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Abstract. This paper is a trial to prove Riemann hypothesis according
to the following process. 1. We make the infinite number of infinite series from

one equation that gives ζ(s) analytic continuation to Re(s) > 0 and 2 formulas

(1/2+ a+ bi, 1/2− a− bi) which show zero point of ζ(s). 2. We find that the
value of F (a) (that is the infinite series regarding a) must be zero from the

above infinite number of infinite series. 3. We find that F (a) = 0 has the only

solution of a = 0. 4. Zero point of ζ(s) must be 1/2 ± bi because a cannot
have any value but zero.

1. Introduction

The following (1) gives Riemann zeta function ζ(s) analytic continuation to Re(s) > 0.

“+ · · · · · · ” means infinite series in all equations in this paper.

1− 2−s + 3−s − 4−s + 5−s − 6−s + · · · · · · = (1− 21−s)ζ(s) (1)

The following (2) shows the zero point of the left side of (1) and also non-trivial zero

point of ζ(s).

S0 = 1/2 + a+ bi (2)

The range of a is 0 ≤ a < 1/2 by the critical strip of ζ(s). The range of b is b > 14 due

to the following reasons. And i is
√
−1 .

1.1 [Conjugate complex number of S0] = 1/2+ a− bi is also zero point of ζ(s). There-

fore b ≥ 0 is necessary and sufficient range for investigation.

1.2 The range of b of zero points found until now is b > 14.

The following (3) also shows zero point of ζ(s) by the functional equation of ζ(s).

S1 = 1− S0 = 1/2− a− bi (3)

We have the following (4) and (5) by substituting S0 for s in the left side of (1) and putting

both the real part and the imaginary part of the left side of (1) at zero respectively.

1 =
cos(b log 2)

21/2+a
− cos(b log 3)

31/2+a
+

cos(b log 4)

41/2+a
− cos(b log 5)

51/2+a
+ · · · · · · (4)
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0 =
sin(b log 2)

21/2+a
− sin(b log 3)

31/2+a
+

sin(b log 4)

41/2+a
− sin(b log 5)

51/2+a
+ · · · · · · (5)

We also have the following (6) and (7) by substituting S1 for s in the left side of (1)

and putting both the real part and the imaginary part of the left side of (1) at zero

respectively.

1 =
cos(b log 2)

21/2−a
− cos(b log 3)

31/2−a
+

cos(b log 4)

41/2−a
− cos(b log 5)

51/2−a
+ · · · · · · (6)

0 =
sin(b log 2)

21/2−a
− sin(b log 3)

31/2−a
+

sin(b log 4)

41/2−a
− sin(b log 5)

51/2−a
+ · · · · · · (7)

2. Infinite number of infinite series

We define f(n) as follows.

f(n) =
1

n1/2−a
− 1

n1/2+a
≥ 0 (n = 2, 3, 4, 5, · · · · · · ) (8)

We have the following (9) from (4) and (6) with the method shown in item 1.1 of [Ap-

pendix 1: Equation construction].

0 = f(2) cos(b log 2)− f(3) cos(b log 3) + f(4) cos(b log 4)− f(5) cos(b log 5) + · · · · · · (9)

We also have the following (10) from (5) and (7) with the method shown in item 1.2 of

[Appendix 1].

0 = f(2) sin(b log 2)− f(3) sin(b log 3) + f(4) sin(b log 4)− f(5) sin(b log 5) + · · · · · · (10)

We can have the following (11) (which is the function of real number x) from the above

(9) and (10) with the method shown in item 1.3 of [Appendix 1]. And the value of (11)

is always zero at any value of x.

0 ≡ cosx{right side of (9)}+ sinx{right side of (10)}
=cosx{f(2) cos(b log 2)− f(3) cos(b log 3) + f(4) cos(b log 4)− f(5) cos(b log 5) + · · · · · · }

+ sinx{f(2) sin(b log 2)− f(3) sin(b log 3) + f(4) sin(b log 4)− f(5) sin(b log 5) + · · · · · · }
=f(2) cos(b log 2− x)− f(3) cos(b log 3− x) + f(4) cos(b log 4− x)

− f(5) cos(b log 5− x) + f(6) cos(b log 6− x)− · · · · · · (11)

We have the following (12-1) by substituting b log 1 for x in (11).

0 =f(2) cos(b log 2− b log 1)− f(3) cos(b log 3− b log 1) + f(4) cos(b log 4− b log 1)

− f(5) cos(b log 5− b log 1) + f(6) cos(b log 6− b log 1)− · · · · · · (12-1)

We have the following (12-2) by substituting b log 2 for x in (11).

0 =f(2) cos(b log 2− b log 2)− f(3) cos(b log 3− b log 2) + f(4) cos(b log 4− b log 2)

− f(5) cos(b log 5− b log 2) + f(6) cos(b log 6− b log 2)− · · · · · · (12-2)
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We have the following (12-3) by substituting b log 3 for x in (11).

