Proof of Riemann hypothesis

By Toshihiko Ishiwata

Dec. 14, 2021

Abstract

This paper is a trial to prove Riemann hypothesis according to the following process. 1. We make the infinite number of infinite series from one equation that gives $\zeta(s)$ analytic continuation to $\operatorname{Re}(s)>0$ and 2 formulas $(1 / 2+a+b i, 1 / 2-a-b i)$ which show zero point of $\zeta(s)$. 2 . We find that the value of $F(a)$ (that is the infinite series regarding a) must be zero from the above infinite number of infinite series. 3. We find that $F(a)=0$ has the only solution of $a=0$. 4. Zero point of $\zeta(s)$ must be $1 / 2 \pm b i$ because a cannot have any value but zero.

1. Introduction

The following (1) gives Riemann zeta function $\zeta(s)$ analytic continuation to $\operatorname{Re}(s)>0$. " $+\cdots \cdots$..." means infinite series in all equations in this paper.

$$
\begin{equation*}
1-2^{-s}+3^{-s}-4^{-s}+5^{-s}-6^{-s}+\cdots \cdots=\left(1-2^{1-s}\right) \zeta(s) \tag{1}
\end{equation*}
$$

The following (2) shows the zero point of the left side of (1) and also non-trivial zero point of $\zeta(s)$.

$$
\begin{equation*}
S_{0}=1 / 2+a+b i \tag{2}
\end{equation*}
$$

The range of a is $0 \leq a<1 / 2$ by the critical strip of $\zeta(s)$. The range of b is $b>14$ due to the following reasons. And i is $\sqrt{-1}$.
1.1 [Conjugate complex number of S_{0}] $=1 / 2+a-b i$ is also zero point of $\zeta(s)$. Therefore $b \geq 0$ is necessary and sufficient range for investigation.
1.2 The range of b of zero points found until now is $b>14$.

The following (3) also shows zero point of $\zeta(s)$ by the functional equation of $\zeta(s)$.

$$
\begin{equation*}
S_{1}=1-S_{0}=1 / 2-a-b i \tag{3}
\end{equation*}
$$

We have the following (4) and (5) by substituting S_{0} for s in the left side of (1) and putting both the real part and the imaginary part of the left side of (1) at zero respectively.

$$
\begin{align*}
& 1=\frac{\cos (b \log 2)}{2^{1 / 2+a}}-\frac{\cos (b \log 3)}{3^{1 / 2+a}}+\frac{\cos (b \log 4)}{4^{1 / 2+a}}-\frac{\cos (b \log 5)}{5^{1 / 2+a}}+\cdots \cdots \tag{4}\\
& 0=\frac{\sin (b \log 2)}{2^{1 / 2+a}}-\frac{\sin (b \log 3)}{3^{1 / 2+a}}+\frac{\sin (b \log 4)}{4^{1 / 2+a}}-\frac{\sin (b \log 5)}{5^{1 / 2+a}}+\cdots \cdots \tag{5}
\end{align*}
$$

[^0]We also have the following (6) and (7) by substituting S_{1} for s in the left side of (1) and putting both the real part and the imaginary part of the left side of (1) at zero respectively.

$$
\begin{align*}
& 1=\frac{\cos (b \log 2)}{2^{1 / 2-a}}-\frac{\cos (b \log 3)}{3^{1 / 2-a}}+\frac{\cos (b \log 4)}{4^{1 / 2-a}}-\frac{\cos (b \log 5)}{5^{1 / 2-a}}+\cdots \cdots \tag{6}\\
& 0=\frac{\sin (b \log 2)}{2^{1 / 2-a}}-\frac{\sin (b \log 3)}{3^{1 / 2-a}}+\frac{\sin (b \log 4)}{4^{1 / 2-a}}-\frac{\sin (b \log 5)}{5^{1 / 2-a}}+\cdots \cdots \tag{7}
\end{align*}
$$

2. Infinite number of infinite series

We define $f(n)$ as follows.

$$
\begin{equation*}
f(n)=\frac{1}{n^{1 / 2-a}}-\frac{1}{n^{1 / 2+a}} \geq 0 \quad(n=2,3,4,5, \cdots \cdots) \tag{8}
\end{equation*}
$$

We have the following (9) from (4) and (6) with the method shown in item 1.1 of [Appendix 1: Equation construction].

$$
\begin{equation*}
0=f(2) \cos (b \log 2)-f(3) \cos (b \log 3)+f(4) \cos (b \log 4)-f(5) \cos (b \log 5)+\cdots \cdots \tag{9}
\end{equation*}
$$

We also have the following (10) from (5) and (7) with the method shown in item 1.2 of [Appendix 1].

$$
\begin{equation*}
0=f(2) \sin (b \log 2)-f(3) \sin (b \log 3)+f(4) \sin (b \log 4)-f(5) \sin (b \log 5)+\cdots \cdots \tag{10}
\end{equation*}
$$

We can have the following (11) (which is the function of real number x) from the above (9) and (10) with the method shown in item 1.3 of [Appendix 1]. And the value of (11) is always zero at any value of x.

$$
\begin{align*}
0 \equiv & \cos x\{\text { right side of }(9)\}+\sin x\{\text { right side of }(10)\} \\
= & \cos x\{f(2) \cos (b \log 2)-f(3) \cos (b \log 3)+f(4) \cos (b \log 4)-f(5) \cos (b \log 5)+\cdots \cdots \cdot\} \\
& +\sin x\{f(2) \sin (b \log 2)-f(3) \sin (b \log 3)+f(4) \sin (b \log 4)-f(5) \sin (b \log 5)+\cdots \cdots\} \\
= & f(2) \cos (b \log 2-x)-f(3) \cos (b \log 3-x)+f(4) \cos (b \log 4-x) \\
& -f(5) \cos (b \log 5-x)+f(6) \cos (b \log 6-x)-\cdots \cdots \tag{11}
\end{align*}
$$

We have the following (12-1) by substituting $b \log 1$ for x in (11).

$$
\begin{align*}
0= & f(2) \cos (b \log 2-b \log 1)-f(3) \cos (b \log 3-b \log 1)+f(4) \cos (b \log 4-b \log 1) \\
& -f(5) \cos (b \log 5-b \log 1)+f(6) \cos (b \log 6-b \log 1)-\cdots \cdots \tag{12-1}
\end{align*}
$$

We have the following (12-2) by substituting $b \log 2$ for x in (11).

$$
\begin{align*}
0= & f(2) \cos (b \log 2-b \log 2)-f(3) \cos (b \log 3-b \log 2)+f(4) \cos (b \log 4-b \log 2) \\
& -f(5) \cos (b \log 5-b \log 2)+f(6) \cos (b \log 6-b \log 2)-\cdots \cdots \tag{12-2}
\end{align*}
$$

We have the following (12-3) by substituting $b \log 3$ for x in (11).

$$
0=f(2) \cos (b \log 2-b \log 3)-f(3) \cos (b \log 3-b \log 3)+f(4) \cos (b \log 4-b \log 3)
$$

$$
\begin{equation*}
-f(5) \cos (b \log 5-b \log 3)+f(6) \cos (b \log 6-b \log 3)-\cdots \cdots \tag{12-3}
\end{equation*}
$$

In the same way as above we can have the following (12-N) by substituting $b \log N$ for x in (11). $\quad(N=4,5,6,7,8, \cdots \cdots)$

$$
\begin{align*}
0= & f(2) \cos (b \log 2-b \log N)-f(3) \cos (b \log 3-b \log N)+f(4) \cos (b \log 4-b \log N) \\
& -f(5) \cos (b \log 5-b \log N)+f(6) \cos (b \log 6-b \log N)-\cdots \cdots \tag{12-N}
\end{align*}
$$

3. Verification of $\boldsymbol{F}(\boldsymbol{a})=\mathbf{0}$

We define $g(k, N)$ as follows. $\quad(k=2,3,4,5, \cdots \cdots)$

$$
\begin{align*}
g(k, N) & =\cos (b \log k-b \log 1)+\cos (b \log k-b \log 2)+\cdots+\cos (b \log k-b \log N) \\
& =\cos (b \log 1-b \log k)+\cos (b \log 2-b \log k)+\cdots+\cos (b \log N-b \log k) \\
& =\cos (b \log 1 / k)+\cos (b \log 2 / k)+\cos (b \log 3 / k)+\cdots+\cos (b \log N / k) \tag{13}
\end{align*}
$$

We can have the following (14) from the equations of (12-1), (12-2), (12-3), $\cdots \cdots,(12-\mathrm{N})$ with the method shown in item 1.4 of [Appendix 1].

