(4)\cos(b\log 4 - b\log 3) - f(5)\cos(b\log 5 - b\log 3) + f(6)\cos(b\log 6 - b\log 3) - \cdots$$
(12-3)

We have the following (12-5) by substituting $b \log 5$ for x in (11).

$$0 = f(2)\cos(b\log 2 - b\log 5) - f(3)\cos(b\log 3 - b\log 5) + f(4)\cos(b\log 4 - b\log 5)$$

$$-f(5)\cos(b\log 5 - b\log 5) + f(6)\cos(b\log 6 - b\log 5) - \dots$$
 (12-5)

In the same way as above we can have the following (12-N) by substituting $b \log N$ for x in (11). $(N = 7, 9, 11, 13, \dots)$

$$0 = f(2)\cos(b\log 2 - b\log N) - f(3)\cos(b\log 3 - b\log N) + f(4)\cos(b\log 4 - b\log N) - f(5)\cos(b\log 5 - b\log N) + f(6)\cos(b\log 6 - b\log N) - \cdots$$
(12-N)

3. Verification of F(a) = 0

We define
$$g(k, N)$$
 as follows. $(k = 2, 3, 4, 5, \dots N = 1, 3, 5, 7, \dots)$

$$g(k, N) = \cos(b \log k - b \log 1) + \cos(b \log k - b \log 3) + \cos(b \log k - b \log 5) + \dots + \cos(b \log k - b \log N)$$

$$= \cos(b \log 1 - b \log k) + \cos(b \log 3 - b \log k) + \cos(b \log 5 - b \log k) + \dots + \cos(b \log N - b \log k)$$

$$= \cos(b \log 1/k) + \cos(b \log 3/k) + \cos(b \log 5/k) + \dots + \cos(b \log N/k)$$
(13)

We can have the following (14) from the equations of (12-1), (12-3), (12-5), \cdots , (12-N) with the method shown in item 1.4 of [Appendix 1].

$$0 = f(2)\{\cos(b\log 2 - b\log 1) + \cos(b\log 2 - b\log 3) + \cos(b\log 2 - b\log 5) + \dots + \cos(b\log 2 - b\log N)\}$$

$$-f(3)\{\cos(b\log 3 - b\log 1) + \cos(b\log 3 - b\log 3) + \cos(b\log 3 - b\log 5) + \dots + \cos(b\log 3 - b\log N)\}$$

$$+f(4)\{\cos(b\log 4 - b\log 1) + \cos(b\log 4 - b\log 3) + \cos(b\log 4 - b\log 5) + \dots + \cos(b\log 4 - b\log N)\}$$

$$-f(5)\{\cos(b\log 5 - b\log 1) + \cos(b\log 5 - b\log 3) + \cos(b\log 5 - b\log 5) + \dots + \cos(b\log 5 - b\log N)\}$$

$$+\dots$$

$$= f(2)g(2,N) - f(3)g(3,N) + f(4)g(4,N) - f(5)g(5,N) + f(6)g(6,N) - \dots$$
 (14)

Here we define F(a) as follows.

$$F(a) = f(2) - f(3) + f(4) - f(5) + f(6) - \dots$$
(15)

We can have the following (16) by dividing the above (14) by g(2, N). Because $g(2, N) \neq 0$ is true in $(N_1 < N \mid N)$: odd number) as shown in [Appendix 2: Proof of $g(2, N) \neq 0$]. N_1 is the odd number that holds (41) in item 2.2.5 of [Appendix 2].

$$0 = f(2) - \frac{f(3)g(3,N)}{g(2,N)} + \frac{f(4)g(4,N)}{g(2,N)} - \frac{f(5)g(5,N)}{g(2,N)} + \cdots$$

$$(N_1 < N \ N : odd number)$$
(16)

We can have the following (17) from the above (16) by performing $N \to \infty$. Because $\lim_{N \to \infty} \frac{g(k,N)}{g(2,N)} = 1$ $(k = 3,4,5,6,\cdots)$ is true as shown in [Appendix 4: Proof of

$$\lim_{N \to \infty} \frac{g(k, N)}{g(2, N)} = 1].$$

$$0 = \lim_{N \to \infty} \{ f(2) - \frac{f(3)g(3, N)}{g(2, N)} + \frac{f(4)g(4, N)}{g(2, N)} - \frac{f(5)g(5, N)}{g(2, N)} + \cdots \}$$

$$= f(2) - f(3) + f(4) - f(5) + f(6) - \cdots = F(a)$$

$$(N_1 < N \ N : \text{odd number})$$

$$(17)$$

4. Conclusion

F(a)=0 has the only solution of a=0 as shown in [Appendix 5 : Solution for F(a)=0]. a has the range of $0 \le a < 1/2$ by the critical strip of $\zeta(s)$. However, a cannot have any value but zero because a is the solution for F(a)=0. Due to a=0 non-trivial zero point of Riemann zeta function $\zeta(s)$ shown by (2) and (3) must be $1/2 \pm bi$. Therefore Riemann hypothesis which says "All non-trivial zero points of Riemann zeta function $\zeta(s)$ exist on the line of Re(s)=1/2." is true.

Appendix 1. : Equation construction

We can construct (9), (10), (11) and (14) by applying the following Theorem 1[1].

Theorem 1 -

On condition that the following (Series 1) and (Series 2) converge respectively, the following (Series 3) and (Series 4) are true.

(Series 1) =
$$a_1 + a_2 + a_3 + a_4 + a_5 + \cdots = A$$

(Series 2) = $b_1 + b_2 + b_3 + b_4 + b_5 + \cdots = B$
(Series 3) = $(a_1 + b_1) + (a_2 + b_2) + (a_3 + b_3) + (a_4 + b_4) + \cdots = A + B$
(Series 4) = $(a_1 - b_1) + (a_2 - b_2) + (a_3 - b_3) + (a_4 - b_4) + \cdots = A - B$

1.1. Construction of (9)

We can have the following (9) as (Series 4) by regarding (6) and (4) as (Series 1) and (Series 2) respectively.

(Series 1) =
$$\frac{\cos(b \log 2)}{2^{1/2-a}} - \frac{\cos(b \log 3)}{3^{1/2-a}} + \frac{\cos(b \log 4)}{4^{1/2-a}} - \frac{\cos(b \log 5)}{5^{1/2-a}} + \dots = 1$$
 (6)
(Series 2) = $\frac{\cos(b \log 2)}{2^{1/2+a}} - \frac{\cos(b \log 3)}{3^{1/2+a}} + \frac{\cos(b \log 4)}{4^{1/2+a}} - \frac{\cos(b \log 5)}{5^{1/2+a}} + \dots = 1$ (4)
(Series 4) = $f(2)\cos(b \log 2) - f(3)\cos(b \log 3) + f(4)\cos(b \log 4) - f(5)\cos(b \log 5) + \dots = 1 - 1 = 0$ (9)

Here f(n) is defined as follows.

$$f(n) = \frac{1}{n^{1/2-a}} - \frac{1}{n^{1/2+a}} \ge 0$$
 $(n = 2, 3, 4, 5, \dots)$ (8)

1.2. Construction of (10)

We can have the following (10) as (Series 4) by regarding (7) and (5) as (Series 1) and (Series 2) respectively.

(Series 1) =
$$\frac{\sin(b \log 2)}{2^{1/2-a}} - \frac{\sin(b \log 3)}{3^{1/2-a}} + \frac{\sin(b \log 4)}{4^{1/2-a}} - \frac{\sin(b \log 5)}{5^{1/2-a}} + \dots = 0$$
 (7)
(Series 2) = $\frac{\sin(b \log 2)}{2^{1/2+a}} - \frac{\sin(b \log 3)}{3^{1/2+a}} + \frac{\sin(b \log 4)}{4^{1/2+a}} - \frac{\sin(b \log 5)}{5^{1/2+a}} + \dots = 0$ (5)
(Series 4) = $f(2) \sin(b \log 2) - f(3) \sin(b \log 3) + f(4) \sin(b \log 4) - f(5) \sin(b \log 5) + \dots = 0 - 0$ (10)

1.3. Construction of (11)

We can have the following (11) as (Series 3) by regarding the following equations as (Series 1) and (Series 2).

(Series 1) =
$$\cos x$$
{right side of (9)}
= $\cos x$ { $f(2)\cos(b\log 2) - f(3)\cos(b\log 3) + f(4)\cos(b\log 4)$
- $f(5)\cos(b\log 5) + \cdots$ } $\equiv 0$

(Series 2) =
$$\sin x \{ \text{right side of } (10) \}$$

= $\sin x \{ f(2) \sin(b \log 2) - f(3) \sin(b \log 3) + f(4) \sin(b \log 4)$
 $- f(5) \sin(b \log 5) + \cdots \} \equiv 0$
(Series 3) = $f(2) \cos(b \log 2 - x) - f(3) \cos(b \log 3 - x) + f(4) \cos(b \log 4 - x)$
 $- f(5) \cos(b \log 5 - x) + \cdots \equiv 0 + 0$ (11)

1.4. Construction of (14)

1.4.1 We can have the following (12-1*3) as (Series 3) by regarding (12-1) and (12-3) as (Series 1) and (Series 2) respectively.

(Series 1) =
$$f(2) \cos(b \log 2 - b \log 1) - f(3) \cos(b \log 3 - b \log 1)$$

 $+ f(4) \cos(b \log 4 - b \log 1) - f(5) \cos(b \log 5 - b \log 1)$
 $+ f(6) \cos(b \log 6 - b \log 1) - \cdots = 0$ (12-1)
(Series 2) = $f(2) \cos(b \log 2 - b \log 3) - f(3) \cos(b \log 3 - b \log 3)$
 $+ f(4) \cos(b \log 4 - b \log 3) - f(5) \cos(b \log 5 - b \log 3)$
 $+ f(6) \cos(b \log 6 - b \log 3) - \cdots = 0$ (12-3)
(Series 3) = $f(2) \{\cos(b \log 2 - b \log 1) + \cos(b \log 2 - b \log 3)\}$
 $- f(3) \{\cos(b \log 3 - b \log 1) + \cos(b \log 3 - b \log 3)\}$
 $+ f(4) \{\cos(b \log 4 - b \log 1) + \cos(b \log 4 - b \log 3)\}$
 $- f(5) \{\cos(b \log 5 - b \log 1) + \cos(b \log 5 - b \log 3)\}$
 $+ \cdots = 0 + 0$ (12-1*3)

1.4.2 We can have the following (12-1*5) as (Series 3) by regarding (12-1*3) and (12-5) as (Series 1) and (Series 2) respectively.