0 =f(2) cos(b log 2− b log 3)− f(3) cos(b log 3− b log 3) + f(4) cos(b log 4− b log 3)

− f(5) cos(b log 5− b log 3) + f(6) cos(b log 6− b log 3)− · · · · · · (12-3)

In the same way as above we can have the following (12-N) by substituting b logN for x

in (11). (N = 4, 5, 6, 7, 8, · · · · · · )

0 =f(2) cos(b log 2− b logN)− f(3) cos(b log 3− b logN) + f(4) cos(b log 4− b logN)

− f(5) cos(b log 5− b logN) + f(6) cos(b log 6− b logN)− · · · · · · (12-N)

3. Verification of F (a) = 0

We define g(k) and g(k,N) as follows. (k = 2, 3, 4, 5, · · · · · · )

g(k) = cos(b log k − b log 1) + cos(b log k − b log 2) + cos(b log k − b log 3) + · · · · · ·
= cos(b log 1− b log k) + cos(b log 2− b log k) + cos(b log 3− b log k) + · · · · · ·
= cos(b log 1/k) + cos(b log 2/k) + cos(b log 3/k) + cos(b log 4/k) + · · · · · · (13)

g(k,N) = cos(b log k − b log 1) + cos(b log k − b log 2) + · · ·+ cos(b log k − b logN)

= cos(b log 1/k) + cos(b log 2/k) + cos(b log 3/k) + · · ·+ cos(b logN/k) (14)

lim
N→∞

g(k,N) = g(k) (15)

We can have the following (16) from the infinite equations of (12-1), (12-2), (12-3), · · · · · · ,
(12-N), · · · · · · with the method shown in item 1.4 of [Appendix 1].

0 =f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + cos(b log 2− b log 3) + · · · · · · }
− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + cos(b log 3− b log 3) + · · · · · · }
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + cos(b log 4− b log 3) + · · · · · · }
− f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2) + cos(b log 5− b log 3) + · · · · · · }
+ f(6){cos(b log 6− b log 1) + cos(b log 6− b log 2) + cos(b log 6− b log 3) + · · · · · · }
− · · · · · ·

=f(2)g(2)− f(3)g(3) + f(4)g(4)− f(5)g(5) + f(6)g(6)− f(7)g(7) + · · · · · · (16)

Here we define F (a) as follows.

F (a) = f(2)− f(3) + f(4)− f(5) + f(6)− · · · · · · (17)

We have F (a) = 0 from the above (16) as shown in the following (18) because of the

following reasons.

0 =f(2)− f(3)g(3)

g(2)
+

f(4)g(4)

g(2)
− f(5)g(5)

g(2)
+

f(6)g(6)

g(2)
− f(7)g(7)

g(2)
+ · · · · · ·

=f(2)− f(3) + f(4)− f(5) + f(6)− · · · · · ·
=F (a) (18)
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3.1 g(2, N) fluctuates between +∞ and −∞ with N →∞ but does not have the value

of zero in N0 < N as shown in [Appendix 2: Proof of g(2) ̸= 0]. (N0 is a large

natural number.) Therefore lim
N→∞

g(2, N) = g(2) ̸= 0 is true because g(2, N) does

not converge to zero with N → ∞. We can divide the rightmost side of (16) by

g(2).

3.2 g(k)/g(2) = 1 (k = 3, 4, 5, 6, 7 · · · · · · ) is true as shown in [Appendix 3: Proof of

g(k)/g(2) = 1].

4. Conclusion

F (a) = 0 has the only solution of a = 0 as shown in [Appendix 4: Solution for

F (a) = 0]. a has the range of 0 ≤ a < 1/2 by the critical strip of ζ(s). However, a

cannot have any value but zero because a is the solution for F (a) = 0. Due to a = 0 non-

trivial zero point of Riemann zeta function ζ(s) shown by (2) and (3) must be 1/2 ± bi

and other zero point does not exist. Therefore Riemann hypothesis which says“ All

non-trivial zero points of Riemann zeta function ζ(s) exist on the line of Re(s) = 1/2.”
is true.

Appendix 1. Equation construction

We can construct (9), (10), (11) and (16) by applying the following Theorem 1[1].

Theorem 1� �
On condition that the following (Series 1) and (Series 2) converge respectively, the

following (Series 3) and (Series 4) are true.

(Series 1) = a1 + a2 + a3 + a4 + a5 + · · · · · · = A

(Series 2) = b1 + b2 + b3 + b4 + b5 + · · · · · · = B

(Series 3) = (a1 + b1) + (a2 + b2) + (a3 + b3) + (a4 + b4) + · · · · · · = A+B

(Series 4) = (a1 − b1) + (a2 − b2) + (a3 − b3) + (a4 − b4) + · · · · · · = A−B� �
1.1. Construction of (9)

We can have the following (9) as (Series 4) by regarding (6) and (4) as (Series 1) and

(Series 2) respectively.