$$
\begin{align*}
0= & f(2)\{\cos (b \log 2-b \log 1)+\cos (b \log 2-b \log 2)+\cdots+\cos (b \log 2-b \log N)\} \\
& -f(3)\{\cos (b \log 3-b \log 1)+\cos (b \log 3-b \log 2)+\cdots+\cos (b \log 3-b \log N)\} \\
& +f(4)\{\cos (b \log 4-b \log 1)+\cos (b \log 4-b \log 2)+\cdots+\cos (b \log 4-b \log N)\} \\
& -f(5)\{\cos (b \log 5-b \log 1)+\cos (b \log 5-b \log 2)+\cdots+\cos (b \log 5-b \log N)\} \\
& +\cdots \cdots \\
= & f(2) g(2, N)-f(3) g(3, N)+f(4) g(4, N)-f(5) g(5, N)+\cdots \cdots \tag{14}
\end{align*}
$$

Here we define $F(a)$ as follows.

$$
\begin{equation*}
F(a)=f(2)-f(3)+f(4)-f(5)+f(6)-\cdots \cdots \tag{15}
\end{equation*}
$$

We can have the following (16) by deviding the above (14) by $g(2, N)$. Because $g(2, N) \neq$ 0 is true in $N_{0} \leq N$ as shown in [Appendix 2: Proof of $g(2, N) \neq 0$]. N_{0} is the large natural number that holds (29) in [Appendix 2].

$$
\begin{equation*}
0=f(2)-\frac{f(3) g(3, N)}{g(2, N)}+\frac{f(4) g(4, N)}{g(2, N)}-\frac{f(5) g(5, N)}{g(2, N)}+\cdots \cdots \quad\left(N_{0} \leq N\right) \tag{16}
\end{equation*}
$$

We can have the following (17) from the above (16) by performing $N \rightarrow \infty$. Because $\lim _{N \rightarrow \infty} \frac{g(k, N)}{g(2, N)}=1 \quad(k=3,4,5,6,7 \cdots \cdots)$ is true as shown in [Appendix 3: Proof of $\left.\lim _{N \rightarrow \infty} \frac{g(k, N)}{g(2, N)}=1\right]$.

$$
\begin{align*}
0 & =\lim _{N \rightarrow \infty}\left\{f(2)-\frac{f(3) g(3, N)}{g(2, N)}+\frac{f(4) g(4, N)}{g(2, N)}-\frac{f(5) g(5, N)}{g(2, N)}+\cdots \cdots\right\} \\
& =f(2)-f(3)+f(4)-f(5)+f(6)-\cdots \cdots=F(a) \quad\left(N_{0} \leq N\right) \tag{17}
\end{align*}
$$

4. Conclusion

$F(a)=0$ has the only solution of $a=0$ as shown in [Appendix 4: Solution for $F(a)=0]$. a has the range of $0 \leq a<1 / 2$ by the critical strip of $\zeta(s)$. However, a cannot have any value but zero because a is the solution for $F(a)=0$. Due to $a=0$ nontrivial zero point of Riemann zeta function $\zeta(s)$ shown by (2) and (3) must be $1 / 2 \pm b i$ and other zero point does not exist. Therefore Riemann hypothesis which says "All non-trivial zero points of Riemann zeta function $\zeta(s)$ exist on the line of $\operatorname{Re}(s)=1 / 2$." is true.

Appendix 1. : Equation construction

We can construct (9), (10), (11) and (14) by applying the following Theorem $1[1]$.

Theorem 1

On condition that the following (Series 1) and (Series 2) converge respectively, the following (Series 3) and (Series 4) are true.

$$
\begin{aligned}
& \left(\text { Series 1) }=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+\cdots \cdots=A\right. \\
& \left(\text { Series 2) }=b_{1}+b_{2}+b_{3}+b_{4}+b_{5}+\cdots \cdots=B\right. \\
& \left(\text { Series 3) }=\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right)+\left(a_{3}+b_{3}\right)+\left(a_{4}+b_{4}\right)+\cdots \cdots=A+B\right. \\
& \left(\text { Series 4) }=\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right)+\left(a_{3}-b_{3}\right)+\left(a_{4}-b_{4}\right)+\cdots \cdots=A-B\right.
\end{aligned}
$$

1.1. Construction of (9)

We can have the following (9) as (Series 4) by regarding (6) and (4) as (Series 1) and (Series 2) respectively.

$$
\begin{align*}
(\text { Series } 1) & =\frac{\cos (b \log 2)}{2^{1 / 2-a}}-\frac{\cos (b \log 3)}{3^{1 / 2-a}}+\frac{\cos (b \log 4)}{4^{1 / 2-a}}-\frac{\cos (b \log 5)}{5^{1 / 2-a}}+\cdots \cdots \cdot=1 \tag{6}\\
(\text { Series } 2) & =\frac{\cos (b \log 2)}{2^{1 / 2+a}}-\frac{\cos (b \log 3)}{3^{1 / 2+a}}+\frac{\cos (b \log 4)}{4^{1 / 2+a}}-\frac{\cos (b \log 5)}{5^{1 / 2+a}}+\cdots \cdots=1 \tag{4}\\
(\text { Series } 4) & =f(2) \cos (b \log 2)-f(3) \cos (b \log 3)+f(4) \cos (b \log 4)-f(5) \cos (b \log 5) \\
& +\cdots \cdots=1-1=0 \tag{9}
\end{align*}
$$

Here $f(n)$ is defined as follows.

$$
\begin{equation*}
f(n)=\frac{1}{n^{1 / 2-a}}-\frac{1}{n^{1 / 2+a}} \geq 0 \quad(n=2,3,4,5, \cdots \cdots) \tag{8}
\end{equation*}
$$

1.2. Construction of (10)

We can have the following (10) as (Series 4) by regarding (7) and (5) as (Series 1) and (Series 2) respectively.

$$
\begin{align*}
& (\text { Series } 1)=\frac{\sin (b \log 2)}{2^{1 / 2-a}}-\frac{\sin (b \log 3)}{3^{1 / 2-a}}+\frac{\sin (b \log 4)}{4^{1 / 2-a}}-\frac{\sin (b \log 5)}{5^{1 / 2-a}}+\cdots \cdots=0 \tag{7}\\
& (\text { Series } 2)=\frac{\sin (b \log 2)}{2^{1 / 2+a}}-\frac{\sin (b \log 3)}{3^{1 / 2+a}}+\frac{\sin (b \log 4)}{4^{1 / 2+a}}-\frac{\sin (b \log 5)}{5^{1 / 2+a}}+\cdots \cdots=0 \tag{5}
\end{align*}
$$

$($ Series 4$)=f(2) \sin (b \log 2)-f(3) \sin (b \log 3)+f(4) \sin (b \log 4)-f(5) \sin (b \log 5)$

$$
\begin{equation*}
+\cdots \cdots=0-0 \tag{10}
\end{equation*}
$$

1.3. Construction of (11)

We can have the following (11) as (Series 3) by regarding the following equations as (Series 1) and (Series 2).
(Series 1) $=\cos x\{$ right side of (9) $\}$

$$
\begin{aligned}
= & \cos x\{f(2) \cos (b \log 2)-f(3) \cos (b \log 3)+f(4) \cos (b \log 4)-f(5) \cos (b \log 5) \\
& +\cdots \cdots\} \equiv 0
\end{aligned}
$$

$($ Series 2$)=\sin x\{$ right side of (10) $\}$

$$
\begin{aligned}
= & \sin x\{f(2) \sin (b \log 2)-f(3) \sin (b \log 3)+f(4) \sin (b \log 4)-f(5) \sin (b \log 5) \\
& +\cdots \cdots\} \equiv 0
\end{aligned}
$$

$($ Series 3$)=f(2) \cos (b \log 2-x)-f(3) \cos (b \log 3-x)+f(4) \cos (b \log 4-x)$

$$
\begin{equation*}
-f(5) \cos (b \log 5-x)+\cdots \cdots \equiv 0+0 \tag{11}
\end{equation*}
$$

1.4. Construction of (14)

1.4.1 We can have the following (12-1*2) as (Series 3) by regarding (12-1) and (12-2) as (Series 1) and (Series 2) respectively.