(Series 2) =
$$f(2)\cos(b\log 2 - b\log 5) - f(3)\cos(b\log 3 - b\log 5)$$

+ $f(4)\cos(b\log 4 - b\log 5) - f(5)\cos(b\log 5 - b\log 5)$
+ $f(6)\cos(b\log 6 - b\log 5) - \cdots = 0$ (12-5)
(Series 3)
= $f(2)\{\cos(b\log 2 - b\log 1) + \cos(b\log 2 - b\log 3) + \cos(b\log 2 - b\log 5)\}$
- $f(3)\{\cos(b\log 3 - b\log 1) + \cos(b\log 3 - b\log 3) + \cos(b\log 3 - b\log 5)\}$
+ $f(4)\{\cos(b\log 4 - b\log 1) + \cos(b\log 4 - b\log 3) + \cos(b\log 4 - b\log 5)\}$
- $f(5)\{\cos(b\log 5 - b\log 1) + \cos(b\log 5 - b\log 3) + \cos(b\log 5 - b\log 5)\}$
+ $\cdots = 0 + 0$ (12-1*5)

1.4.3 We can have the following (12-1*7) as (Series 3) by regarding (12-1*5) and (12-7) as (Series 1) and (Series 2) respectively.

(Series 2) =
$$f(2)\cos(b\log 2 - b\log 7) - f(3)\cos(b\log 3 - b\log 7)$$

+ $f(4)\cos(b\log 4 - b\log 7) - f(5)\cos(b\log 5 - b\log 7)$
+ $f(6)\cos(b\log 6 - b\log 7) - \cdots = 0$ (12-7)

(Series 3)

$$= f(2)\{\cos(b\log 2 - b\log 1) + \cos(b\log 2 - b\log 3) + \cos(b\log 2 - b\log 5) + \cos(b\log 2 - b\log 7)\}$$

$$-f(3)\{\cos(b\log 3 - b\log 1) + \cos(b\log 3 - b\log 3) + \cos(b\log 3 - b\log 5) + \cos(b\log 3 - b\log 7)\}$$

$$+f(4)\{\cos(b\log 4 - b\log 1) + \cos(b\log 4 - b\log 3) + \cos(b\log 4 - b\log 5) + \cos(b\log 4 - b\log 7)\}$$

$$-f(5)\{\cos(b\log 5 - b\log 1) + \cos(b\log 5 - b\log 3) + \cos(b\log 5 - b\log 5) + \cos(b\log 5 - b\log 7)\}$$

$$+\dots = 0 + 0$$

$$(12-1*7)$$

1.4.4 In the same way as above we can have the following (12-1*N)=(14) as (Series 3) by regarding (12-1*N-2) and (12-N) as (Series 1) and (Series 2) respectively. $(N = 9, 11, 13, 15, \dots)$ g(k, N) is defined in page 3. $(k = 2, 3, 4, 5, \dots)$

$$\begin{split} &f(2)\{\cos(b\log 2 - b\log 1) + \cos(b\log 2 - b\log 3) + \cos(b\log 2 - b\log 5) + \dots + \cos(b\log 2 - b\log N)\} \\ &-f(3)\{\cos(b\log 3 - b\log 1) + \cos(b\log 3 - b\log 3) + \cos(b\log 3 - b\log 5) + \dots + \cos(b\log 3 - b\log N)\} \\ &+f(4)\{\cos(b\log 4 - b\log 1) + \cos(b\log 4 - b\log 3) + \cos(b\log 4 - b\log 5) + \dots + \cos(b\log 4 - b\log N)\} \\ &-f(5)\{\cos(b\log 5 - b\log 1) + \cos(b\log 5 - b\log 3) + \cos(b\log 5 - b\log 5) + \dots + \cos(b\log 5 - b\log N)\} \\ &+\dots \end{split}$$

$$= f(2)g(2,N) - f(3)g(3,N) + f(4)g(4,N) - f(5)g(5,N) + f(6)g(6,N) - \cdots$$

$$= 0 + 0$$
 (12-1*N)

Appendix 2. : Proof of $g(2, N) \neq 0$

2.1. Investigation of g(k, N)

2.1.1 We define G and H as follows. $(N = 1, 3, 5, 7, \dots)$

$$G = \lim_{N \to \infty} \frac{1}{N} \{ \cos(b \log \frac{1}{N}) + \cos(b \log \frac{3}{N}) + \cos(b \log \frac{5}{N}) + \dots + \cos(b \log \frac{N}{N}) \}$$

$$= \frac{1}{2} \int_{0}^{1} \cos(b \log x) dx$$

$$(20-1)$$

$$H = \lim_{N \to \infty} \frac{1}{N} \{ \sin(b \log \frac{1}{N}) + \sin(b \log \frac{3}{N}) + \sin(b \log \frac{5}{N}) + \dots + \sin(b \log \frac{N}{N}) \}$$

$$= \frac{1}{2} \int_{0}^{1} \sin(b \log x) dx$$

$$(20-2)$$

We calculate G and H by Integration by parts.

$$2G = [x\cos(b\log x)]_0^1 + 2bH = 1 + 2bH$$

$$2H = [x\sin(b\log x)]_0^1 - 2bG = -2bG$$

Then we can have the values of G and H from the above equations as follows.

$$G = \frac{1}{2(1+b^2)} \qquad H = \frac{-b}{2(1+b^2)} \tag{21}$$

2.1.2 We define as follows.

$$\frac{\cos(b\log\frac{1}{N}) + \cos(b\log\frac{3}{N}) + \cos(b\log\frac{5}{N}) + \dots + \cos(b\log\frac{N}{N})}{N} - G = E_c(N)$$

$$\frac{\sin(b\log\frac{1}{N}) + \sin(b\log\frac{3}{N}) + \sin(b\log\frac{5}{N}) + \dots + \sin(b\log\frac{N}{N})}{N} - H = E_s(N)$$

$$(22-2)$$

From (20-1), (20-2), (22-1) and (22-2) we have the following (23).

$$\lim_{N \to \infty} E_c(N) = 0 \qquad \lim_{N \to \infty} E_s(N) = 0 \tag{23}$$

2.1.3 From (13) we can calculate g(k, N) as follows. $(N = 1, 3, 5, 7, \dots)$

$$\begin{split} g(k,N) &= \cos(b\log 1/k) + \cos(b\log 3/k) + \cos(b\log 5/k) + \dots + \cos(b\log N/k) \\ &= N\frac{1}{N}\{\cos(b\log \frac{1}{N}\frac{N}{k}) + \cos(b\log \frac{3}{N}\frac{N}{k}) + \cos(b\log \frac{5}{N}\frac{N}{k}) + \dots + \cos(b\log \frac{N}{N}\frac{N}{k})\} \\ &= N\frac{1}{N}\{\cos(b\log \frac{1}{N} + b\log \frac{N}{k}) + \cos(b\log \frac{3}{N} + b\log \frac{N}{k}) \\ &+ \cos(b\log \frac{5}{N} + b\log \frac{N}{k}) + \dots + \cos(b\log \frac{N}{N} + b\log \frac{N}{k})\} \\ &= N\frac{1}{N}\cos(b\log \frac{N}{k})\{\cos(b\log \frac{1}{N}) + \cos(b\log \frac{3}{N}) + \cos(b\log \frac{5}{N}) + \dots + \cos(b\log \frac{N}{N})\} \\ &- N\frac{1}{N}\sin(b\log \frac{N}{k})\{\sin(b\log \frac{1}{N}) + \sin(b\log \frac{3}{N}) + \sin(b\log \frac{5}{N}) + \dots + \sin(b\log \frac{N}{N})\} \end{split}$$

$$= N \cos(b \log \frac{N}{k})G$$

$$+ N \cos(b \log \frac{N}{k}) \left\{ \frac{\cos(b \log 1/N) + \cos(b \log 3/N) + \cos(b \log 5/N) + \dots + \cos(b \log N/N)}{N} - G \right\}$$

$$- N \sin(b \log \frac{N}{k})H$$

$$- N \sin(b \log \frac{N}{k}) \left\{ \frac{\sin(b \log 1/N) + \sin(b \log 3/N) + \sin(b \log 5/N) + \dots + \sin(b \log N/N)}{N} - H \right\}$$

$$= N \cos(b \log \frac{N}{k})G + N \cos(b \log \frac{N}{k})E_c(N) - N \sin(b \log \frac{N}{k})H$$

$$- N \sin(b \log \frac{N}{k})E_s(N)$$

$$= N \cos(b \log \frac{N}{k}) \frac{1}{2(1 + b^2)} + N \cos(b \log \frac{N}{k})E_c(N)$$

$$+ N \sin(b \log \frac{N}{k}) \frac{b}{2(1 + b^2)} - N \sin(b \log \frac{N}{k})E_s(N)$$

$$= \frac{N}{2\sqrt{1 + b^2}} \left\{ \cos(b \log \frac{N}{k}) \frac{1}{\sqrt{1 + b^2}} + \sin(b \log \frac{N}{k}) \frac{b}{\sqrt{1 + b^2}} \right\}$$

$$+ N \cos(b \log \frac{N}{k})E_c(N) - N \sin(b \log \frac{N}{k})E_s(N)$$

$$= \frac{N \sin(b \log N/k + \tan^{-1} 1/b)}{2\sqrt{1 + b^2}}$$

$$+ N \cos(b \log \frac{N}{k})E_c(N) - N \sin(b \log \frac{N}{k})E_s(N)$$

$$(24-5)$$

2.1.4 From (22-1), (22-2) and (24-1) we have (24-2). From (21) and (24-2) we have (24-3).

2.2. Verification of $R_3 \neq 0$

We investigate the the condition of $R_3 = 0$ in the following 4 cases.