(Series 1) =
cos(b log 2)

21/2−a
− cos(b log 3)

31/2−a
+

cos(b log 4)

41/2−a
− cos(b log 5)

51/2−a
+ · · · · · · = 1 (6)

(Series 2) =
cos(b log 2)

21/2+a
− cos(b log 3)

31/2+a
+

cos(b log 4)

41/2+a
− cos(b log 5)

51/2+a
+ · · · · · · = 1 (4)

(Series 4) = f(2) cos(b log 2)− f(3) cos(b log 3) + f(4) cos(b log 4)− f(5) cos(b log 5)

+ · · · · · · = 1− 1 = 0 (9)

Here f(n) is defined as follows.

f(n) =
1

n1/2−a
− 1

n1/2+a
≥ 0 (n = 2, 3, 4, 5, · · · · · · ) (8)
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1.2. Construction of (10)

We can have the following (10) as (Series 4) by regarding (7) and (5) as (Series 1)

and (Series 2) respectively.

(Series 1) =
sin(b log 2)

21/2−a
− sin(b log 3)

31/2−a
+

sin(b log 4)

41/2−a
− sin(b log 5)

51/2−a
+ · · · · · · = 0 (7)

(Series 2) =
sin(b log 2)

21/2+a
− sin(b log 3)

31/2+a
+

sin(b log 4)

41/2+a
− sin(b log 5)

51/2+a
+ · · · · · · = 0 (5)

(Series 4) =f(2) sin(b log 2)− f(3) sin(b log 3) + f(4) sin(b log 4)− f(5) sin(b log 5)

+ · · · · · · = 0− 0 (10)

1.3. Construction of (11)

We can have the following (11) as (Series 3) by regarding the following equations as

(Series 1) and (Series 2).

(Series 1) = cos x{right side of (9)}
=cosx{f(2) cos(b log 2)− f(3) cos(b log 3) + f(4) cos(b log 4)− f(5) cos(b log 5)

+ · · · · · · } ≡ 0

(Series 2) = sin x{right side of (10)}
=sinx{f(2) sin(b log 2)− f(3) sin(b log 3) + f(4) sin(b log 4)− f(5) sin(b log 5)

+ · · · · · · } ≡ 0

(Series 3) =f(2) cos(b log 2− x)− f(3) cos(b log 3− x) + f(4) cos(b log 4− x)

− f(5) cos(b log 5− x) + · · · · · · ≡ 0 + 0 (11)

1.4. Construction of (16)

1.4.1 We can have the following (12-1*2) as (Series 3) by regarding (12-1) and (12-2) as

(Series 1) and (Series 2) respectively.

(Series 1) =f(2) cos(b log 2− b log 1)− f(3) cos(b log 3− b log 1)

+ f(4) cos(b log 4− b log 1)− f(5) cos(b log 5− b log 1)

+ f(6) cos(b log 6− b log 1)− · · · · · · = 0 (12-1)

(Series 2) =f(2) cos(b log 2− b log 2)− f(3) cos(b log 3− b log 2)

+ f(4) cos(b log 4− b log 2)− f(5) cos(b log 5− b log 2)

+ f(6) cos(b log 6− b log 2)− · · · · · · = 0 (12-2)

(Series 3) =f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2)}
− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2)}
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2)}
− f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2)}
+ · · · · · · = 0 + 0 (12-1*2)

1.4.2 We can have the following (12-1*3) as (Series 3) by regarding (12-1*2) and (12-3)
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as (Series 1) and (Series 2) respectively.

(Series 2) =f(2) cos(b log 2− b log 3)− f(3) cos(b log 3− b log 3)

+ f(4) cos(b log 4− b log 3)− f(5) cos(b log 5− b log 3)

+ f(6) cos(b log 6− b log 3)− · · · · · · = 0 (12-3)

(Series 3) =f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + cos(b log 2− b log 3)}
− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + cos(b log 3− b log 3)}
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + cos(b log 4− b log 3)}
− f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2) + cos(b log 5− b log 3)}
+ · · · · · · = 0 + 0 (12-1*3)

1.4.3 We can have the following (12-1*4) as (Series 3) by regarding (12-1*3) and (12-4)

as (Series 1) and (Series 2) respectively.

(Series 2) = f(2) cos(b log 2− b log 4)− f(3) cos(b log 3− b log 4)

+ f(4) cos(b log 4− b log 4)− f(5) cos(b log 5− b log 4)

+ f(6) cos(b log 6− b log 4)− · · · · · · = 0 (12-4)

(Series 3)

= f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + · · ·+ cos(b log 2− b log 4)}
− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + · · ·+ cos(b log 3− b log 4)}
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + · · ·+ cos(b log 4− b log 4)}
− f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2) + · · ·+ cos(b log 5− b log 4)}
+ · · · · · · = 0 + 0 (12-1*4)

1.4.4 In the same way as above we can have the following (12-1*N) as (Series 3) by

regarding (12-1*N-1) and (12-N) as (Series 1) and (Series 2) respectively.