$$
\begin{align*}
(\text { Series } 1)= & f(2) \cos (b \log 2-b \log 1)-f(3) \cos (b \log 3-b \log 1) \\
& +f(4) \cos (b \log 4-b \log 1)-f(5) \cos (b \log 5-b \log 1) \\
& +f(6) \cos (b \log 6-b \log 1)-\cdots \cdots=0 \tag{12-1}\\
(\text { Series } 2)= & f(2) \cos (b \log 2-b \log 2)-f(3) \cos (b \log 3-b \log 2) \\
& +f(4) \cos (b \log 4-b \log 2)-f(5) \cos (b \log 5-b \log 2) \\
& +f(6) \cos (b \log 6-b \log 2)-\cdots \cdots=0 \tag{12-2}\\
(\text { Series } 3)= & f(2)\{\cos (b \log 2-b \log 1)+\cos (b \log 2-b \log 2)\} \\
& -f(3)\{\cos (b \log 3-b \log 1)+\cos (b \log 3-b \log 2)\} \\
& +f(4)\{\cos (b \log 4-b \log 1)+\cos (b \log 4-b \log 2)\} \\
& -f(5)\{\cos (b \log 5-b \log 1)+\cos (b \log 5-b \log 2)\} \\
& +\cdots \cdots=0+0 \tag{12-1*2}
\end{align*}
$$

1.4.2 We can have the following $\left(12-1^{*} 3\right)$ as (Series 3) by regarding (12-1*2) and (12-3) as (Series 1) and (Series 2) respectively.
$($ Series 2$)=f(2) \cos (b \log 2-b \log 3)-f(3) \cos (b \log 3-b \log 3)$

$$
\begin{align*}
& +f(4) \cos (b \log 4-b \log 3)-f(5) \cos (b \log 5-b \log 3) \\
& +f(6) \cos (b \log 6-b \log 3)-\cdots \cdots=0 \tag{12-3}
\end{align*}
$$

$($ Series 3$)=f(2)\{\cos (b \log 2-b \log 1)+\cos (b \log 2-b \log 2)+\cos (b \log 2-b \log 3)\}$

$$
\begin{aligned}
& -f(3)\{\cos (b \log 3-b \log 1)+\cos (b \log 3-b \log 2)+\cos (b \log 3-b \log 3)\} \\
& +f(4)\{\cos (b \log 4-b \log 1)+\cos (b \log 4-b \log 2)+\cos (b \log 4-b \log 3)\}
\end{aligned}
$$

$$
-f(5)\{\cos (b \log 5-b \log 1)+\cos (b \log 5-b \log 2)+\cos (b \log 5-b \log 3)\}
$$

$$
\begin{equation*}
+\cdots \cdots=0+0 \tag{12-1*3}
\end{equation*}
$$

1.4.3 We can have the following $(12-1 * 4)$ as (Series 3) by regarding $(12-1 * 3)$ and (12-4) as (Series 1) and (Series 2) respectively.

$$
\begin{align*}
(\text { Series } 2)= & f(2) \cos (b \log 2-b \log 4)-f(3) \cos (b \log 3-b \log 4) \\
& +f(4) \cos (b \log 4-b \log 4)-f(5) \cos (b \log 5-b \log 4) \\
& +f(6) \cos (b \log 6-b \log 4)-\cdots \cdots=0 \tag{12-4}
\end{align*}
$$

(Series 3)

$$
\begin{align*}
= & f(2)\{\cos (b \log 2-b \log 1)+\cos (b \log 2-b \log 2)+\cdots+\cos (b \log 2-b \log 4)\} \\
& -f(3)\{\cos (b \log 3-b \log 1)+\cos (b \log 3-b \log 2)+\cdots+\cos (b \log 3-b \log 4)\} \\
& +f(4)\{\cos (b \log 4-b \log 1)+\cos (b \log 4-b \log 2)+\cdots+\cos (b \log 4-b \log 4)\} \\
& -f(5)\{\cos (b \log 5-b \log 1)+\cos (b \log 5-b \log 2)+\cdots+\cos (b \log 5-b \log 4)\} \\
& +\cdots \cdots=0+0 \tag{12-1*4}
\end{align*}
$$

1.4.4 In the same way as above we can have the following $(12-1 * N)=(14)$ as (Series 3) by regarding $\left(12-1^{*} \mathrm{~N}-1\right)$ and $(12-\mathrm{N})$ as (Series 1$)$ and (Series 2) respectively.
$(N=5,6,7,8, \cdots \cdots) g(k, N)$ is defined in page $3 .(k=2,3,4,5, \cdots \cdots)$

$$
\begin{align*}
& f(2)\{\cos (b \log 2-b \log 1)+\cos (b \log 2-b \log 2)+\cdots+\cos (b \log 2-b \log N)\} \\
& -f(3)\{\cos (b \log 3-b \log 1)+\cos (b \log 3-b \log 2)+\cdots+\cos (b \log 3-b \log N)\} \\
& +f(4)\{\cos (b \log 4-b \log 1)+\cos (b \log 4-b \log 2)+\cdots+\cos (b \log 4-b \log N)\} \\
& -f(5)\{\cos (b \log 5-b \log 1)+\cos (b \log 5-b \log 2)+\cdots+\cos (b \log 5-b \log N)\} \\
& +\cdots \cdots \\
& =f(2) g(2, N)-f(3) g(3, N)+f(4) g(4, N)-f(5) g(5, N)+f(6) g(6, N)-\cdots \cdots \\
& =0+0 \tag{12-1*N}
\end{align*}
$$

Appendix 2. : Proof of $g(2, N) \neq 0$

2.1. Investigation of $g(k, N)$
2.1.1 We define G and H as follows.

$$
\begin{align*}
G & =\lim _{N \rightarrow \infty} \frac{1}{N}\left\{\cos \left(b \log \frac{1}{N}\right)+\cos \left(b \log \frac{2}{N}\right)+\cos \left(b \log \frac{3}{N}\right)+\cdots+\cos \left(b \log \frac{N}{N}\right)\right\} \\
& =\int_{0}^{1} \cos (b \log x) d x \\
H & =\lim _{N \rightarrow \infty} \frac{1}{N}\left\{\sin \left(b \log \frac{1}{N}\right)+\sin \left(b \log \frac{2}{N}\right)+\sin \left(b \log \frac{3}{N}\right)+\cdots+\sin \left(b \log \frac{N}{N}\right)\right\} \\
& =\int_{0}^{1} \sin (b \log x) d x \tag{20-2}
\end{align*}
$$

We calculate G and H by Integration by parts.

$$
G=[x \cos (b \log x)]_{0}^{1}+b H=1+b H
$$

$$
H=[x \sin (b \log x)]_{0}^{1}-b G=-b G
$$

Then we can have the values of G and H from the above equations as follows.

$$
\begin{equation*}
G=\frac{1}{1+b^{2}} \quad H=\frac{-b}{1+b^{2}} \tag{21}
\end{equation*}
$$

2.1.2 We define as follows.

$$
\begin{equation*}
\frac{\cos \left(b \log \frac{1}{N}\right)+\cos \left(b \log \frac{2}{N}\right)+\cos \left(b \log \frac{3}{N}\right)+\cdots+\cos \left(b \log \frac{N}{N}\right)}{N}-G=E_{c}(N) \tag{22-1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\sin \left(b \log \frac{1}{N}\right)+\sin \left(b \log \frac{2}{N}\right)+\sin \left(b \log \frac{3}{N}\right)+\cdots+\sin \left(b \log \frac{N}{N}\right)}{N}-H=E_{s}(N) \tag{22-2}
\end{equation*}
$$

From the definition of (20-1), (20-2), (22-1) and (22-2) we have the following (23).

$$
\begin{equation*}
\lim _{N \rightarrow \infty} E_{c}(N)=0 \quad \lim _{N \rightarrow \infty} E_{s}(N)=0 \tag{23}
\end{equation*}
$$