2.2.1
$$\{E_c(N) \ge 0, \ E_s(N) \ge 0\}$$
 i.e. $\{E_c(N) = |E_c(N)|, \ E_s(N) = |E_s(N)|\}$

2.2.1.1 We have the following (25-1), (25-2), (25-3) and (25-4) from (24-5).

$$(24-5) = \frac{N \sin(b \log N/k + \tan^{-1} 1/b)}{2\sqrt{1+b^2}}$$

$$+ N \cos(b \log \frac{N}{k}) E_c(N) - N \sin(b \log \frac{N}{k}) E_s(N)$$

$$= \frac{N \sin(b \log N/k + \tan^{-1} 1/b)}{2\sqrt{1+b^2}}$$

$$+ N \cos(b \log \frac{N}{k}) |E_c(N)| - N \sin(b \log \frac{N}{k}) |E_s(N)|$$

$$= \frac{N \sin(b \log N/k + \tan^{-1} 1/b)}{2\sqrt{1+b^2}}$$

$$-N\sqrt{E_c(N)^2 + E_s(N)^2} \{\sin(b \log \frac{N}{k}) \frac{|E_s(N)|}{\sqrt{E_c(N)^2 + E_s(N)^2}} - \cos(b \log \frac{N}{k}) \frac{|E_c(N)|}{\sqrt{E_c(N)^2 + E_s(N)^2}} \}$$

$$(25-1)$$

$$= \frac{N\sin(b\log N/k + \tan^{-1}1/b)}{2\sqrt{1+b^2}}$$

$$-N\sqrt{E_c(N)^2 + E_s(N)^2}\sin(b\log\frac{N}{k} - \tan^{-1}\left|\frac{E_c(N)}{E_s(N)}\right|)$$
 (25-2)

$$= NR_1 \sin(b \log N/k + \theta_1) - NR_2 \sin(b \log N/k - \theta_2)$$
 (25-3)

$$= NR_3 \sin(b \log N/k + \theta_3) \tag{25-4}$$

We define as follows to have the above (25-3) from (25-2).

$$R_1 = \frac{1}{2\sqrt{1+b^2}} > 0 \tag{26-1}$$

$$\theta_1 = \tan^{-1} 1/b \tag{26-2}$$

$$R_2 = \sqrt{E_c(N)^2 + E_s(N)^2} \ge 0 (26-3)$$

$$\theta_2 = \tan^{-1} \left| \frac{E_c(N)}{E_s(N)} \right| \tag{26-4}$$

From (24-4) we have $\cos \theta_a = b/\sqrt{1+b^2} > 0$ and $\sin \theta_a = 1/\sqrt{1+b^2} > 0$. And from the above 2 equations we have the following (26-5). The range of θ_1 is given from 14 < b shown in page 1.

$$\theta_a = \tan^{-1} 1/b = \theta_1 + 2n\pi$$
 $(n = 0, \pm 1, \pm 2, \pm 3, \cdots)$ (26-5)
 $0 < \theta_1 < 0.023\pi = \tan^{-1} 1/14$

Even if we define the above (26-2), there is no contradiction in the above (25-3) because of the following (26-6).

$$\sin(b \log N/k + \tan^{-1} 1/b) = \sin(b \log N/k + \theta_1 + 2n\pi)$$

= $\sin(b \log N/k + \theta_1)$ (26-6)

Similarly we have $\cos \theta_b = \frac{|E_s(N)|}{\sqrt{E_c(N)^2 + E_s(N)^2}} \ge 0$ and $\sin \theta_b = \frac{|E_c(N)|}{\sqrt{E_c(N)^2 + E_s(N)^2}} \ge 0$ from (25-1). And we have the following (26-7). The range of θ_2 is given from $0 \le \left|\frac{E_c(N)}{E_s(N)}\right|$.

$$\theta_b = \tan^{-1} \left| \frac{E_c(N)}{E_s(N)} \right| = \theta_2 + 2n\pi$$
 $(n = 0, \pm 1, \pm 2, \pm 3, \cdots)$ (26-7)
 $0 < \theta_2 < \pi/2$

We can define (26-4) from the above (26-7).

2.2.1.2 If in the complex number $R_x \exp(\theta_x i)$, $R_y \exp(\theta_y i)$ and $R_z \exp(\theta_z i)$ the following (27-1) holds, the following (27-2) also holds.

$$R_x \exp(\theta_x i) \pm R_y \exp(\theta_y i) = R_z \exp(\theta_z i) \tag{27-1}$$

$$R_x \sin \theta_x \pm R_y \sin \theta_y = R_z \sin \theta_z \tag{27-2}$$

So we can calculate the following (28-1) and (28-2) from the following (Figure 1). R_3 can be calculated by Cosine theorem. We have the above (25-4) from (25-3), (28-1) and (28-2).

$$R_3 = \sqrt{R_1^2 + R_2^2 - 2R_1R_2\cos(\theta_1 + \theta_2)}$$
 (28-1)

$$\theta_3 = \tan^{-1} \frac{R_1 \sin \theta_1 + R_2 \sin \theta_2}{R_1 \cos \theta_1 - R_2 \cos \theta_2}$$
 (28-2)

Figure 1: $R_3 \sin(b \log N/k + \theta_3)$ in $\{E_c(N) \ge 0, E_s(N) \ge 0\}$

2.2.1.3 From the above (28-1) we can confirm that $1 \ge \cos(\theta_1 + \theta_2) > 0$ must be true in order for $R_3 = 0$ to hold. Due to (Arithmetic mean) \ge (Geometric mean) we have the following (29).

$$R_1^2 + R_2^2 \ge 2R_1R_2 \ge 2R_1R_2\cos(\theta_1 + \theta_2) \tag{29}$$

In order for $R_3 = 0$ to hold the 2 equal signs in the above (29) must hold. Therefore the following (30-1) and (30-2) are the condition of $R_3 = 0$.

$$R_1 = R_2$$
 (30-1)

$$\theta_1 + \theta_2 = 0 \tag{30-2}$$

2.2.2
$$\{E_c(N) \ge 0, E_s(N) \le 0\}$$
 i.e. $\{E_c(N) = |E_c(N)|, E_s(N) = -|E_s(N)|\}$

12 T. ISHIWATA

2.2.2.1 We have the following (31-1), (31-2) and (31-3) from (24-5).

$$(24-5) = \frac{N \sin(b \log N/k + \tan^{-1} 1/b)}{2\sqrt{1+b^2}}$$

$$+ N \cos(b \log \frac{N}{k}) E_c(N) - N \sin(b \log \frac{N}{k}) E_s(N)$$

$$= \frac{N \sin(b \log N/k + \tan^{-1} 1/b)}{2\sqrt{1+b^2}}$$

$$+ N \cos(b \log \frac{N}{k}) |E_c(N)| + N \sin(b \log \frac{N}{k}) |E_s(N)|$$

$$= \frac{N \sin(b \log N/k + \tan^{-1} 1/b)}{2\sqrt{1+b^2}}$$

$$+ N \sqrt{E_c(N)^2 + E_s(N)^2} \sin(b \log \frac{N}{k} + \tan^{-1} \left| \frac{E_c(N)}{E_s(N)} \right|)$$

$$= NR_1 \sin(b \log N/k + \theta_1) + NR_2 \sin(b \log N/k + \theta_2)$$

$$= NR_3 \sin(b \log N/k + \theta_3)$$

$$(31-2)$$

$$= NR_3 \sin(b \log N/k + \theta_3)$$

$$(31-3)$$

$$= NR_3 \sin(b\log N/k + \theta_3) \tag{31-3}$$

 R_1, θ_1, R_2 and θ_2 are defined in item 2.2.1.1.

2.2.2.2 We can calculate the following (32-1) and (32-2) from the following (FIgure 2). We have the above (31-3) from (31-2), (32-1) and (32-2).

$$R_3 = \sqrt{R_1^2 + R_2^2 - 2R_1R_2\cos(\pi + \theta_1 - \theta_2)}$$
 (32-1)

$$\theta_3 = \tan^{-1} \frac{R_1 \sin \theta_1 + R_2 \sin \theta_2}{R_1 \cos \theta_1 + R_2 \cos \theta_2}$$
 (32-2)

Figure 2: $R_3 \sin(b \log N/k + \theta_3)$ in $\{E_c(N) \ge 0, E_s(N) \le 0\}$

2.2.2.3 Through the same discussion as in item 2.2.1.3 we can confirm the condition of $R_3=0$ as follows.

$$R_1 = R_2 \tag{34-1}$$

$$\theta_2 - \theta_1 = \pi \tag{34-2}$$

2.2.3
$$\{E_c(N) \le 0, \ E_s(N) \le 0\}$$
 i.e. $\{E_c(N) = -|E_c(N)|, \ E_s(N) = -|E_s(N)|\}$

2.2.3.1 We have the following (35-1), (35-2) and (35-3) from (24-5).

$$(24-5) = \frac{N \sin(b \log N/k + \tan^{-1} 1/b)}{2\sqrt{1+b^2}}$$

$$+ N \cos(b \log \frac{N}{k}) E_c(N) - N \sin(b \log \frac{N}{k}) E_s(N)$$

$$= \frac{N \sin(b \log N/k + \tan^{-1} 1/b)}{2\sqrt{1+b^2}}$$

$$- N \cos(b \log \frac{N}{k}) |E_c(N)| + N \sin(b \log \frac{N}{k}) |E_s(N)|$$

$$= \frac{N \sin(b \log N/k + \tan^{-1} 1/b)}{2\sqrt{1+b^2}}$$

$$+ N\sqrt{E_c(N)^2 + E_s(N)^2} \sin(b \log \frac{N}{k} - \tan^{-1} \left| \frac{E_c(N)}{E_s(N)} \right|)$$

$$= NR_1 \sin(b \log N/k + \theta_1) + NR_2 \sin(b \log N/k - \theta_2)$$

$$(35-2)$$

$$= NR_3 \sin(b \log N/k + \theta_3) \tag{35-3}$$

 R_1, θ_1, R_2 and θ_2 are defined in item 2.2.1.1.