(N = 5, 6, 7, 8, · · · · · · ) g(k,N) is defined in page 3. (k = 2, 3, 4, 5, · · · · · · )

f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + · · ·+ cos(b log 2− b logN)}
− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + · · ·+ cos(b log 3− b logN)}
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + · · ·+ cos(b log 4− b logN)}
− f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2) + · · ·+ cos(b log 5− b logN)}
+ · · · · · ·
= f(2)g(2, N)− f(3)g(3, N) + f(4)g(4, N)− f(5)g(5, N) + f(6)g(6, N)− · · · · · ·
= 0 + 0 (12-1*N)

1.4.5 Performing the operation in the above item 1.4.4 once increases all N in (12-1*N)

by 1. If we repeat this operation infinitely i.e. we perform N → ∞, we can have

the following (12-1*∞) = (16). g(k) is defined in page 3.

f(2)g(2)− f(3)g(3) + f(4)g(4)− f(5)g(5) + f(6)g(6)− f(7)g(7) + · · · · · · = 0

(12-1*∞)
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Appendix 2. Proof of g(2) ̸= 0

2.1. Investigation of g(k,N)

We define G and H as follows.

G = lim
N→∞

1

N
{cos(b log 1

N
) + cos(b log

2

N
) + cos(b log

3

N
) + · · ·+ cos(b log

N

N
)}

=

∫ 1

0

cos(b log x)dx (20-1)

H = lim
N→∞

1

N
{sin(b log 1

N
) + sin(b log

2

N
) + sin(b log

3

N
) + · · ·+ sin(b log

N

N
)}

=

∫ 1

0

sin(b log x)dx (20-2)

We calculate G and H by Integration by parts.

G = [x cos(b log x)]10 + bH = 1 + bH

H = [x sin(b log x)]10 − bG = −bG

Then we can have the values of G and H from the above equations as follows.

G =
1

1 + b2
H =

−b
1 + b2

(21)

From (14) we can calculate g(k,N) as follows.

g(k,N) = cos(b log 1/k) + cos(b log 2/k) + cos(b log 3/k) + · · ·+ cos(b logN/k)

= N
1

N
{cos(b log 1

N

N

k
) + cos(b log

2

N

N

k
) + cos(b log

3

N

N

k
) + · · ·+ cos(b log

N

N

N

k
)}

= N
1

N
{cos(b log 1

N
+ b log

N

k
) + cos(b log

2

N
+ b log

N

k
) + cos(b log

3

N
+ b log

N

k
)

+ · · · · · ·+ cos(b log
N

N
+ b log

N

k
)}

= N
1

N
{cos(b log N

k
)}{cos(b log 1

N
) + cos(b log

2

N
) + cos(b log

3

N
) + · · ·+ cos(b log

N

N
)}

−N
1

N
{sin(b log N

k
)}{sin(b log 1

N
) + sin(b log

2

N
) + sin(b log

3

N
) + · · ·+ sin(b log

N

N
)}

= N{cos(b log N

k
)}G+N{cos(b log N

k
)}{

cos(b log 1
N ) + cos(b log 2

N ) + · · ·+ cos(b log N
N )

N
−G}

−N{sin(b log N

k
)}H −N{sin(b log N

k
)}{

sin(b log 1
N ) + sin(b log 2

N ) + · · ·+ sin(b log N
N )

N
−H}

(22-1)

= N{cos(b log N

k
)}G+N{cos(b log N

k
)}Ec(N)

−N{sin(b log N

k
)}H −N{sin(b log N

k
)}Es(N) (22-2)

= N{cos(b log N

k
)} 1

1 + b2
+N{cos(b log N

k
)}Ec(N)
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+N{sin(b log N

k
)} b

1 + b2
−N{sin(b log N

k
)}Es(N) (22-3)

=
N sin(b logN/k + tan−1 1/b)√

1 + b2
−N

√
Ec(N)2 + Es(N)2 sin{b logN/k − tan−1 Ec(N)/Es(N)}

(22-4)

= NR(1) sin{b logN/k + θ(1)} −NR(2) sin{b logN/k − θ(2)} (22-5)

= NR(3) sin{b logN/k + θ(3)} (22-6)

2.1.1 We define as follows.

cos(b log 1
N ) + cos(b log 2

N ) + · · ·+ cos(b log N
N )

N
−G = Ec(N) (23-1)

sin(b log 1
N ) + sin(b log 2

N ) + · · ·+ sin(b log N
N )

N
−H = Es(N) (23-2)

From the definition of (20-1), (20-2), (23-1) and (23-2) we have the following (24).

lim
N→∞

Ec(N) = 0 lim
N→∞

Es(N) = 0 (24)

From (22-1), (23-1) and (23-2) we have (22-2).

2.1.2 From (21) and (22-2) we have (22-3). From (22-3) and (24) we have the following

(25).

g(k,N) = (22-3)

= N{cos(b log N

k
)

1

1 + b2
+ cos(b log

N

k
)Ec(N) + sin(b log

N

k
)

b

1 + b2
− sin(b log

N

k
)Es(N)}

∼ N{cos(b log N

k
)

1

1 + b2
+ sin(b log

N

k
)

b

1 + b2
}

=
N sin(b logN/k + tan−1 1/b)√

1 + b2
(N →∞) (25)

2.1.3 We define as follows. From (22-4) and the following (26) we have (22-5).

R(1) = 1/
√
1 + b2 θ(1) = tan−1 1/b

R(2) =
√
Ec(N)2 + Es(N)2 θ(2) = tan−1 Ec(N)/Es(N) (26)

2.1.4 We can calculate the following (27-1) and (27-2) from the following (FIgure 1).

R(3) can be calculated by Cosine theorem. We have (22-6) from (22-5), (27-1) and

(27-2).