2.1.3 From (13) we can calculate $g(k, N)$ as follows.

$$
\begin{align*}
& g(k, N)=\cos (b \log 1 / k)+\cos (b \log 2 / k)+\cos (b \log 3 / k)+\cdots+\cos (b \log N / k) \\
&= N \frac{1}{N}\left\{\cos \left(b \log \frac{1}{N} \frac{N}{k}\right)+\cos \left(b \log \frac{2}{N} \frac{N}{k}\right)+\cos \left(b \log \frac{3}{N} \frac{N}{k}\right)+\cdots+\cos \left(b \log \frac{N}{N} \frac{N}{k}\right)\right\} \\
&= N \frac{1}{N}\left\{\cos \left(b \log \frac{1}{N}+b \log \frac{N}{k}\right)+\cos \left(b \log \frac{2}{N}+b \log \frac{N}{k}\right)+\cos \left(b \log \frac{3}{N}+b \log \frac{N}{k}\right)\right. \\
&\left.+\cdots \cdots+\cos \left(b \log \frac{N}{N}+b \log \frac{N}{k}\right)\right\} \\
&= N \frac{1}{N}\left\{\cos \left(b \log \frac{N}{k}\right)\right\}\left\{\cos \left(b \log \frac{1}{N}\right)+\cos \left(b \log \frac{2}{N}\right)+\cos \left(b \log \frac{3}{N}\right)+\cdots+\cos \left(b \log \frac{N}{N}\right)\right\} \\
&-N \frac{1}{N}\left\{\sin \left(b \log \frac{N}{k}\right)\right\}\left\{\sin \left(b \log \frac{1}{N}\right)+\sin \left(b \log \frac{2}{N}\right)+\sin \left(b \log \frac{3}{N}\right)+\cdots+\sin \left(b \log \frac{N}{N}\right)\right\} \\
&= N\left\{\cos \left(b \log \frac{N}{k}\right)\right\} G+N\left\{\cos \left(b \log \frac{N}{k}\right)\right\}\left\{\frac{\cos \left(b \log \frac{1}{N}\right)+\cos \left(b \log \frac{2}{N}\right)+\cdots+\cos \left(b \log \frac{N}{N}\right)}{N}-G\right\} \\
&-N\left\{\sin \left(b \log \frac{N}{k}\right)\right\} H-N\left\{\sin \left(b \log \frac{N}{k}\right)\right\}\left\{\frac{\sin \left(b \log \frac{1}{N}\right)+\sin \left(b \log \frac{2}{N}\right)+\cdots+\sin \left(b \log \frac{N}{N}\right)}{N}-H\right\} \tag{24-1}
\end{align*}
$$

$$
=N\left\{\cos \left(b \log \frac{N}{k}\right)\right\} G+N\left\{\cos \left(b \log \frac{N}{k}\right)\right\} E_{c}(N)
$$

$$
\begin{equation*}
-N\left\{\sin \left(b \log \frac{N}{k}\right)\right\} H-N\left\{\sin \left(b \log \frac{N}{k}\right)\right\} E_{s}(N) \tag{24-2}
\end{equation*}
$$

$$
=N\left\{\cos \left(b \log \frac{N}{k}\right)\right\} \frac{1}{1+b^{2}}+N\left\{\cos \left(b \log \frac{N}{k}\right)\right\} E_{c}(N)
$$

$$
\begin{equation*}
+N\left\{\sin \left(b \log \frac{N}{k}\right)\right\} \frac{b}{1+b^{2}}-N\left\{\sin \left(b \log \frac{N}{k}\right)\right\} E_{s}(N) \tag{24-3}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{\sqrt{1+b^{2}}}-N \sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \sin \left\{b \log N / k-\tan ^{-1} E_{c}(N) / E_{s}(N)\right\} \tag{24-4}
\end{equation*}
$$

$$
\begin{align*}
& =N R(1) \sin \{b \log N / k+\theta(1)\}-N R(2) \sin \{b \log N / k-\theta(2)\} \tag{24-5}\\
& =N R(3) \sin \{b \log N / k+\theta(3)\} \tag{24-6}
\end{align*}
$$

2.1.4 From (22-1), (22-2) and (24-1) we have (24-2).
2.1.5 From (21) and (24-2) we have (24-3). From (24-3) and (23) we have the following (25).

$$
\begin{align*}
& g(k, N)=(24-3) \\
& =N\left\{\cos \left(b \log \frac{N}{k}\right) \frac{1}{1+b^{2}}+\cos \left(b \log \frac{N}{k}\right) E_{c}(N)+\sin \left(b \log \frac{N}{k}\right) \frac{b}{1+b^{2}}-\sin \left(b \log \frac{N}{k}\right) E_{s}(N)\right\} \\
& \quad \sim \quad N\left\{\cos \left(b \log \frac{N}{k}\right) \frac{1}{1+b^{2}}+\sin \left(b \log \frac{N}{k}\right) \frac{b}{1+b^{2}}\right\} \\
& =\frac{N \sin \left(b \log N / k+\tan ^{-1} 1 / b\right)}{\sqrt{1+b^{2}}} \quad(N \rightarrow \infty) \tag{25}
\end{align*}
$$

2.1.6 We define as follows. From (24-4), the following (26-1) and (26-2) we have (24-5).

$$
\begin{align*}
& R(1)=1 / \sqrt{1+b^{2}} \quad \theta(1)=\tan ^{-1} 1 / b \tag{26-1}\\
& R(2)=\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}} \quad \theta(2)=\tan ^{-1} E_{c}(N) / E_{s}(N) \tag{26-2}
\end{align*}
$$

2.1.7 We can calculate the following (27-1) and (27-2) from the following (FIgure 1). $R(3)$ can be calculated by Cosine theorem. We have (24-6) from (24-5), (27-1) and (27-2).

$$
\begin{align*}
R(3) & =\sqrt{R(1)^{2}+R(2)^{2}-2 R(1) R(2) \cos \{\theta(1)+\theta(2)\}} \tag{27-1}\\
\theta(3) & =\tan ^{-1} \frac{R(1) \sin \theta(1)+R(2) \sin \theta(2)}{R(1) \cos \theta(1)-R(2) \cos \theta(2)} \tag{27-2}
\end{align*}
$$

2.1.8 The condition of $R(3)=0$ is as follows.

$$
\begin{align*}
& R(1)=1 / \sqrt{1+b^{2}}=\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}=R(2) \tag{28-1}\\
& \theta(1)=\tan ^{-1} 1 / b=-\tan ^{-1} E_{c}(N) / E_{s}(N)=-\theta(2) \tag{28-2}
\end{align*}
$$

There is the large natural number N_{0} that holds the following (29) because of $\lim _{N \rightarrow \infty} \sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}=0$.

$$
\begin{equation*}
1 / \sqrt{1+b^{2}}>\sqrt{E_{c}(N)^{2}+E_{s}(N)^{2}}>0 \quad\left(N_{0} \leq N\right) \tag{29}
\end{equation*}
$$

From the above (28-1) and (29) the following (30) holds.

$$
\begin{equation*}
R(3) \neq 0 \quad\left(N_{0} \leq N\right) \tag{30}
\end{equation*}
$$

2.2. Verification of $\sin \{b \log N / 2+\theta(3)\} \neq 0$

If we assume that $\sin \{b \log N / 2+\theta(3)\}=0 \quad(N=3,4,5,6,7, \cdots \cdots)$ is true, the following (31) is supposed to be true.

$$
\begin{equation*}
b \log N / 2+\theta(3)=K \pi \quad(K=2,3,4, \cdots \cdots) \tag{31}
\end{equation*}
$$

The range of b is $14<b$ as shown in page 1 . We have $\log 3 / 2=0.405$ and $-\pi / 2<\theta(3)<$ $\pi / 2$ from (27-2). Then we have $K>1.3$ from $[14 * 0.405-\pi / 2=4.09<K \pi]$. Therefore ($K=2,3,4, \cdots \cdots$) holds.
From (31) we have the following (32-1) and (32-2).

$$
\begin{align*}
& \log N / 2=\frac{K \pi-\theta(3)}{b}=M>0 \tag{32-1}\\
& N=2 e^{M} \tag{32-2}
\end{align*}
$$

We have $M>0$ from $K \geq 2$ and $\theta(3)<\pi / 2$. (32-2) has an impossible formation like (natural number) $=$ (irrational number). Therefore (32-2) is false and (31) (which is the original equation of (32-2)) is also false. Now we can have the following (33).

$$
\begin{equation*}
\sin \{b \log N / 2+\theta(3)\} \neq 0 \quad(N=3,4,5,6,7, \cdots \cdots) \tag{33}
\end{equation*}
$$

2.3. Verification of $g(2, N) \neq 0$

We have the following (25-1) from (25) in item 2.1.5 and the following (34) from (24-6) in item 2.1.3, (30) and (33).

$$
\begin{array}{lll}
g(2, N) & \sim & \frac{N \sin \left(b \log N / 2+\tan ^{-1} 1 / b\right)}{\sqrt{1+b^{2}}} \\
g(2, N)= & (N R(3) \sin \{b \log N / 2+\theta(3)\} \neq 0 & \left(N_{0} \leq N\right) \tag{34}
\end{array}
$$

We can confirm that $g(2, N)$ does not have the value of zero in $N_{0} \leq N . N_{0}$ is the large natural number that holds (29) in item 2.1.8.