2.2.3.2 We can calculate the following (36-1) and (36-2) from the following (Figure 3). We have the above (35-3) from (35-2), (36-1) and (36-2).

$$R_3 = \sqrt{R_1^2 + R_2^2 - 2R_1R_2\cos(\pi - \theta_1 - \theta_2)}$$
 (36-1)

$$\theta_3 = \tan^{-1} \frac{R_1 \sin \theta_1 - R_2 \sin \theta_2}{R_1 \cos \theta_1 + R_2 \cos \theta_2}$$
 (36-2)

Figure 3: $R_3 \sin(b \log N/k + \theta_3)$ in $\{E_c(N) \le 0, E_s(N) \le 0\}$

2.2.3.3 Through the same discussion as in item 2.2.1.3 we can confirm the condition of $R_3=0$ as follows.

$$R_1 = R_2$$
 (37-1)

$$\pi = \theta_1 + \theta_2 \tag{37-2}$$

2.2.4
$$\{E_c(N) \le 0, E_s(N) \ge 0\}$$
 i.e. $\{E_c(N) = -|E_c(N)|, E_s(N) = |E_s(N)|\}$

2.2.4.1 We have the followsing (38-1), (38-2) and (38-3) from (24-5).

$$(24-5) = \frac{N\sin(b\log N/k + \tan^{-1} 1/b)}{2\sqrt{1+b^2}} + N\cos(b\log \frac{N}{k})E_c(N) - N\sin(b\log \frac{N}{k})E_s(N)$$

$$= \frac{N \sin(b \log N/k + \tan^{-1} 1/b)}{2\sqrt{1+b^2}}$$

$$- N \cos(b \log \frac{N}{k}) |E_c(N)| - N \sin(b \log \frac{N}{k}) |E_s(N)|$$

$$= \frac{N \sin(b \log N/k + \tan^{-1} 1/b)}{2\sqrt{1+b^2}}$$

$$- N\sqrt{E_c(N)^2 + E_s(N)^2} \sin(b \log \frac{N}{k} + \tan^{-1} \left| \frac{E_c(N)}{E_s(N)} \right|)$$

$$= NR_1 \sin(b \log N/k + \theta_1) - NR_2 \sin(b \log N/k + \theta_2)$$

$$= NR_3 \sin(b \log N/k + \theta_3)$$
(38-2)
$$= NR_3 \sin(b \log N/k + \theta_3)$$
(38-3)

 R_1, θ_1, R_2 and θ_2 are defined in item 2.2.1.1.

2.2.4.2 We can calculate the following (36-1) and (36-2) from the following (Figure 4). We have the above (38-3) from (38-2), (39-1) and (39-2).

$$R_3 = \sqrt{R_1^2 + R_2^2 - 2R_1R_2\cos(\theta_2 - \theta_1)}$$
 (39-1)

$$\theta_3 = \tan^{-1} \frac{R_1 \sin \theta_1 - R_2 \sin \theta_2}{R_1 \cos \theta_1 - R_2 \cos \theta_2}$$
 (39-2)

Figure 4: $R_3 \sin(b \log N/k + \theta_3)$ in $\{E_c(N) \le 0, E_s(N) \ge 0\}$

2.2.4.3 Through the same discussion as in item 2.2.1.3 we can confirm the condition

of $R_3 = 0$ as follows.

$$R_1 = R_2 (40-1)$$

$$\theta_1 = \theta_2 \tag{40-2}$$

2.2.5 There is the odd number N_1 that holds the following (41) because $\lim_{N\to\infty} \sqrt{E_c(N)^2 + E_s(N)^2} = 0$ is true from (23) in item 2.1.2.

$$\frac{1}{2\sqrt{1+b^2}} = R_1 > R_2 = \sqrt{E_c(N)^2 + E_s(N)^2} \qquad (N_1 < N)$$
 (41)

Therefore (30-1), (34-1), (37-1) and (40-1) do not hold in $(N_1 < N)$. Now we can confirm the following (42).

$$R_3 \neq 0 \qquad (N_1 < N) \tag{42}$$

2.3. Verification of $\sin(b \log N/2 + \theta_3) \neq 0$

2.3.1 If we assume the following (51) is true, the following (52) is also supposed to be true.

$$\sin(b \log N/2 + \theta_3) = 0$$
 $(N = 1, 3, 5, 7, \dots)$ (51)

$$b \log N/2 + \theta_3 = K\pi$$
 (K: integer) (52)

2.3.2 We define as follows.

Type1 irrational number : Irrational number which consists of singular or plural irrational terms such as $2\sqrt{2}/e,\ \sqrt{2}/e+\sqrt{3}$, etc.

Type2 irrational number : Irrational number which has the formation of (rational number)+(type1 irrational number) such as $1+\sqrt{2}$, $2+2\sqrt{2}/e+\sqrt{3}$, etc.

2.3.3 The above (52) holds in the following cases.

Case 1: The following (53-1), (53-2) and (53-3) holds.

$$b\log N/2 = A\pi \tag{53-1}$$

$$\theta_3 = B\pi$$
 (A, B: rational number) (53-2)

$$A + B = K (K : integer) (53-3)$$

Case 2: The above (53-3), the following (53-4) and (53-5) holds.

$$b \log N/2 = (A+C)\pi$$
 $(A+C)$: type2 irrational number (53-4)

$$\theta_3 = (B - C)\pi$$
 (C: type1 irrational number) (53-5)

2.3.4 From $b \log N/2 = D\pi$ we have the following equation.

$$D = \frac{b \log N/2}{\pi}$$

The formation of D becomes (type1 irratioal number) regardless of the formation of b as follows.

Case 3 : b = (rational number)

$$D = (\text{rational number}) \frac{\log N/2}{\pi} = (\text{type1 irratioal number}: Q_1)$$

$$(N=1,3,5,7,\cdots)$$

Case 4: b = (type1 irrational number)

 $D = (\text{type1 irrational number}: Q_2) \frac{\log N/2}{\pi} = (\text{type1 irratioal number}: Q_3)$

 $(N=1,3,5,7,\cdots)$: When the following (condition 1) holds.

 $(N=1,3,5,7,\cdots N\neq N_2)$: When the following (condition 2) holds.

Condition 1 : b does not have the term of $\frac{A\pi}{\log N_2/2}$. Or b has the term of $\frac{A\pi}{\log N_2/2}$ and N_2 is an even number. A: (rational number)

Condition 2 : b has the term of $\frac{A\pi}{\log N_2/2}$ and N_2 is an odd number.

Case 5 : b = (type2 irrational number) = (rational number) + (type1 irrational number)

$$D = \{(\text{rational number}) + (\text{type1 irrational number} : Q_4)\} \frac{\log N/2}{\pi}$$

$$= (\text{type1 irrational number} : Q_5) + (\text{type1 irratioal number} : Q_6)$$

$$= (\text{type1 irrational number} : Q_7)$$

$$(N=1,3,5,7,\cdots)$$
: When (condition 1) holds. $(N=1,3,5,7,\cdots)$ $N \neq N_2$: When (condition 2) holds.

- 2.3.5 As shown in the above item 2.3.4 D is not (rational number) or (type2 irrational number) but (type1 irrational number). Therefore (case 1) and (case 2) do not hold i.e. (52) does not hold in $(N = 1, 3, 5, 7, \dots, N \neq N_2)$.
- 2.3.6 At $N = N_2$ (52) does not holds when (condition 2) holds as shown in [Appendix 3 : Proof of $b \log N_2/2 + \theta_3 \neq K\pi$].
- 2.3.7 Now we can confirm the following (54).

$$\sin(b\log N/2 + \theta_3) \neq 0$$
 $(N = 1, 3, 5, 7, \dots)$ (54)

2.4. Verification of $g(2, N) \neq 0$

We have the following (55) from (25-4) in item 2.2.1.1, (42) in item 2.2.5 and the above (54). We can confirm that g(2, N) does not have the value of zero in $(N_1 < N \ N)$: odd number).

$$g(2,N) = NR_3 \sin(b \log N/2 + \theta_3) \neq 0 \qquad (N_1 < N \mid N : \text{odd number})$$
 (55)

Appendix 3. : Proof of $b \log N_2/2 + \theta_3 \neq K\pi$

In this appendix we confirm that the following (52) in item 2.3.1 does not hold at $N = N_2$ when (condition 2) holds.

$$b\log N/2 + \theta_3 = K\pi \tag{K:integer}$$

3.1 We confirm the value of θ_3 in the following 4 cases.

3.1.1
$$\{E_c(N) \ge 0, E_s(N) \ge 0\}$$
 i.e. $\{E_c(N) = |E_c(N)|, E_s(N) = |E_s(N)|\}$

We have the following (61) from (21), (22-1) and (22-2) in item 2.1, (26-1), (26-3) and (28-2) in item 2.2 and the following (61-1) and (61-2).

$$\theta_{3} = \tan^{-1} \frac{R_{1} \sin \theta_{1} + R_{2} \sin \theta_{2}}{R_{1} \cos \theta_{1} - R_{2} \cos \theta_{2}}$$

$$= \tan^{-1} \frac{\frac{1}{2\sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}} + \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{|E_{c}(N)|}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}{\frac{1}{2\sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}} - \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{|E_{s}(N)|}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}$$

$$= \tan^{-1} \frac{\frac{1}{2\sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}} + \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{E_{c}(N)}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}{\frac{1}{2\sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}} - \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{E_{s}(N)}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}$$

$$= \tan^{-1} \frac{G + E_{c}(N)}{-H - E_{s}(N)}$$

$$(28-2)$$

$$= \tan^{-1} \frac{\cos(b \log 1/N) + \cos(b \log 3/N) + \cos(b \log 5/N) + \dots + \cos(b \log N/N)}{-\{\sin(b \log 1/N) + \sin(b \log 3/N) + \sin(b \log 5/N) + \dots + \sin(b \log N/N)\}}$$
(61)