R(3) =
√
R(1)2 +R(2)2 − 2R(1)R(2) cos{θ(1) + θ(2)} (27-1)

θ(3) = tan−1 R(1) sin θ(1) +R(2) sin θ(2)

R(1) cos θ(1)−R(2) cos θ(2)
(27-2)
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Im(s)

0 Re(s)

Figure 1:  R (3)sin{b logN/K +θ (3)}

R
(1

)s
in

{α
+

θ
(1

)}

α

R
(3

)s
in

{α
+

θ
(3

)}

R(2)sin{α-θ(2)}

α = blogN/k

2.1.5 The condition of R(3) = 0 is as follows.

R(1) = 1/
√
1 + b2 =

√
Ec(N)2 + Es(N)2 = R(2) (28-1)

θ(1) = tan−1 1/b = − tan−1 Ec(N)/Es(N) = −θ(2) (28-2)

There is a large natural number N0 that holds the following (29) because of

lim
N→∞

√
Ec(N)2 + Es(N)2 = 0.

1/
√
1 + b2 >

√
Ec(N)2 + Es(N)2 > 0 (N0 < N) (29)

From the above (28-1) and (29) the following (30) holds.

R(3) ̸= 0 (N0 < N) (30)

2.2. Verification of sin{b logN/2 + θ(3)} ̸= 0

If we assume that sin{b logN/2 + θ(3)} = 0 (N = 3, 4, 5, 6, 7, · · · · · · ) is true, the

following (31) is supposed to be true.

b logN/2 + θ(3) = Kπ (K = 2, 3, 4, · · · · · · ) (31)

The range of b is 14 < b as shown in page 1. We have log 3/2 = 0.405 and −π/2 < θ(3) <

π/2 from (27-2). Then we have K > 1.3 from 14 ∗ 0.405− π/2 = 4.09 < Kπ. Therefore

(K = 2, 3, 4, · · · · · · ) holds.
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From (31) we have the following (32).

logN/2 =
Kπ − θ(3)

b
= M > 0

N = 2eM (32)

We have M > 0 from K ≥ 2 and θ(3) < π/2. (32) has an impossible formation like

(natural number) = (irrational number). Therefore (32) is false and (31) (which is the

original equation of (32) ) is also false. Now we can have the following (33).

sin{b logN/2 + θ(3)} ̸= 0 (N = 3, 4, 5, 6, 7, · · · · · · ) (33)

2.3. Verification of g(2) ̸= 0

We have the following (25-1) from (25) in item 2.1.2 and the following (34) from (30)

and (33).

g(2, N) ∼ N sin(b logN/2 + tan−1 1/b)√
1 + b2

(N →∞) (25-1)

g(2, N) ̸= 0 (N0 < N) (34)

We can confirm that g(2, N) fluctuates between +∞ and −∞ with N → ∞ but does

not have the value of zero in N0 < N . (N0 is a large natural number.) Therefore

lim
N→∞

g(2, N) = g(2) ̸= 0 is true because g(2, N) does not converge to zero with N →∞.

Appendix 3. Proof of g(k)/g(2) = 1

We can confirm g(k)/g(2) = 1 according to the following process. (k = 3, 4, 5, · · · · · · )

3.1 We can have the following (35) from (15) in page 3.

g(k)

g(2)
= lim

N→∞

g(k,N)

g(2, N)
(35)

3.2 We can have the following (36) from (25) in [Appendix 2].

g(k,N)

g(2, N)
∼

N√
1+b2

sin(b log N
k + tan−1 1

b )

N√
1+b2

sin(b log N
2 + tan−1 1

b )
=

sin(b log N
k + tan−1 1

b )

sin(b log N
2 + tan−1 1

b )
(N →∞)

(36)

3.3 We can have the following (37) from the following (38).

sin(b log N
k + tan−1 1

b )

sin(b log N
2 + tan−1 1

b )
=

sin{ b logN/k+tan−1 1/b
b logN/2+tan−1 1/b (b log

N
2 + tan−1 1

b )}
sin(b log N

2 + tan−1 1
b )

∼
sin(b log N

2 + tan−1 1
b )

sin(b log N
2 + tan−1 1

b )
= 1 (N →∞) (37)

lim
N→∞

b log N
k + tan−1 1

b

b log N
2 + tan−1 1

b

= lim
N→∞

1− log k
logN + tan−1 1/b

b logN

1− log 2
logN + tan−1 1/b

b logN

= 1 (38)
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3.4
g(k,N)
g(2,N)

approaches to
sin(b log N

k
+tan−1 1

b
)

sin(b log N
2
+tan−1 1

b
)
infinitely with N → ∞ as shown in the

above (36). And
sin(b log N

k
+tan−1 1

b
)

sin(b log N
2
+tan−1 1

b
)
converges to 1 with N → ∞ as shown in the

above (37). Therefore
g(k,N)
g(2,N)

also converges to 1 with N → ∞. From (35), (36)

and (37) we have the following (39).