Appendix 3. : Proof of $\lim _{N \rightarrow \infty} \frac{g(k, N)}{g(2, N)}=1$
We can confirm $\lim _{N \rightarrow \infty} \frac{g(k, N)}{g(2, N)}=1$ according to the following process. $\quad(k=$ $3,4,5, \cdots \cdots$)
3.1 We can have the following (35) from (25) and (25-1) in [Appendix 2].

$$
\begin{equation*}
\frac{g(k, N)}{g(2, N)} \sim \frac{\frac{N}{\sqrt{1+b^{2}}} \sin \left(b \log \frac{N}{k}+\tan ^{-1} \frac{1}{b}\right)}{\frac{N}{\sqrt{1+b^{2}}} \sin \left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)}=\frac{\sin \left(b \log \frac{N}{k}+\tan ^{-1} \frac{1}{b}\right)}{\sin \left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)} \quad(N \rightarrow \infty) \tag{35}
\end{equation*}
$$

3.2 We can have the following (36) from the following (37).

$$
\begin{align*}
& \frac{\sin \left(b \log \frac{N}{k}+\tan ^{-1} \frac{1}{b}\right)}{\sin \left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)}=\frac{\sin \left\{\frac{b \log N / k+\tan ^{-1} 1 / b}{b \log N / 2+\tan ^{-1} 1 / b}\left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)\right\}}{\sin \left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)} \\
& \sim \quad \frac{\sin \left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)}{\sin \left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)}=1 \quad(N \rightarrow \infty) \tag{36}\\
& \lim _{N \rightarrow \infty} \frac{b \log \frac{N}{k}+\tan ^{-1} \frac{1}{b}}{b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}}=\lim _{N \rightarrow \infty} \frac{1-\frac{\log k}{\log N}+\frac{\tan ^{-1} 1 / b}{b \log N}}{1-\frac{\log 2}{\log N}+\frac{\tan ^{-1} 1 / b}{b \log N}}=1 \tag{37}
\end{align*}
$$

$3.3 \frac{g(k, N)}{g(2, N)}$ approaches to $\frac{\sin \left(b \log \frac{N}{k}+\tan ^{-1} \frac{1}{b}\right)}{\sin \left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)}$ infinitely with $N \rightarrow \infty$ as shown in the above (35). And $\frac{\sin \left(b \log \frac{N}{k}+\tan ^{-1} \frac{1}{b}\right)}{\sin \left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)}$ converges to 1 with $N \rightarrow \infty$ as shown in the above (36). Therefore $\frac{g(k, N)}{g(2, N)}$ also converges to 1 with $N \rightarrow \infty$. From (35) and (36) we have the following (38).

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{g(k, N)}{g(2, N)}=\lim _{N \rightarrow \infty} \frac{\sin \left(b \log \frac{N}{k}+\tan ^{-1} \frac{1}{b}\right)}{\sin \left(b \log \frac{N}{2}+\tan ^{-1} \frac{1}{b}\right)}=1 \tag{38}
\end{equation*}
$$

Appendix 4. : Solution for $F(a)=0$

4.1. Preparation for verification of $F(a)>0$

4.1.1. Investigation of $f(n)$

$$
\begin{align*}
& f(n)=\frac{1}{n^{1 / 2-a}}-\frac{1}{n^{1 / 2+a}} \geq 0 \quad(n=2,3,4,5, \cdots \cdots) \tag{8}\\
& F(a)=f(2)-f(3)+f(4)-f(5)+f(6)-\cdots \cdots \tag{15}
\end{align*}
$$

$a=0$ is the solution for $F(a)=0$ due to $f(n) \equiv 0$ at $a=0$. Hereafter we define the range of a as $0<a<1 / 2$ to verify $F(a)>0$. The alternating series $F(a)$ converges due to $\lim _{n \rightarrow \infty} f(n)=0$.

We have the following (41) by differentiating $f(n)$ regarding n.

$$
\begin{equation*}
\frac{d f(n)}{d n}=\frac{1 / 2+a}{n^{a+3 / 2}}-\frac{1 / 2-a}{n^{3 / 2-a}}=\frac{1 / 2+a}{n^{a+3 / 2}}\left\{1-\left(\frac{1 / 2-a}{1 / 2+a}\right) n^{2 a}\right\} \tag{41}
\end{equation*}
$$

The value of $f(n)$ increases with increase of n and reaches the maximum value $f\left(n_{\max }\right)$ at $n=n_{\text {max }}$. Afterward $f(n)$ decreases to zero with $n \rightarrow \infty . n_{\max }$ is one of the 2 consecutive natural numbers that sandwich $\left(\frac{1 / 2+a}{1 / 2-a}\right)^{\frac{1}{2 a}}$. (Graph 1) shows $f(n)$ in various value of a. At $a=1 / 2 f(n)$ does not have $f\left(n_{\max }\right)$ and increases to 1 with $n \rightarrow \infty$ due to $n_{\max }=\infty$.

4.1.2. Verification method for $\boldsymbol{F}(\boldsymbol{a})>0$

We define $F(a, n)$ as the following (42).

$$
\begin{align*}
& F(a, n)=f(2)-f(3)+f(4)-f(5)+\cdots+(-1)^{n} f(n) \quad(n=2,3,4,5, \cdots \cdots) \tag{42}\\
& \lim _{n \rightarrow \infty} F(a, n)=F(a) \tag{43}
\end{align*}
$$

$F(a)$ is an alternating series. So $F(a, n)$ repeats increase and decrease by $f(n)$ with increase of n as shown in (Graph 2). In (Graph 2) upper points mean $F(a, 2 m) \quad(m=$ $1,2,3, \cdots \cdots)$ and lower points mean $F(a, 2 m+1) . F(a, 2 m)$ decreases and converges to $F(a)$ with $m \rightarrow \infty . F(a, 2 m+1)$ increases and also converges to $F(a)$ with $m \rightarrow \infty$ due to $\lim _{n \rightarrow \infty} f(n)=0$. We can have the following (44).

$$
\begin{equation*}
\lim _{m \rightarrow \infty} F(a, 2 m)=\lim _{m \rightarrow \infty} F(a, 2 m+1)=F(a) \tag{44}
\end{equation*}
$$

We define $F 1(a)$ and $F 1(a, 2 m+1)$ as follws.

$$
\begin{align*}
& F 1(a)=\{f(2)-f(3)\}+\{f(4)-f(5)\}+\{f(6)-f(7)\}+\cdots \cdots \tag{45}\\
& F 1(a, 2 m+1)=\{f(2)-f(3)\}+\{f(4)-f(5)\}+\cdots+\{f(2 m)-f(2 m+1)\} \\
& =f(2)-f(3)+f(4)-f(5)+\cdots+f(2 m)-f(2 m+1)=F(a, 2 m+1) \tag{46}\\
& \lim _{m \rightarrow \infty} F 1(a, 2 m+1)=F 1(a) \tag{47}
\end{align*}
$$

From the above (44), (46) and (47) we have $F(a)=F 1(a)$. We can use $F 1(a)$ instead of $F(a)$ to verify $F(a)>0$.
We enclose 2 terms of $F(a)$ each from the first term with $\left\}\right.$ as follows. If $n_{\max }$ is p or $p+1$ (p : odd number) , the inside sum of $\}$ from $f(2)$ to $f(p)$ has negative value and the inside sum of $\}$ after $f(p+1)$ has positive value.

$$
\begin{aligned}
& F(a)=f(2)-f(3)+f(4)-f(5)+f(6)-f(7)+\cdots \cdots \\
& =\{f(2)-f(3)\}+\{f(4)-f(5)\}+\cdots+\{f(p-1)-f(p)\}+\{f(p+1)-f(p+2)\}+\cdots \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \text { (inside sum of }\})<0 \longleftarrow \mid \longrightarrow(\text { inside sum of }\{ \})>0 \\
& (\text { total sum of }\})=-B \longleftarrow \mid \longrightarrow(\text { total sum of }\{ \})=A
\end{aligned}
$$

We define as follows.
[the partial sum from $f(2)$ to $f(p)]=-B<0$
[the partial sum from $f(p+1)$ to $f(\infty)]=A>0$
$F(a)=A-B$
So we can verify $F(a)>0$ by verifying $A>B$.
4.1.3. Investigation of $\{f(n)-f(n+1)\}$

We have the following (49) by differentiating $\{f(n)-f(n+1)\}$ regarding n.