We have the following (61-1) and (62-2) from (26-2) and (26-4) in item $2\cdot2\cdot1$.

$$\cos \theta_1 = b/\sqrt{1+b^2}$$
 $\sin \theta_1 = 1/\sqrt{1+b^2}$ (61-1)

$$\cos \theta_2 = \frac{|E_s(N)|}{\sqrt{E_c(N)^2 + E_s(N)^2}} \qquad \sin \theta_2 = \frac{|E_c(N)|}{\sqrt{E_c(N)^2 + E_s(N)^2}}$$
(61-2)

3.1.2
$$\{E_c(N) \ge 0, E_s(N) \le 0\}$$
 i.e. $\{E_c(N) = |E_c(N)|, E_s(N) = -|E_s(N)|\}$

Similarly we have the following (62) from (32-2) in item 2.2.2.2.

$$\theta_{3} = \tan^{-1} \frac{R_{1} \sin \theta_{1} + R_{2} \sin \theta_{2}}{R_{1} \cos \theta_{1} + R_{2} \cos \theta_{2}}$$

$$= \tan^{-1} \frac{\frac{1}{2\sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}} + \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{|E_{c}(N)|}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}{\frac{1}{2\sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}} + \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{|E_{s}(N)|}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}$$

$$= \tan^{-1} \frac{\frac{1}{2\sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}} + \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{E_{c}(N)}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}{\frac{1}{2\sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}} - \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{E_{s}(N)}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}$$

$$= \tan^{-1} \frac{G + E_{c}(N)}{-H - E_{s}(N)}$$
(32-2)

(63)

(64)

$$= \tan^{-1} \frac{\cos(b \log 1/N) + \cos(b \log 3/N) + \cos(b \log 5/N) + \dots + \cos(b \log N/N)}{-\{\sin(b \log 1/N) + \sin(b \log 3/N) + \sin(b \log 5/N) + \dots + \sin(b \log N/N)\}}$$
(62)

3.1.3
$$\{E_c(N) \le 0, \ E_s(N) \le 0\}$$
 i.e. $\{E_c(N) = -\left|E_c(N)\right|, \ E_s(N) = -\left|E_s(N)\right|\}$

Similarly we have the following (63) from (36-2) in item 2.2.3.2.

$$\theta_{3} = \tan^{-1} \frac{R_{1} \sin \theta_{1} - R_{2} \sin \theta_{2}}{R_{1} \cos \theta_{1} + R_{2} \cos \theta_{2}}$$

$$= \tan^{-1} \frac{\frac{1}{2\sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}} - \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{|E_{c}(N)|}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}{\frac{1}{2\sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}} + \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{|E_{c}(N)|}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}$$

$$= \tan^{-1} \frac{\frac{1}{2\sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}} + \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{E_{c}(N)}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}{\frac{1}{2\sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}} - \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{E_{s}(N)}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}$$

$$= \tan^{-1} \frac{G + E_{c}(N)}{-H - E_{s}(N)}$$

$$= \tan^{-1} \frac{\cos(b \log 1/N) + \cos(b \log 3/N) + \cos(b \log 5/N) + \dots + \cos(b \log N/N)}{-\{\sin(b \log 1/N) + \sin(b \log 3/N) + \sin(b \log 5/N) + \dots + \sin(b \log N/N)\}}$$
(36-2)

3.1.4
$$\{E_c(N) \le 0, E_s(N) \ge 0\}$$
 i.e. $\{E_c(N) = -|E_c(N)|, E_s(N) = |E_s(N)|\}$

Similarly we have the following (64) from (39-2) in item 2.2.4.2.

$$\theta_{3} = \tan^{-1} \frac{R_{1} \sin \theta_{1} - R_{2} \sin \theta_{2}}{R_{1} \cos \theta_{1} - R_{2} \cos \theta_{2}}$$

$$= \tan^{-1} \frac{\frac{1}{2\sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}} - \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{|E_{c}(N)|}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}{\frac{1}{2\sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}} - \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{|E_{s}(N)|}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}$$

$$= \tan^{-1} \frac{\frac{1}{2\sqrt{1+b^{2}}} \frac{1}{\sqrt{1+b^{2}}} + \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{E_{c}(N)}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}{\frac{1}{2\sqrt{1+b^{2}}} \frac{b}{\sqrt{1+b^{2}}} - \sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}} \frac{E_{s}(N)}{\sqrt{E_{c}(N)^{2} + E_{s}(N)^{2}}}}$$

$$= \tan^{-1} \frac{G + E_{c}(N)}{-H - E_{s}(N)}$$

$$= \tan^{-1} \frac{\cos(b \log 1/N) + \cos(b \log 3/N) + \cos(b \log 5/N) + \dots + \cos(b \log N/N)}{-\{\sin(b \log 1/N) + \sin(b \log 3/N) + \sin(b \log 5/N) + \dots + \sin(b \log N/N)\}}$$
(39-2)

3.1.5 We have the following (65) from the above (61), (62), (63) and (64).

$$\theta_{3} = \tan^{-1} \frac{\cos(b \log 1/N) + \cos(b \log 3/N) + \cos(b \log 5/N) + \dots + \cos(b \log N/N)}{-\{\sin(b \log 1/N) + \sin(b \log 3/N) + \sin(b \log 5/N) + \dots + \sin(b \log N/N)\}}$$
(65)

3.2 If we add 2 sine functions which have the common term β , the result becomes

another sine function which has the common term β like the following (66). R_Z and θ_Z are culculated like the following (66-1) and (66-2) from the following (Figure 5).

$$R_X \sin(\beta - \theta_X) + R_Y \sin(\beta - \theta_Y) = R_Z \sin(\beta - \theta_Z)$$
 (66)

$$R_Z = \sqrt{R_X^2 + R_Y^2 - 2R_X R_Y \cos(\pi + \theta_X - \theta_Y)}$$
 (66-1)

$$\theta_Z = \tan^{-1} \frac{R_X \sin \theta_X + R_Y \sin \theta_Y}{R_X \cos \theta_X + R_Y \cos \theta_Y}$$
(66-2)

Figure 5: Sum of 2 sine functions

3.3 In the following (67-2) each sine function has the common term $\beta = b \log N$. And the sum of (N+1)/2 sine functions becomes one sine function which has β , L and M like the following (67-3). L and M do not depend on β because R_Z and θ_Z do not depend on β but on R_X , R_Y , θ_X and θ_Y as shown in the above (66-1) and (66-2).

$$-\left\{\sin(b\log 1/N) + \sin(b\log 3/N) + \sin(b\log 5/N) + \dots + \sin(b\log N/N)\right\} (67-1)$$

$$=\sin(b\log N-b\log 1)+\sin(b\log N-b\log 3)+\sin(b\log N-b\log 5)$$

$$+ \dots + \sin(b \log N - b \log N) \tag{67-2}$$

$$= L\sin(b\log N - M) \tag{67-3}$$

3.4 In the following (68-3) each sine function has the common term $\gamma = b \log N + \pi/2$. And the sum of (N+1)/2 sine functions becomes one sine function which has γ, L and M like the following (68-4). Because L and M do not depend on common term β or γ but on R_X, R_Y, θ_X and θ_Y and each sine function in (67-2) has the same R_X, R_Y, θ_X and θ_Y as in (68-3).

$$\cos(b \log 1/N) + \cos(b \log 3/N) + \cos(b \log 5/N) + \dots + \cos(b \log N/N)$$

$$= \cos(b \log N - b \log 1) + \cos(b \log N - b \log 3) + \cos(b \log N - b \log 5) +$$

$$+ \dots + \cos(b \log N - b \log N)$$

$$= \sin(b \log N + \pi/2 - b \log 1) + \sin(b \log N + \pi/2 - b \log 3)$$

$$+ \sin(b \log N + \pi/2 - b \log 5) + \dots + \sin(b \log N + \pi/2 - b \log N)$$

$$= L \sin(b \log N + \pi/2 - M) = L \cos(b \log N - M)$$
(68-4)

3.5 From the above (65), (67-1,2,3) and (68-1,2,3,4) we have the following (70).

$$\theta_{3} = \tan^{-1} \frac{\cos(b \log 1/N) + \cos(b \log 3/N) + \cos(b \log 5/N) + \dots + \cos(b \log N/N)}{-\{\sin(b \log 1/N) + \sin(b \log 3/N) + \sin(b \log 5/N) + \dots + \sin(b \log N/N)\}}$$

$$= \tan^{-1} \frac{L \cos(b \log N - M)}{L \sin(b \log N - M)} = \tan^{-1} \cot(b \log N - M)$$

$$= \tan^{-1} \tan(\pi/2 + M - b \log N)$$

$$= \pi/2 + M - b \log N + K_{1}\pi \qquad (K_{1} : integer)$$
(70)

3.6 We consider that b is (type2 irrational number) and has the term of $\frac{A\pi}{\log N_2/2}$ like the following (71). If b is (type1 irrational number), E = 0 holds. b = (type2 irrational number)

=(rational number)+(type1 irrational number)

$$= E + \frac{A\pi}{\log N_2/2} + F$$

$$(E, A : \text{rational number} \quad F : \text{type1 irational number})$$
(71)