g(k)

g(2)
= lim

N→∞

g(k,N)

g(2, N)
= lim

N→∞

sin(b log N
k + tan−1 1

b )

sin(b log N
2 + tan−1 1

b )
= 1 (39)

Appendix 4. Solution for F (a) = 0

4.1. Preparation for verification of F (a) > 0

4.1.1. Investigation of f(n)

f(n) =
1

n1/2−a
− 1

n1/2+a
≥ 0 (n = 2, 3, 4, 5, · · · · · · ) (8)

F (a) =f(2)− f(3) + f(4)− f(5) + f(6)− · · · · · · (17)

a = 0 is the solution for F (a) = 0 due to f(n) ≡ 0 at a = 0. Hereafter we define the

range of a as 0 < a < 1/2 to verify F (a) > 0. The alternating series F (a) converges due

to lim
n→∞

f(n) = 0.

We have the following (41) by differentiating f(n) regarding n.

df(n)

dn
=

1/2 + a

na+3/2
− 1/2− a

n3/2−a
=

1/2 + a

na+3/2
{1− (

1/2− a

1/2 + a
)n2a} (41)

The value of f(n) increases with increase of n and reaches the maximum value f(nmax)

at n = nmax. Afterward f(n) decreases to zero with n → ∞. nmax is one of the 2

consecutive natural numbers that sandwich (1/2+a
1/2−a

)
1
2a . (Graph 1) shows f(n) in various

value of a. At a = 1/2 f(n) does not have f(nmax) and increases to 1 with n→∞ due

to nmax =∞.
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Graph 1： f(n) in various a

a=0.05 a=0.1 a=0.2 a=0.3 a=0.4 a=0.45 a=0.5

4.1.2. Verification method for F (a) > 0

We define F (a, n) as the following (42).

F (a, n) = f(2)− f(3) + f(4)− f(5) + · · ·+ (−1)nf(n) (n = 2, 3, 4, 5, · · · · · · ) (42)

lim
n→∞

F (a, n) = F (a) (43)

F (a) is an alternating series. So F (a, n) repeats increase and decrease by f(n) with

increase of n as shown in (Graph 2). In (Graph 2) upper points mean F (a, 2m) (m =

1, 2, 3, · · · · · · ) and lower points mean F (a, 2m+1). F (a, 2m) decreases and converges to

F (a) with m→∞. F (a, 2m+1) increases and also converges to F (a) with m→∞ due

to lim
n→∞

f(n) = 0. We can have the following (44).

lim
m→∞

F (a, 2m) = lim
m→∞

F (a, 2m+ 1) = F (a) (44)
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-0.04

-0.02

0

0.02
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1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Graph 2: F(0.1,n) from 1st to 100th term

F(a,2m)

F(a,2m+1)
f(n)
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We define F1(a) and F1(a, 2m+ 1) as follws.

F1(a) = {f(2)− f(3)}+ {f(4)− f(5)}+ {f(6)− f(7)}+ · · · · · · (45)

F1(a, 2m+ 1) = {f(2)− f(3)}+ {f(4)− f(5)}+ · · ·+ {f(2m)− f(2m+ 1)}
= f(2)− f(3) + f(4)− f(5) + · · ·+ f(2m)− f(2m+ 1) = F (a, 2m+ 1) (46)

lim
m→∞

F1(a, 2m+ 1) = F1(a) (47)

From the above (44), (46) and (47) we have F (a) = F1(a). We can use F1(a) instead of

F (a) to verify F (a) > 0.

We enclose 2 terms of F (a) each from the first term with { } as follows. If nmax is p or

p+1（p: odd number）, the inside sum of { } from f(2) to f(p) has negative value and

the inside sum of { } after f(p+ 1) has positive value.

F (a) = f(2)− f(3) + f(4)− f(5) + f(6)− f(7) + · · · · · ·

= {f(2)− f(3)}+ {f(4)− f(5)}+ · · ·+ {f(p− 1)− f(p) }+ { f(p+ 1) − f(p+ 2)}+ · · · · · ·

(inside sum of { }) < 0←−|−→(inside sum of { }) > 0

(total sum of { }) = −B ←−|−→(total sum of { }) = A

We define as follows.

[the partial sum from f(2) to f(p)] = −B < 0

[the partial sum from f(p+ 1) to f(∞)] = A > 0

F (a) = A−B (48)

So we can verify F (a) > 0 by verifying A > B.

4.1.3. Investigation of {f(n) − f(n + 1)}
We have the following (49) by differentiating {f(n)− f(n+ 1)} regarding n.

df(n)

dn
− df(n+ 1)

dn
=

1/2 + a

n3/2+a
{1− (

n

n+ 1
)3/2+a} − 1/2− a

n3/2−a
{1− (

n

n+ 1
)3/2−a}

= C(n)−D(n) (49)

When n is a small natural number the value of {f(n)−f(n+1)} increases with increase of

n due to C(n) > D(n). With increase of n the value reaches the maximum value {qmax}
at C(n) ≓ D(n). (n is a natural number. The situation cannot be C(n) = D(n).) After

that the situation changes to C(n) < D(n) and the value decreases to zero with n→∞.