$$
\begin{align*}
& \frac{d f(n)}{d n}-\frac{d f(n+1)}{d n}=\frac{1 / 2+a}{n^{3 / 2+a}}\left\{1-\left(\frac{n}{n+1}\right)^{3 / 2+a}\right\}-\frac{1 / 2-a}{n^{3 / 2-a}}\left\{1-\left(\frac{n}{n+1}\right)^{3 / 2-a}\right\} \\
& =C(n)-D(n) \tag{49}
\end{align*}
$$

When n is a small natural number the value of $\{f(n)-f(n+1)\}$ increases with increase of n due to $C(n)>D(n)$. With increase of n the value reaches the maximum value $\left\{q_{\max }\right\}$ at $C(n) \risingdotseq D(n)$. (n is a natural number. The situation cannot be $C(n)=D(n)$.) After that the situation changes to $C(n)<D(n)$ and the value decreases to zero with $n \rightarrow \infty$. (Graph 3) shows the value of $\{f(n)-f(n+1)\}$ in various value of a. (Graph 4) shows the value of $\{f(n)-f(n+1)\}$ at $a=0.1$. We can find the following from (Graph 3) and (Graph 4).
4.1.3.1 When $\left|\frac{d f(n)}{d n}\right|$ becomes the maximum value $|f(n)-f(n+1)|$ also becomes the maximum value at same value of a. From (Graph 1) we can find that $\left|\frac{d f(n)}{d n}\right|$ becomes the maximum value at $n=2$. Therefore the maximum value of $|f(n)-f(n+1)|$ is $\{f(3)-f(2)\}$ at same value of a as shown in (Graph 3).
4.1.3.2 With increase of n the sign of $\{f(n)-f(n+1)\}$ changes from minus to plus at $n=n_{\max }\left(n=n_{\max }+1\right)$ when $n_{\max }$ is even(odd) number as shown in (Graph 4).
4.1.3.3 After that the value reaches the maximum value $\left\{q_{\max }\right\}$ and the value decreases to zero with $n \rightarrow \infty$ as shown in (Graph 4).

4.2. Verification of $A>B \quad\left(n_{\max }\right.$ is odd number.)
$n_{\text {max }}$ is odd number as follows.

$$
\begin{aligned}
& F(a)=f(2)-f(3)+f(4)-f(5)+f(6)-\cdots \cdot . \\
& =\{f(2)-f(3)\}+\{f(4)-f(5)\}+\cdots+\left\{f\left(n_{\max }-3\right)-f\left(n_{\max }-2\right)\right\}+\left\{f\left(n_{\max }-1\right)-f\left(n_{\max }\right)\right\} \\
& \quad+\left\{f\left(n_{\max }+1\right)-f\left(n_{\max }+2\right)\right\}+\left\{f\left(n_{\max }+3\right)-f\left(n_{\max }+4\right)\right\}+\left\{f\left(n_{\max }+5\right)-f\left(n_{\max }+6\right)\right\}+\cdots \cdots
\end{aligned}
$$

We can have A and B as follows.

$$
\begin{aligned}
& B=\{f(3)-f(2)\}+\{f(5)-f(4)\}+\{f(7)-f(6)\}+\cdots+\left\{f\left(n_{\max }-2\right)-f\left(n_{\max }-3\right)\right\}+\left\{f\left(n_{\max }\right)-f\left(n_{\max }-1\right)\right\} \\
& A=\left\{f\left(n_{\max }+1\right)-f\left(n_{\max }+2\right)\right\}+\left\{f\left(n_{\max }+3\right)-f\left(n_{\max }+4\right)\right\}+\left\{f\left(n_{\max }+5\right)-f\left(n_{\max }+6\right)\right\}+\cdots \cdots
\end{aligned}
$$

4.2.1. Condition for B

We define as follows.
$\{\quad$ \} : the term which is included within B.
$\{\square$: the term which is not included within B.
We have the following (50).

$$
\begin{align*}
f\left(n_{\max }\right)-f(2)= & \left\{f\left(n_{\max }\right)-f\left(n_{\max }-1\right)\right\}+\left\{f\left(n_{\max }-1\right)-f\left(n_{\max }-2\right)\right\}+\left\{f\left(n_{\max }-2\right)-f\left(n_{\max }-3\right)\right\} \\
& +\cdots+\{f(7)-f(6)\}+\{f(6)-f(5)\}+\{f(5)-f(4)\}+\{f(4)-f(3)\}+\{f(3)-f(2)\} \tag{50}
\end{align*}
$$

And we have the following inequalities from (Graph 3) and (Graph 4).

$$
\begin{aligned}
& \{f(3)-f(2)\}>\{f(4)-f(3)\}>\{f(5)-f(4)\}>\{f(6)-f(5)\}>\{f(7)-f(6)\}>\cdots \cdots \\
& \quad>\left\{f\left(n_{\max }-2\right)-f\left(n_{\max }-3\right)\right\}>\left\{f\left(n_{\max }-1\right)-f\left(n_{\max }-2\right)\right\}>\left\{f\left(n_{\max }\right)-f\left(n_{\max }-1\right)\right\}>0
\end{aligned}
$$

From the above (50) we have the following (51).
$f\left(n_{\max }\right)-f(2)+\{f(3)-f(2)\}$

$$
\begin{align*}
& =\{f(3)-f(2)\}+\{f(5)-f(4)\}+\{f(7)-f(6)\}+\cdots+\left\{\frac{\left.\wedge\left(n_{\max }-2\right)-f\left(n_{\max }-3\right)\right\}+\left\{f\left(n_{\max }\right)-f\left(n_{\max }-1\right)\right\}}{\wedge} \wedge \wedge \text { Value comparison } \wedge\right. \\
& +\{f(3)-f(2)\}+\{f(4)-f(3)\}+\{f(6)-f(5)\}+\cdots+\left\{f\left(n_{\max }-3\right)-f\left(n_{\max }-4\right)\right\}+\left\{f\left(n_{\max }-1\right)-f\left(n_{\max }-2\right)\right\} \\
& >2 B \tag{51}
\end{align*}
$$

Due to [Total sum of upper row of the above (51) $=B<$ Total sum of lower row of (51)] we have the following (52).

$$
\begin{equation*}
f\left(n_{\max }\right)-f(2)+\{f(3)-f(2)\}>2 B \tag{52}
\end{equation*}
$$

4.2.2. Condition for \boldsymbol{A} ($\left\{q_{\max }\right\}$ is included within \boldsymbol{A}.)

We abbreviate $\left\{f\left(n_{\max }+q\right)-f\left(n_{\max }+q+1\right)\right\}$ to $\{q\}$ for easy description. $(q=0,1,2,3, \cdots \cdots)$ All $\{q\}$ has positive value as shown in item 4.1.2.
We define as follows.
$\{\quad$ \} : the term which is included within A.
$\{\square$: the term which is not included within A.
$\left\{q_{\max }\right\}$ has the maximum value in all $\{q\}$. And $\left\{q_{\max }\right\}$ is included within A. Then value comparison of $\{q\}$ is as follows.
$\{1\}<\{2\}<\{3\}<\cdots<\left\{q_{\max }-3\right\}<\left\{q_{\max }-2\right\}<\left\{q_{\max }-1\right\}<\left\{q_{\max }\right\}>\left\{q_{\max }+1\right\}>\left\{q_{\max }+2\right\}>\left\{q_{\max }+3\right\}>\cdots \cdots$
We have the following (53).

$$
\begin{aligned}
f\left(n_{\max }+1\right) & =\left\{f\left(n_{\max }+1\right)-f\left(n_{\max }+2\right)\right\}+\left\{f\left(n_{\max }+2\right)-f\left(n_{\max }+3\right)\right\}+\left\{f\left(n_{\max }+3\right)-f\left(n_{\max }+4\right)\right\} \\
& +\left\{f\left(n_{\max }+4\right)-f\left(n_{\max }+5\right)\right\}+\cdots \cdots
\end{aligned}
$$

$=\{1\}+\{2\}+\{3\}+\{4\}+\cdots+\left\{q_{\max }-3\right\}+\left\{q_{\max }-2\right\}+\left\{q_{\max }-1\right\}+\left\{q_{\max }\right\}+\left\{q_{\max }+1\right\}+\left\{q_{\max }+2\right\}+\left\{q_{\max }+3\right\}+\cdots \cdots \cdot$
From the above (53) we have the following (54).