3.7 From (52) and the above (70) and (71) we have the following (72) at $N = N_2$.

left side of
$$(52) = b \log N_2/2 + \theta_3$$

$$= (E + \frac{A\pi}{\log N_2/2} + F) \log \frac{N_2}{2} + \frac{\pi}{2} + M - (E + \frac{A\pi}{\log N_2/2} + F) \log N_2 + K_1\pi$$

$$= A\pi - (E + F) \log 2 - \frac{A\pi \log N_2}{\log N_2/2} + \frac{\pi}{2} + M + K_1\pi$$

$$= \pi \{ \frac{1}{2} + K_1 - \frac{A \log 2}{\log N_2/2} + \frac{M - (E + F) \log 2}{\pi} \} = J\pi$$
(72)

A, E: (rational number) F: (type1 irrational number) K_1 : (integer) M: the value of arctangent function which has the range of $-\pi/2 < M < \pi/2$ N_2 : (odd number)

22 T. ISHIWATA

3.8 In order for J = K to hold in the above (72) the following (73-1) and (73-2) must hold.

$$J = \frac{1}{2} + K_1 - \frac{A \log 2}{\log N_2/2} + \frac{M - (E + F) \log 2}{\pi} = K \quad (K : integer)$$
 (73-1)

$$\frac{M - (E + F)\log 2}{\pi} - \frac{A\log 2}{\log N_2/2} = K - K_1 - \frac{1}{2}$$
 (73-2)

 $\frac{A \log 2}{\log N_2/2}$ is (irrational number) and $(K - K_1 - 1/2)$ is (rational number). If $\frac{M - (E + F) \log 2}{\pi}$ is (rational number), the above (73-2) becomes the

following (73-3) and this equation does not hold.

$$(rational number) - (irrational number) = (rational number)$$
 (73-3)

If $\frac{M-(E+F)\log 2}{\pi}$ is (irrational number), the following (74-1), (74-2) and

(74-3) must hold in order for (73-2) to hold.

$$\frac{M - (E + F)\log 2}{\pi} = (\text{rational number} : P_1) + (\text{irrational number} : Q) \quad (74-1)$$

$$\frac{M - (E + F) \log 2}{\pi} = (\text{rational number} : P_1) + (\text{irrational number} : Q)$$
 (74-1)
$$\frac{A \log 2}{\log N_2/2} = (\text{rational number} : P_2) + (\text{irrational number} : Q)$$
 (74-2)

$$P_1 - P_2 = K - K_1 - 1/2 (74-3)$$

But $\frac{A \log 2}{\log N_2/2}$ cannot be divided into (rational number) and (irrational number) like the above (74-2).

Then the above (73-3) and (74-2) do not hold i.e. (73-2) does not hold. Therefor (73-1) i.e. J = K does not hold.

3.9 Now we can confirm that the following (52) in item 2.3.1 does not hold at $N=N_2$ when (condition 2) holds.

$$b\log N/2 + \theta_3 = K\pi \tag{K:integer}$$

Appendix 4. : Proof of
$$\lim_{N\to\infty} \frac{g(k,N)}{g(2,N)} = 1$$

From (24-5) in item 2.1.3 we have the following (75).

$$\frac{g(k,N)}{g(2,N)} = \frac{\frac{N\sin(b\log N/k + \tan^{-1}1/b)}{2\sqrt{1+b^2}} + N\cos(b\log\frac{N}{k})E_c(N) - N\sin(b\log\frac{N}{k})E_s(N)}{\frac{N\sin(b\log N/2 + \tan^{-1}1/b)}{2\sqrt{1+b^2}} + N\cos(b\log\frac{N}{2})E_c(N) - N\sin(b\log\frac{N}{2})E_s(N)} \\
= \frac{\sin(b\log\frac{N}{k} + \tan^{-1}\frac{1}{b}) + 2\sqrt{1+b^2}\{\cos(b\log\frac{N}{k})E_c(N) - \sin(b\log\frac{N}{k})E_s(N)\}}{\sin(b\log\frac{N}{2} + \tan^{-1}\frac{1}{b}) + 2\sqrt{1+b^2}\{\cos(b\log\frac{N}{2})E_c(N) - \sin(b\log\frac{N}{2})E_s(N)\}} \\
= \frac{\sin(\frac{b\log N/k + \tan^{-1}1/b}{b\log N/2 + \tan^{-1}1/b}(b\log\frac{N}{2} + \tan^{-1}\frac{1}{b})\} + 2\sqrt{1+b^2}\{\cos(b\log\frac{N}{k})E_c(N) - \sin(b\log\frac{N}{k})E_s(N)\}}{\sin(b\log\frac{N}{2} + \tan^{-1}\frac{1}{b}) + 2\sqrt{1+b^2}\{\cos(b\log\frac{N}{2})E_c(N) - \sin(b\log\frac{N}{2})E_s(N)\}}$$
(75)

We can confirm that the following (76) holds from the above (75), the following (77) and the following (23) shown in item 2.1.2.

$$\lim_{N \to \infty} \frac{g(k, N)}{g(2, N)} = \frac{\sin(b \log \frac{N}{2} + \tan^{-1} \frac{1}{b})}{\sin(b \log \frac{N}{2} + \tan^{-1} \frac{1}{b})} = 1 \qquad (N_1 < N \ N : \text{odd number})$$
 (76)

$$\lim_{N \to \infty} \frac{b \log \frac{N}{k} + \tan^{-1} \frac{1}{b}}{b \log \frac{N}{2} + \tan^{-1} \frac{1}{b}} = \lim_{N \to \infty} \frac{1 - \frac{\log k}{\log N} + \frac{\tan^{-1} 1/b}{b \log N}}{1 - \frac{\log 2}{\log N} + \frac{\tan^{-1} 1/b}{b \log N}} = 1$$
(77)

$$\lim_{N \to \infty} E_c(N) = 0 \qquad \lim_{N \to \infty} E_s(N) = 0 \tag{23}$$

24 T. ISHIWATA

Appendix 5. : Solution for F(a) = 0

Preparation for verification of F(a) > 0

5.1.1. Investigation of f(n)

$$f(n) = \frac{1}{n^{1/2-a}} - \frac{1}{n^{1/2+a}} \ge 0 \qquad (n = 2, 3, 4, 5, \dots)$$

$$F(a) = f(2) - f(3) + f(4) - f(5) + f(6) - \dots$$
(8)

$$F(a) = f(2) - f(3) + f(4) - f(5) + f(6) - \dots$$
(15)

a=0 is the solution for F(a)=0 due to $f(n)\equiv 0$ at a=0. Hereafter we define the range of a as 0 < a < 1/2 to verify F(a) > 0. The alternating series F(a) converges due to $\lim_{n \to \infty} f(n) = 0$.

We have the following (81) by differentiating f(n) regarding n.

$$\frac{df(n)}{dn} = \frac{1/2 + a}{n^{a+3/2}} - \frac{1/2 - a}{n^{3/2 - a}} = \frac{1/2 + a}{n^{a+3/2}} \left\{ 1 - \left(\frac{1/2 - a}{1/2 + a}\right) n^{2a} \right\}$$
(81)

The value of f(n) increases with increase of n and reaches the maximum value $f(n_{max})$ at $n = n_{max}$. Afterward f(n) decreases to zero with $n \to \infty$. n_{max} is one of the 2 consecutive natural numbers that sandwich $\left(\frac{1/2+a}{1/2-a}\right)^{\frac{1}{2a}}$. (Graph 1) shows f(n) in various value of a. At a = 1/2 f(n) does not have $f(n_{max})$ and increases to 1 with $n \to \infty$ due to $n_{max} = \infty$.

Graph 1: f(n) in various a

Verification method for F(a) > 0

We define F(a, n) as the following (82).

$$F(a,n) = f(2) - f(3) + f(4) - f(5) + \dots + (-1)^n f(n) \qquad (n = 2, 3, 4, 5, \dots)$$
 (82)

$$\lim_{n \to \infty} F(a, n) = F(a) \tag{83}$$

F(a) is an alternating series. So F(a,n) repeats increase and decrease by f(n) with increase of n as shown in (Graph 2). In (Graph 2) upper points mean F(a,2m) ($m=1,2,3,\cdots$) and lower points mean F(a,2m+1). F(a,2m) decreases and converges to F(a) with $m\to\infty$. F(a,2m+1) increases and also converges to F(a) with $m\to\infty$ due to $\lim_{n\to\infty} f(n)=0$. From the above (83) we have the following (84).

$$\lim_{m \to \infty} F(a, 2m) = \lim_{m \to \infty} F(a, 2m + 1) = F(a)$$
(84)

Graph 2: F(0.1, n) from 1st to 100th term

We define F1(a) and F1(a, 2m + 1) as follws.

$$F1(a) = \{f(2) - f(3)\} + \{f(4) - f(5)\} + \{f(6) - f(7)\} + \cdots$$

$$F1(a, 2m + 1) = \{f(2) - f(3)\} + \{f(4) - f(5)\} + \cdots + \{f(2m) - f(2m + 1)\}$$

$$= f(2) - f(3) + f(4) - f(5) + \cdots + f(2m) - f(2m + 1) = F(a, 2m + 1)$$

$$\lim_{m \to \infty} F1(a, 2m + 1) = F1(a)$$
(85)

From the above (84), (86) and (87) we have F(a) = F1(a). We can use F1(a) instead of F(a) to verify F(a) > 0.

We enclose 2 terms of F(a) each from the first term with $\{\ \}$ as follows. If n_{max} is p or p+1 (p: odd number), the inside sum of $\{\ \}$ from f(2) to f(p) has negative value and the inside sum of $\{\ \}$ after f(p+1) has positive value.

$$F(a) = f(2) - f(3) + f(4) - f(5) + f(6) - f(7) + \cdots$$

$$= \{f(2) - f(3)\} + \{f(4) - f(5)\} + \cdots + \{f(p-1) - f(p)\} + \{f(p+1) - f(p+2)\} + \cdots$$

(inside sum of
$$\{\ \}$$
) < 0 \longleftarrow | \longrightarrow (inside sum of $\{\ \}$) > 0 (total sum of $\{\ \}$) = $-B \longleftarrow$ | \longrightarrow (total sum of $\{\ \}$) = A

We define as follows.