(Graph 3) shows the value of {f(n) − f(n + 1)} in various value of a. (Graph 4) shows

the value of {f(n)− f(n+1)} at a = 0.1. We can find the following from (Graph 3) and

(Graph 4).

4.1.3.1 When

∣∣∣df(n)dn

∣∣∣ becomes the maximum value |f(n)− f(n+ 1)| also becomes the max-

imum value at same value of a. From (Graph 1) we can find that

∣∣∣df(n)dn

∣∣∣ becomes

the maximum value at n = 2. Therefore the maximum value of |f(n)− f(n+ 1)|
is {f(3)− f(2)} at same value of a as shown in (Graph 3).

4.1.3.2 With increase of n the sign of {f(n) − f(n + 1)} changes from minus to plus at

n = nmax (n = nmax +1) when nmax is even(odd) number as shown in (Graph 4).



14 T. Ishiwata

4.1.3.3 After that the value reaches the maximum value {qmax} and the value decreases

to zero with n→∞ as shown in (Graph 4).
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Graph 3： [f(n)-f(n+1)] in various a

a=0.05 a=0.1 a=0.2 a=0.3 a=0.4 a=0.45 a=0.5
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Graph 4： [f(n)-f(n+1)] at a=0.1 nmax {qmax}

4.2. Verification of A > B (nmax is odd number.)

nmax is odd number as follows.

F (a) = f(2)− f(3) + f(4)− f(5) + f(6)− · · · · · ·
= {f(2)− f(3)}+ {f(4)− f(5)}+ · · ·+ {f(nmax − 3)− f(nmax − 2)}+ {f(nmax − 1)− f(nmax) }
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+{f(nmax + 1)− f(nmax + 2)}+ {f(nmax + 3)− f(nmax + 4)}+ {f(nmax + 5)− f(nmax + 6)}+ · · · · · ·

We can have A and B as follows.

B = {f(3)− f(2)}+ {f(5)− f(4)}+ {f(7)− f(6)}+ · · ·+ {f(nmax − 2)− f(nmax − 3)}+ { f(nmax) − f(nmax − 1)}
A = {f(nmax + 1)− f(nmax + 2)}+ {f(nmax + 3)− f(nmax + 4)}+ {f(nmax + 5)− f(nmax + 6)}+ · · · · · ·

4.2.1. Condition for B

We define as follows.

{ aa } : the term which is included within B.

{ aa } : the term which is not included within B.

We have the following (50).

f(nmax)− f(2) = { f(nmax)− f(nmax − 1) }+ { f(nmax − 1)− f(nmax − 2) }+ { f(nmax − 2)− f(nmax − 3) }
+ · · ·+ { f(7)− f(6) }+ { f(6)− f(5) }+ { f(5)− f(4) }+ { f(4)− f(3) }+ { f(3)− f(2) } (50)

And we have the following inequalities from (Graph 3) and (Graph 4).

{ f(3)− f(2) } > { f(4)− f(3) } > { f(5)− f(4) } > { f(6)− f(5) } > { f(7)− f(6) } > · · · · · ·
> { f(nmax − 2)− f(nmax − 3) } > { f(nmax − 1)− f(nmax − 2) } > { f(nmax)− f(nmax − 1) } > 0

From the above (50) we have the following (51).

f(nmax)− f(2) + { f(3)− f(2) }
= { f(3)− f(2) }+ { f(5)− f(4) }+ { f(7)− f(6) }+ · · ·+ { f(nmax − 2)− f(nmax − 3) }+ { f(nmax)− f(nmax − 1) }

∥ ∧ ∧ ∧ ←Value comparison→ ∧
+{ f(3)− f(2) }+ { f(4)− f(3) }+ { f(6)− f(5) }+ · · ·+ { f(nmax − 3)− f(nmax − 4) }+ { f(nmax − 1)− f(nmax − 2) }
> 2B (51)

Due to [Total sum of upper row of the above (51) = B < Total sum of lower row of (51)]

we have the following (52).

f(nmax)− f(2) + {f(3)− f(2)} > 2B (52)

4.2.2. Condition for A ({qmax} is included within A.)

We abbreviate {f(nmax + q) − f(nmax + q + 1)} to {q} for easy description.

(q = 0, 1, 2, 3, · · · · · · ) All {q} has positive value as shown in item 4.1.2.

We define as follows.

{ aa } : the term which is included within A.

{ aa } : the term which is not included within A.

{qmax} has the maximum value in all {q}. And {qmax} is included within A. Then

value comparison of {q} is as follows.