$$
\begin{align*}
& f\left(n_{\max }+1\right)-\left\{q_{\max }-1\right\} \\
& =\{1\}+\{2\}+\{3\}+\{4\}+\cdots+\left\{q_{\max }-3\right\}+\left\{q_{\max }-2\right\}+\left\{q_{\max }\right\}+\left\{q_{\max }+1\right\}+\left\{q_{\max }+2\right\}+\left\{q_{\max }+3\right\}+ \tag{54}\\
& \leftarrow \cdots \cdots \cdots \cdots \cdots \cdot \cdots \cdot \operatorname{Range} 1 \cdots \cdots \cdots \cdots \cdots \cdots \cdot \mid \leftarrow \cdots \cdots \cdots \cdots \cdot \text { Range } 2 \cdots \cdots \cdots \cdots \cdot
\end{align*}
$$

(Range 1) and (Range 2) are determined as above. In (Range 1) value comparison is as follows.
$\{1\}<\{2\}<\{3\}<\{4\}<\cdots<\left\{q_{\max }-4\right\}<\left\{q_{\max }-3\right\}<\left\{q_{\max }-2\right\}$
And we can find the following.
Total sum of $\{\square\}=\{1\}+\underset{V}{\{3\}}+\underset{V}{\{5\}}+\underset{V}{\{7\}}+\cdots+\frac{\left\{q_{\max }-4\right\}}{V}+\frac{\left\{q_{\max }-2\right\}}{V} \leftarrow$ Value comparison
Total sum of $\{\square\}=\{2\}+\{4\}+\{6\}+\cdots+\left\{q_{\max }-5\right\}+\left\{q_{\text {max }}-3\right\}$
Therefore [Total sum of $\{\square\}>$ Total sum of $\{\square\}$] holds.
In (Range 2) value comparison is as follows.
$\left\{q_{\max }\right\}>\left\{q_{\max }+1\right\}>\left\{q_{\max }+2\right\}>\left\{q_{\max }+3\right\}>\left\{q_{\max }+4\right\}>\left\{q_{\max }+5\right\}>\left\{q_{\max }+6\right\}>\cdots \cdots$.
And we can find the following.

Total sum of $\{\square\}=\left\{q_{\max }\right\}+\left\{q_{\max }+2\right\}+\left\{q_{\max }+4\right\}+\left\{q_{\max }+6\right\}+\cdots \cdots$.
Total sum of $\{\square\}=\left\{q_{\max }+1\right\}+\left\{q_{\max }+3\right\}+\left\{q_{\max }+5\right\}+\left\{q_{\max }+7\right\}+\cdots \cdots$.
Therefore [Total sum of $\{\square\}>$ Total sum of $\{\square\}$] holds.
In (Range 1$)+($ Range 2) we have [Total sum of $\{\square\}=A>$ Total sum of $\{\square\}$].
We have the following (55).

$$
\begin{equation*}
f\left(n_{\max }+1\right)-\left\{q_{\max }-1\right\}<2 A \tag{55}
\end{equation*}
$$

4.2.3. Condition for \boldsymbol{A} ($\left\{q_{\max }\right\}$ is not included within \boldsymbol{A}.)

We have the following (56). $\left\{q_{\max }\right\}$ is not included within A.

$$
\begin{align*}
& f\left(n_{\max }+1\right)=\left\{f\left(n_{\max }+1\right)-f\left(n_{\max }+2\right)\right\}+\left\{f\left(n_{\max }+2\right)-f\left(n_{\max }+3\right)\right\}+\left\{f\left(n_{\max }+3\right)-f\left(n_{\max }+4\right)\right\} \\
& \quad+\left\{f\left(n_{\max }+4\right)-f\left(n_{\max }+5\right)\right\}+\cdots \cdots \\
& =\{1\}+\{2\}+\{3\}+\{4\}+\cdots+\left\{q_{\max }-3\right\}+\left\{q_{\max }-2\right\}+\left\{q_{\max }-1\right\}+\left\{q_{\max }\right\}+\left\{q_{\max }+1\right\}+\left\{q_{\max }+2\right\}+\left\{q_{\max }+3\right\}+\cdots \cdots \tag{56}
\end{align*}
$$

From the above (56) we have the following (57).

$$
\begin{align*}
& f\left(n_{\max }+1\right)-\left\{q_{\max }\right\} \\
& =\{1\}+\{2\}+\{3\}+\{4\}+\cdots+\left\{q_{\max }-3\right\}+\left\{q_{\max }-2\right\}+\left\{q_{\max }-1\right\}+\left\{q_{\max }+1\right\}+\left\{q_{\max }+2\right\}+\left\{q_{\max }+3\right\}+ \tag{57}
\end{align*}
$$

(Range 1) and (Range 2) are determined as above. In (Range 1) value comparison is as follows.
$\{1\}<\{2\}<\{3\}<\{4\}<\cdots<\left\{q_{\max }-4\right\}<\left\{q_{\max }-3\right\}<\left\{q_{\max }-2\right\}<\left\{q_{\max }-1\right\}$
And we can find the following.

Total sum of $\{\square\}=\{2\}+\{4\}+\{6\}+\cdots+\left\{q_{\max }-4\right\}+\left\{q_{\text {max }}-2\right\}$
Therefore [Total sum of $\{\square\}>$ Total sum of $\{\square\}$] holds.
In (Range 2) value comparison is as follows.

$$
\left\{q_{\max }+1\right\}>\left\{q_{\max }+2\right\}>\left\{q_{\max }+3\right\}>\left\{q_{\max }+4\right\}>\left\{q_{\max }+5\right\}>\left\{q_{\max }+6\right\}>\left\{q_{\max }+7\right\}>\cdots \cdots
$$

Total sum of $\{\square\}=\left\{q_{\max }+2\right\}+\left\{q_{\max }+4\right\}+\left\{q_{\max }+6\right\}+\left\{q_{\max }+8\right\}+\cdots \cdots$.
Therefore [Total sum of $\{\quad\}>$ Total sum of $\{\square\}$] holds.
In (Range 1) + (Range 2) we have [Total sum of $\{\quad\}=A>\operatorname{Total}$ sum of $\{\quad\}$].
We have the following (58).

$$
\begin{equation*}
f\left(n_{\max }+1\right)-\left\{q_{\max }\right\}<2 A \tag{58}
\end{equation*}
$$

4.2.4. Condition for $A>B$

From (55) and (58) we have the following inequality.

$$
f\left(n_{\max }+1\right)-\left[\left\{q_{\max }\right\} \text { or }\left\{q_{\max }-1\right\}\right]<2 A
$$

As shown in item 4.1.3.1 $\{f(3)-f(2)\}$ is the maximum in all $|f(n)-f(n+1)|$. Then the following holds.

$$
\begin{aligned}
& \{f(3)-f(2)\}>\left[\left\{q_{\max }\right\} \text { or }\left\{q_{\max }-1\right\}\right] \\
& \{f(3)-f(2)\}>f\left(n_{\max }\right)-f\left(n_{\max }+1\right)
\end{aligned}
$$

We have the following inequality from the above 3 inequalities.

$$
\begin{align*}
2 A & >f\left(n_{\max }+1\right)-\left[\left\{q_{\max }\right\} \text { or }\left\{q_{\max }-1\right\}\right]>f\left(n_{\max }+1\right)-\{f(3)-f(2)\} \\
& >f\left(n_{\max }\right)-\{f(3)-f(2)\}-\{f(3)-f(2)\}=f\left(n_{\max }\right)-2\{f(3)-f(2)\} \tag{59}
\end{align*}
$$

We have the following (60) for $A>B$ from (52) and (59).

$$
\begin{equation*}
2 A>f\left(n_{\max }\right)-2\{f(3)-f(2)\}>f\left(n_{\max }\right)-f(2)+\{f(3)-f(2)\}>2 B \tag{60}
\end{equation*}
$$

From (60) we can have the final condition for $A>B$ as follows.

$$
\begin{equation*}
(4 / 3) f(2)>f(3) \tag{61}
\end{equation*}
$$

(Graph 5) shows $(4 / 3) f(2)-f(3)=(4 / 3)\left(\frac{1}{2^{1 / 2-a}}-\frac{1}{2^{1 / 2+a}}\right)-\left(\frac{1}{3^{1 / 2-a}}-\frac{1}{3^{1 / 2+a}}\right)$.