[the partial sum from
$$f(2)$$
 to $f(p)$] = $-B < 0$
[the partial sum from $f(p+1)$ to $f(\infty)$] = $A > 0$

$$F(a) = A - B \tag{88}$$

So we can verify F(a) > 0 by verifying A > B.

5.1.3. Investigation of $\{f(n) - f(n+1)\}$

We have the following (89) by differentiating $\{f(n) - f(n+1)\}$ regarding n.

$$\frac{df(n)}{dn} - \frac{df(n+1)}{dn} = \frac{1/2 + a}{n^{3/2 + a}} \left\{ 1 - \left(\frac{n}{n+1}\right)^{3/2 + a} \right\} - \frac{1/2 - a}{n^{3/2 - a}} \left\{ 1 - \left(\frac{n}{n+1}\right)^{3/2 - a} \right\} \\
= C(n) - D(n) \tag{89}$$

When n is a small natural number the value of $\{f(n)-f(n+1)\}$ increases with increase of n due to C(n) > D(n). With increase of n the value reaches the maximum value $\{q_{max}\}$ at C(n) = D(n). (n is a natural number. The situation cannot be C(n) = D(n).) After that the situation changes to C(n) < D(n) and the value decreases to zero with $n \to \infty$. (Graph 3) shows the value of $\{f(n) - f(n+1)\}$ in various value of a. (Graph 4) shows the value of $\{f(n) - f(n+1)\}$ at a = 0.1. We can find the following from (Graph 3) and (Graph 4).

- 5.1.3.1 When $\left|\frac{df(n)}{dn}\right|$ becomes the maximum value |f(n)-f(n+1)| also becomes the maximum value at same value of a. From (Graph 1) we can find that $\left|\frac{df(n)}{dn}\right|$ becomes the maximum value at n=2. Therefore the maximum value of |f(n)-f(n+1)| is $\{f(3)-f(2)\}$ at same value of a as shown in (Graph 3).
- 5.1.3.2 With increase of n the sign of $\{f(n) f(n+1)\}$ changes from minus to plus at $n = n_{max} \ (n = n_{max} + 1)$ when n_{max} is even(odd) number as shown in (Graph 4).
- 5.1.3.3 After that the value reaches the maximum value $\{q_{max}\}$ and the value decreases to zero with $n \to \infty$ as shown in (Graph 4).

Graph 3: $\{f(n) - f(n+1)\}\$ in various a

Graph $4 : \{f(n) - f(n+1)\}$ at a = 0.1

5.2. Verification of A > B (n_{max} is odd number.)

 n_{max} is odd number as follows.

$$F(a) = f(2) - f(3) + f(4) - f(5) + f(6) - \cdots$$

$$= \{f(2) - f(3)\} + \{f(4) - f(5)\} + \cdots + \{f(n_{max} - 3) - f(n_{max} - 2)\} + \{f(n_{max} - 1) - f(n_{max})\} + \{f(n_{max} + 1) - f(n_{max} + 2)\} + \{f(n_{max} + 3) - f(n_{max} + 4)\} + \{f(n_{max} + 5) - f(n_{max} + 6)\} + \cdots$$

We can have A and B as follows.

$$B = \{f(3) - f(2)\} + \{f(5) - f(4)\} + \{f(7) - f(6)\} + \dots + \{f(n_{max} - 2) - f(n_{max} - 3)\} + \{\frac{f(n_{max})}{f(n_{max} - 1)} - f(n_{max} - 1)\}$$

$$A = \{f(n_{max} + 1) - f(n_{max} + 2)\} + \{f(n_{max} + 3) - f(n_{max} + 4)\} + \{f(n_{max} + 5) - f(n_{max} + 6)\} + \dots$$

5.2.1. Condition for B

We define as follows.

 $\{ \}$: the term which is included within B.

 $\{ \}$: the term which is not included within B.

We have the following (90).

$$f(n_{max}) - f(2) = \left\{ \frac{f(n_{max}) - f(n_{max} - 1)}{f(7) - f(6)} \right\} + \left\{ \frac{f(n_{max} - 1) - f(n_{max} - 2)}{f(5) - f(4)} \right\} + \left\{ \frac{f(4) - f(3)}{f(4) - f(3)} \right\} + \left\{ \frac{f(3) - f(2)}{f(3) - f(2)} \right\}$$
(90)

And we have the following inequalities from (Graph 3) and (Graph 4).

$$\left\{ \frac{f(3) - f(2)}{f(3) - f(2)} \right\} > \left\{ \frac{f(4) - f(3)}{f(5) - f(4)} \right\} > \left\{ \frac{f(6) - f(5)}{f(6) - f(5)} \right\} > \left\{ \frac{f(7) - f(6)}{f(n_{max} - 2) - f(n_{max} - 3)} \right\} > \left\{ \frac{f(n_{max} - 1) - f(n_{max} - 2)}{f(n_{max} - 2)} \right\} > \left\{ \frac{f(n_{max} - 1) - f(n_{max} - 2)}{f(n_{max} - 2)} \right\} > \left\{ \frac{f(n_{max} - 2) - f(n_{max} - 1)}{f(n_{max} - 2)} \right\} > 0$$

From the above (90) we have the following (91).

Due to [Total sum of upper row of the above (91) = B < Total sum of lower row of (91)] we have the following (92).

$$f(n_{max}) - f(2) + \{f(3) - f(2)\} > 2B \tag{92}$$

5.2.2. Condition for A ($\{q_{max}\}$ is included within A.)

We abbreviate $\{f(n_{max} + q) - f(n_{max} + q + 1)\}$ to $\{q\}$ for easy description. $(q = 0, 1, 2, 3, \dots)$ All $\{q\}$ has positive value as shown in item 5.1.2. We define as follows.

 $\{ \}$: the term which is included within A.

 $\{ \}$: the term which is not included within A.

 $\{q_{max}\}$ has the maximum value in all $\{q\}$. And $\{q_{max}\}$ is included within A. Then value comparison of $\{q\}$ is as follows.

$$\{1\} < \{2\} < \{3\} < \cdots < \{q_{max} - 3\} < \{q_{max} - 2\} < \{q_{max} - 1\} < \{q_{max} + 1\} > \{q_{max} + 1\} > \{q_{max} + 2\} > \{q_{max} + 3\} > \cdots$$

We have the following (93).

$$f(n_{max} + 1) = \left\{ \frac{f(n_{max} + 1) - f(n_{max} + 2)}{f(n_{max} + 4) - f(n_{max} + 5)} \right\} + \left\{ \frac{f(n_{max} + 3) - f(n_{max} + 3)}{f(n_{max} + 4) - f(n_{max} + 5)} \right\} + \dots$$

$$= \{ \frac{1}{2} + \{ \frac{3}{2} \} + \{ \frac{3}{4} \} + \dots + \{ q_{max} - 3 \} + \{ \frac{q_{max} - 2}{2} \} + \{ q_{max} - 1 \} + \{ \frac{q_{max}}{2} \} + \{ q_{max} + 1 \} + \{ \frac{q_{max} + 2}{2} \} + \{ q_{max} + 3 \} + \dots$$

$$(93)$$

From the above (93) we have the following (94).

$$f(n_{max}+1)-\{q_{max}-1\}$$

(Range 1) and (Range 2) are determined as above. In (Range 1) value comparison is as follows.

And we can find the following.

Therefore [Total sum of { | } > Total sum of { | } | holds. In (Range 2) value comparison is as follows.

$$\left\{ \boxed{q_{max}} \right\} > \left\{ \boxed{q_{max} + 1} \right\} > \left\{ \boxed{q_{max} + 2} \right\} > \left\{ \boxed{q_{max} + 3} \right\} > \left\{ \boxed{q_{max} + 4} \right\} > \left\{ \boxed{q_{max} + 5} \right\} > \left\{ \boxed{q_{max} + 6} \right\} > \cdots \cdots$$

And we can find the following.

Therefore [Total sum of $\{ \ \ \} >$ Total sum of $\{ \ \ \} =$] holds.

In (Range 1)+(Range 2) we have [Total sum of $\{ __ \} = A > \text{Total sum of } \{ __ \}$]. We have the following (95).

$$f(n_{max} + 1) - \{q_{max} - 1\} < 2A \tag{95}$$

5.2.3. Condition for A ($\{q_{max}\}$ is not included within A.)

We have the following (96). $\{q_{max}\}\$ is not included within A.

$$f(n_{max} + 1) = \left\{ \frac{f(n_{max} + 1) - f(n_{max} + 2)}{f(n_{max} + 2)} \right\} + \left\{ \frac{f(n_{max} + 2) - f(n_{max} + 3)}{f(n_{max} + 4) - f(n_{max} + 5)} \right\} + \cdots$$

$$= \{1\} + \{2\} + \{3\} + \{4\} + \dots + \{q_{max} - 3\} + \{q_{max} - 2\} + \{q_{max} - 1\} + \{q_{max} - 1\} + \{q_{max} + 1\} + \{q_{max} + 2\} + \{q_{max} + 2\} + \{q_{max} + 3\} + \dots$$

$$(96)$$

From the above (96) we have the following (97).

$$f(n_{max}+1)-\{q_{max}\}$$

(Range 1) and (Range 2) are determined as above. In (Range 1) value comparison is as follows.

$$\left\{\begin{array}{c} 1 \end{array}\right\} < \left\{\begin{array}{c} 2 \end{array}\right\} < \left\{\begin{array}{c} 4 \end{array}\right\} < \dots < \left\{\begin{array}{c} q_{max} - 4 \end{array}\right\} < \left\{\begin{array}{c} q_{max} - 3 \end{array}\right\} < \left\{\begin{array}{c} q_{max} - 2 \end{array}\right\} < \left\{\begin{array}{c} q_{max} - 1 \end{array}\right\}$$

And we can find the following.

$$\begin{array}{c} \text{Total sum of } \{ \begin{array}{c} \\ \\ \end{array} \} = \{ \begin{array}{c} \\ \\ \end{array} \} + \{ \begin{array}{c} \\ \\ \end{array} \} + \{ \begin{array}{c} \\ \\ \end{array} \} + \{ \begin{array}{c} \\ \end{array} \} + \{ \begin{array}$$

Therefore [Total sum of $\{ \} > \text{Total sum of } \{ \}$] holds.