Table 1: The values of $(4 / 3) f(2)-f(3)$

a		0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4
$(4 / 3) \mathrm{f}(2)-\mathrm{f}(3)$	0	0.001903	0.003694	0.005257	0.00648	0.007246	0.007437	0.006933	0.005611	0.003343

(Graph 6) shows [differentiated $\{(4 / 3) f(2)-f(3)\}$ regarding a] i.e. $(4 / 3) f^{\prime}(2)-f^{\prime}(3)=$ $(4 / 3)\left\{\log 2\left(\frac{1}{2^{1 / 2-a}}+\frac{1}{2^{1 / 2+a}}\right)\right\}-\left\{\log 3\left(\frac{1}{3^{1 / 2-a}}+\frac{1}{3^{1 / 2+a}}\right)\right\}$.

Table 2 : The values of $(4 / 3) f^{\prime}(2)-f^{\prime}(3)$

a	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
$(4 / 3) f^{\prime}(2)-\mathrm{f}^{\prime}(3)$	0.038443	0.037313	0.033921	0.02825	0.020277	0.009967	-0.00272	-0.01785	-0.03547	-0.05567	-0.07852

From (Graph 5) and (Graph 6) we can find [(4/3)f(2)-f(3)>0 in $0<a<1 / 2]$ that means $A>B$ i.e. $F(a)>0$ in $0<a<1 / 2$.

4.3. Verification of $A>B \quad$ ($n_{\max }$ is even number.)

$n_{\max }$ is even number as follows.
$F(a)=f(2)-f(3)+f(4)-f(5)+f(6)-\cdots .$.
$=\{f(2)-f(3)\}+\{f(4)-f(5)\}+\cdots+\left\{f\left(n_{\max }-4\right)-f\left(n_{\max }-3\right)\right\}+\left\{f\left(n_{\max }-2\right)-f\left(n_{\max }-1\right)\right\}$
$+\left\{f\left(n_{\max }\right)-f\left(n_{\max }+1\right)\right\}+\left\{f\left(n_{\max }+2\right)-f\left(n_{\max }+3\right)\right\}+\left\{f\left(n_{\max }+4\right)-f\left(n_{\max }+5\right)\right\}+\cdots \cdots$.
We can have A and B as follows.
$B=\{f(3)-f(2)\}+\{f(5)-f(4)\}+\{f(7)-f(6)\}+\cdots+\left\{f\left(n_{\max }-3\right)-f\left(n_{\max }-4\right)\right\}+\left\{f\left(n_{\max }-1\right)-f\left(n_{\max }-2\right)\right\}$
$A=\left\{f\left(n_{\max }\right)-f\left(n_{\max }+1\right)\right\}+\left\{f\left(n_{\max }+2\right)-f\left(n_{\max }+3\right)\right\}+\left\{f\left(n_{\max }+4\right)-f\left(n_{\max }+5\right)\right\}+\cdots \cdots$
$f\left(n_{\max }\right)=\left\{f\left(n_{\max }\right)-f\left(n_{\max }+1\right)\right\}+\left\{f\left(n_{\max }+1\right)-f\left(n_{\max }+2\right)\right\}+\left\{f\left(n_{\max }+2\right)-f\left(n_{\max }+3\right)\right\}$
$+\left\{f\left(n_{\max }+3\right)-f\left(n_{\max }+4\right)\right\}+\cdots \cdots$
$=\{0\}+\{1\}+\{2\}+\{3\}+\{4\}+\cdots+\left\{q_{\text {max }}-3\right\}+\left\{q_{\text {max }}-2\right\}+\left\{q_{\max }-1\right\}+\left\{q_{\max }\right\}+\left\{q_{\max }+1\right\}+\left\{q_{\max }+2\right\}+\left\{q_{\text {max }}+3\right\}+\cdots \cdots \cdot$
After the same process as in item 4.2 .1 we can have the following (62).

$$
\begin{equation*}
f\left(n_{\max }-1\right)-f(2)+\{f(3)-f(2)\}>2 B \tag{62}
\end{equation*}
$$

As shown in item 4.1.3.1 $\{f(3)-f(2)\}$ is the maximum in all $|f(n)-f(n+1)|$. Then the following holds.

$$
\begin{aligned}
\{f(3)-f(2)\} & >\left[\left\{q_{\max }\right\} \text { or }\left\{q_{\max }-1\right\}\right] \\
f\left(n_{\max }\right) & >f\left(n_{\max }-1\right)
\end{aligned}
$$

We have the following (63) from the above inequalities and the same process as in item 4.2.2 and item 4.2.3.

$$
\begin{align*}
2 A & >f\left(n_{\max }\right)-\left[\left\{q_{\max }\right\} \text { or }\left\{q_{\max }-1\right\}\right]>f\left(n_{\max }\right)-\{f(3)-f(2)\} \\
& >f\left(n_{\max }-1\right)-\{f(3)-f(2)\} \tag{63}
\end{align*}
$$

We have the following (64) for $A>B$ from (62) and (63).

$$
\begin{equation*}
2 A>f\left(n_{\max }-1\right)-\{f(3)-f(2)\}>f\left(n_{\max }-1\right)-f(2)+\{f(3)-f(2)\}>2 B \tag{64}
\end{equation*}
$$

From (64) we can have the final condition for $A>B$ as follows.

$$
\begin{equation*}
(3 / 2) f(2)>f(3) \tag{65}
\end{equation*}
$$

In the inequality of $[(3 / 2) f(2)>(4 / 3) f(2)>f(3)>0],(3 / 2) f(2)>(4 / 3) f(2)$ is true self-evidently and in item 4.2 .4 we already confirmed that the following (61) was true in $0<a<1 / 2$.

$$
\begin{equation*}
(4 / 3) f(2)>f(3) \tag{61}
\end{equation*}
$$

Therefore the above (65) is true in $0<a<1 / 2$. Now we can confirm $F(a)>0$ in $0<a<1 / 2$.

4.4. Conclusion

As shown in item 4.2 and item $4.3 F(a)=0$ has the only solution of $a=0$ due to $[0 \leq a<1 / 2],[F(0)=0]$ and $[F(a)>0$ in $0<a<1 / 2]$.

4.5. \quad Graph of $\boldsymbol{F}(a)$

We can approximate $F(a)$ with the average of $\{F(a, n-1)+F(a, n)\} / 2$. But we approximate $F(a)$ by the following (66) for better accuracy. (Graph 7) shows $F(a)_{n}$ calculated at 3 cases of $n=500,1000,5000$.

$$
\begin{equation*}
\frac{\frac{F(a, n-1)+F(a, n)}{2}+\frac{F(a, n)+F(a, n+1)}{2}}{2}=F(a)_{n} \tag{66}
\end{equation*}
$$

Table 3 : The values of $F(a)_{n}$ at 3 cases

a	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
$\mathrm{n}=500$	0	0.01932876	0.03865677	0.05798326	0.0773074	0.09662832	0.11594507	0.13525658	0.15456168	0.17385904	0.19314718
$\mathrm{n}=1,000$	0	0.01932681	0.038652822	0.05797725	0.0772993	0.09661821	0.11593325	0.13524382	0.154549555	0.17385049	0.19314743
$\mathrm{n}=5,000$	0	0.01932876	0.03865676	0.05798324	0.07730738	0.09662829	0.11594504	0.13525655	0.154566165	0.17385902	0.19314718

3 line graphs overlapped. Because $F(a)_{n}$ calculated at 3 cases of $n=500,1000,5000$ are equal to 4 digits after the decimal point. The range of a is $0 \leq a<1 / 2 . a=1 / 2$ is not included in the range. But we added $F(1 / 2)_{n}$ to calculation due to the following reason. [$f(n)$ at $a=1 / 2$] is $(1-1 / n)$ and $F(1 / 2)$ fluctuates due to $\lim _{n \rightarrow \infty} f(n)=1$. But the value of the above (66) converges to the fixed value on the condition of $\lim _{n \rightarrow \infty}\{f(n+1)-f(n)\}=0$. The condition holds due to $f(n+1)-f(n)=1 /\left(n+n^{2}\right)$.
$F(a)$ is a monotonically increasing function as shown in (Graph 7). So $F(a)=0$ has the only solution and the solution must be $a=0$ due to the following facts. Therefore Riemann hypothesis must be true.
4.5.1 In 1914 G. H.Hardy proved that there are infinite zero points on the line of $\operatorname{Re}(s)=$ $1 / 2$.
4.5.2 All zero points found until now exist on the line of $\operatorname{Re}(s)=1 / 2$.

References

[1] Yukio Kusunoki, Introduction to infinite series, Asakura syoten, (1972), page 22, (written in Japanese)

Toshihiko Ishiwata

E-mail: toshihiko.ishiwata@gmail.com

[^0]: 2020 Mathematics Subject Classification. Primary 11M26.
 Key Words and Phrases. Riemann hypothesis.