In (Range 2) value comparison is as follows.

$$\left\{\frac{q_{max}+1}{q_{max}+2}\right\} > \left\{\frac{q_{max}+3}{q_{max}+4}\right\} > \left\{\frac{q_{max}+5}{q_{max}+5}\right\} > \left\{\frac{q_{max}+6}{q_{max}+7}\right\} > \cdots$$

And we can find the following.

Therefore [Total sum of $\{ \} > \text{Total sum of } \{ \}$] holds.

In (Range 1)+(Range 2) we have [Total sum of $\{ __ \} = A > \text{Total sum of } \{ __ \}$]. We have the following (98).

$$f(n_{max} + 1) - \{q_{max}\} < 2A \tag{98}$$

5.2.4. Condition for A > B

From (95) and (98) we have the following inequality.

$$f(n_{max} + 1) - [\{q_{max}\} \text{ or } \{q_{max} - 1\}] < 2A$$

As shown in item 5.1.3.1 $\{f(3) - f(2)\}$ is the maximum in all |f(n) - f(n+1)|. Then the following holds.

$${f(3) - f(2)} > [{q_{max}} \text{ or } {q_{max} - 1}]$$

 ${f(3) - f(2)} > f(n_{max}) - f(n_{max} + 1)$

We have the following inequality from the above 3 inequalities.

$$2A > f(n_{max} + 1) - [\{q_{max}\} \text{ or } \{q_{max} - 1\}] > f(n_{max} + 1) - \{f(3) - f(2)\}$$

$$> f(n_{max}) - \{f(3) - f(2)\} - \{f(3) - f(2)\} = f(n_{max}) - 2\{f(3) - f(2)\}$$
 (99)

We have the following (100) for A > B from (92) and (99).

$$2A > f(n_{max}) - 2\{f(3) - f(2)\} > f(n_{max}) - f(2) + \{f(3) - f(2)\} > 2B$$
 (100)

From the above (100) we can have the final condition for A > B as follows.

$$(4/3)f(2) > f(3) \tag{101}$$

$$(\text{Graph 5) shows } (4/3)f(2) - f(3) = (4/3)(\frac{1}{2^{1/2-a}} - \frac{1}{2^{1/2+a}}) - (\frac{1}{3^{1/2-a}} - \frac{1}{3^{1/2+a}}).$$

Graph 5: (4/3)f(2) - f(3)

а	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
(4/3)f(2)-f(3)	0	0.001903	0.003694	0.005257	0.00648	0.007246	0.007437	0.006933	0.005611	0.003343	0

Table 1: The values of (4/3)f(2) - f(3)

(Graph 6) shows [differentiated $\{(4/3)f(2)-f(3)\}$ regarding a] i.e. $(4/3)f'(2)-f'(3)=(4/3)\{\log 2(\frac{1}{2^{1/2-a}}+\frac{1}{2^{1/2+a}})\}-\{\log 3(\frac{1}{3^{1/2-a}}+\frac{1}{3^{1/2+a}})\}.$

Graph 6 : $(4/3)f^{\prime}(2)-f^{\prime}(3)$

а	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
(4/3)f'(2)-f'(3)	0.038443	0.037313	0.033921	0.02825	0.020277	0.009967	-0.00272	-0.01785	-0.03547	-0.05567	-0.07852

Table 2: The values of (4/3)f'(2) - f'(3)

From (Graph 5) and (Graph 6) we can find [(4/3)f(2) - f(3) > 0 in 0 < a < 1/2] that means A > B i.e. F(a) > 0 in 0 < a < 1/2.

5.3. Verification of A > B $(n_{max} \text{ is even number.})$

 n_{max} is even number as follows.

$$F(a) = f(2) - f(3) + f(4) - f(5) + f(6) - \cdots$$

$$= \{f(2) - f(3)\} + \{f(4) - f(5)\} + \cdots + \{f(n_{max} - 4) - f(n_{max} - 3)\} + \{f(n_{max} - 2) - f(n_{max} - 1)\}$$

$$+ \{f(n_{max}) - f(n_{max} + 1)\} + \{f(n_{max} + 2) - f(n_{max} + 3)\} + \{f(n_{max} + 4) - f(n_{max} + 5)\} + \cdots$$

We can have A and B as follows.

$$B = \{f(3) - f(2)\} + \{f(5) - f(4)\} + \{f(7) - f(6)\}$$

$$+ \dots + \{f(n_{max} - 3) - f(n_{max} - 4)\} + \{f(n_{max} - 1) - f(n_{max} - 2)\}$$

$$A = \{f(n_{max}) - f(n_{max} + 1)\} + \{f(n_{max} + 2) - f(n_{max} + 3)\} + \{f(n_{max} + 4) - f(n_{max} + 5)\} + \dots$$

$$f(n_{max}) = \{f(n_{max}) - f(n_{max} + 1)\} + \{f(n_{max} + 1) - f(n_{max} + 2)\} + \{f(n_{max} + 2) - f(n_{max} + 3)\}$$

$$+ \{f(n_{max} + 3) - f(n_{max} + 4)\} + \dots$$

$$= \{0\} + \{1\} + \{2\} + \{3\} + \{4\}$$

$$+ \dots + \{q_{max} - 3\} + \{q_{max} - 2\} + \{q_{max} - 1\} + \{q_{max}\} + \{q_{max} + 1\} + \{q_{max} + 2\} + \{q_{max} + 3\} + \dots$$

After the same process as in item 5.2.1 we can have the following (102).

$$f(n_{max} - 1) - f(2) + \{f(3) - f(2)\} > 2B$$
(102)

As shown in item 5.1.3.1 $\{f(3) - f(2)\}$ is the maximum in all |f(n) - f(n+1)|. Then the following holds.

$${f(3) - f(2)} > [{q_{max}} \text{ or } {q_{max} - 1}]$$

 $f(n_{max}) > f(n_{max} - 1)$

We have the following (103) from the above inequalities and the same process as in item 5.2.2 and item 5.2.3.

$$2A > f(n_{max}) - [\{q_{max}\} \text{ or } \{q_{max} - 1\}] > f(n_{max}) - \{f(3) - f(2)\}$$
$$> f(n_{max} - 1) - \{f(3) - f(2)\}$$
(103)

We have the following (104) for A > B from (102) and (103).

$$2A > f(n_{max} - 1) - \{f(3) - f(2)\} > f(n_{max} - 1) - f(2) + \{f(3) - f(2)\} > 2B$$
 (104)

From (104) we can have the final condition for A > B as follows.

$$(3/2)f(2) > f(3) \tag{105}$$

In the inequality of [(3/2)f(2) > (4/3)f(2) > f(3) > 0], (3/2)f(2) > (4/3)f(2) is true self-evidently and in item 5.2.4 we already confirmed that the following (101) was true in 0 < a < 1/2.

$$(4/3)f(2) > f(3) \tag{101}$$

Therefore the above (105) is true in 0 < a < 1/2. Now we can confirm F(a) > 0 in 0 < a < 1/2.

5.4. Conclusion

As shown in item 5.2 and item 5.3 [F(a) > 0 in 0 < a < 1/2] is true. Therefore F(a) = 0 has the only solution of a = 0 from $[0 \le a < 1/2]$ and [F(0) = 0].

5.5. Graph of F(a)

We can approximate F(a) with the average of $\{F(a, n-1) + F(a, n)\}/2$. But we approximate F(a) by the following (106) for better accuracy. (Graph 7) shows $F(a)_n$ calculated at 3 cases of n = 500, 1000, 5000.

$$\frac{\frac{F(a,n-1)+F(a,n)}{2} + \frac{F(a,n)+F(a,n+1)}{2}}{2} = F(a)_n$$
 (106)

Graph $7: F(a)_n$ at 3 cases

а	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
n=500	0	0.01932876	0.03865677	0.05798326	0.0773074	0.09662832	0.11594507	0.13525658	0.15456168	0.17385904	0.19314718
n=1,000	0	0.01932681	0.03865282	0.05797725	0.0772993	0.09661821	0.11593325	0.13524382	0.15454955	0.17385049	0.19314743
n=5,000	0	0.01932876	0.03865676	0.05798324	0.07730738	0.09662829	0.11594504	0.13525655	0.15456165	0.17385902	0.19314718

Table 3: The values of $F(a)_n$ at 3 cases

3 line graphs overlapped. Because $F(a)_n$ calculated at 3 cases of $n=500,\,1000,\,5000$ are equal to 4 digits after the decimal point. The range of a is $0 \le a < 1/2$. a=1/2 is not included in the range. But we added $F(1/2)_n$ to calculation due to the following reason. [f(n) at a=1/2 is (1-1/n) and F(1/2) fluctuates due to $\lim_{n\to\infty} f(n)=1$. But the value of the above (106) converges to the fixed value on the condition of $\lim_{n\to\infty} \{f(n+1)-f(n)\}=0$. The condition holds due to $f(n+1)-f(n)=1/(n+n^2)$.

F(a) is a monotonically increasing function as shown in (Graph 7). So F(a) = 0 has the only solution and the solution must be a = 0 due to the following facts. Therefore Riemann hypothesis must be true.

- 5.5.1 In 1914 G. H.Hardy proved that there are infinite non-trivial zero points on the line of Re(s) = 1/2.
- 5.5.2 All non-trivial zero points found until now exist on the line of Re(s) = 1/2.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

[1] Yukio Kusunoki, Introduction to infinite series, Asakura syoten, (1972), page 22, (written in Japanese)

Toshihiko Ishiwata

E-mail: toshihiko.ishiwata@gmail.com