{ 1 } < { 2 } < { 3 } < · · · < { qmax − 3 } < { qmax − 2 } < { qmax − 1 } < { qmax } > { qmax + 1 } > { qmax + 2 } > { qmax + 3 } > · · · · · ·

We have the following (53).

f(nmax + 1) = { f(nmax + 1)− f(nmax + 2) }+ { f(nmax + 2)− f(nmax + 3) }+ { f(nmax + 3)− f(nmax + 4) }
+{ f(nmax + 4)− f(nmax + 5) }+ · · · · · ·
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= { 1 }+ { 2 }+ { 3 }+ { 4 }+ · · ·+ { qmax − 3 }+ { qmax − 2 }+ { qmax − 1 }+ { qmax }+ { qmax + 1 }+ { qmax + 2 }+ { qmax + 3 }+ · · · · · ·
(53)

From the above (53) we have the following (54).

f(nmax + 1)− { qmax − 1 }
= { 1 }+ { 2 }+ { 3 }+ { 4 }+ · · ·+ { qmax − 3 }+ { qmax − 2 }+ { qmax }+ { qmax + 1 }+ { qmax + 2 }+ { qmax + 3 }+ · · · · · · (54)
← · · · · · · · · · · · · · · · Range 1 · · · · · · · · · · · · · · · →|← · · · · · · · · · · · · Range 2 · · · · · · · · · · · ·

(Range 1) and (Range 2) are determined as above. In (Range 1) value comparison is as

follows.

{ 1 } < { 2 } < { 3 } < { 4 } < · · · < { qmax − 4 } < { qmax − 3 } < { qmax − 2 }

And we can find the following.

Total sum of { aa } = { 1 }+ { 3 }+ { 5 }+ { 7 }+ · · ·+ { qmax − 4 }+ { qmax − 2 }
∨ ∨ ∨ ∨ ∨ ←Value comparison

Total sum of { aa } = { 2 }+ { 4 }+ { 6 }+ · · ·+ { qmax − 5 }+ { qmax − 3 }

Therefore [Total sum of { aa } > Total sum of { aa }] holds.
In (Range 2) value comparison is as follows.

{ qmax } > { qmax + 1 } > { qmax + 2 } > { qmax + 3 } > { qmax + 4 } > { qmax + 5 } > { qmax + 6 } > · · · · · ·

And we can find the following.

Total sum of { aa } = { qmax }+ { qmax + 2 }+ { qmax + 4 }+ { qmax + 6 }+ · · · · · ·
∨ ∨ ∨ ∨ ←Value comparison

Total sum of { aa } = { qmax + 1 }+ { qmax + 3 }+ { qmax + 5 }+ { qmax + 7 }+ · · · · · ·

Therefore [Total sum of { aa } > Total sum of { aa }] holds.
In (Range 1)+(Range 2) we have [Total sum of { aa } = A > Total sum of { aa }].
We have the following (55).

f(nmax + 1)− {qmax − 1} < 2A (55)

4.2.3. Condition for A ({qmax} is not included within A.)

We have the following (56). {qmax} is not included within A.

f(nmax + 1) = { f(nmax + 1)− f(nmax + 2) }+ { f(nmax + 2)− f(nmax + 3) }+ { f(nmax + 3)− f(nmax + 4) }
+{ f(nmax + 4)− f(nmax + 5) }+ · · · · · ·

= { 1 }+ { 2 }+ { 3 }+ { 4 }+ · · ·+ { qmax − 3 }+ { qmax − 2 }+ { qmax − 1 }+ { qmax }+ { qmax + 1 }+ { qmax + 2 }+ { qmax + 3 }+ · · · · · ·
(56)

From the above (56) we have the following (57).

f(nmax + 1)− { qmax }
= { 1 }+ { 2 }+ { 3 }+ { 4 }+ · · ·+ { qmax − 3 }+ { qmax − 2 }+ { qmax − 1 }+ { qmax + 1 }+ { qmax + 2 }+ { qmax + 3 }+ · · · · · · (57)
← · · · · · · · · · · · · · · · · · · Range 1 · · · · · · · · · · · · · · · · · · · · · →|← · · · · · · · · · Range 2 · · · · · · · · ·

(Range 1) and (Range 2) are determined as above. In (Range 1) value comparison is as

follows.
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{ 1 } < { 2 } < { 3 } < { 4 } < · · · < { qmax − 4 } < { qmax − 3 } < { qmax − 2 } < { qmax − 1 }

And we can find the following.

Total sum of { aa } = { 1 }+ { 3 }+ { 5 }+ { 7 }+ · · ·+ { qmax − 3 }+ { qmax − 1 }
∨ ∨ ∨ ∨ ∨ ←Value comparison

Total sum of { aa } = { 2 }+ { 4 }+ { 6 }+ · · ·+ { qmax − 4 }+ { qmax − 2 }

Therefore [Total sum of { aa } > Total sum of { aa }] holds.
In (Range 2) value comparison is as follows.

{ qmax + 1 } > { qmax + 2 } > { qmax + 3 } > { qmax + 4 } > { qmax + 5 } > { qmax + 6 } > { qmax + 7 } > · · · · · ·

And we can find the following.

Total sum of { aa } = { qmax + 1 }+ { qmax + 3 }+ { qmax + 3 }+ { qmax + 7 }+ · · · · · ·
∨ ∨ ∨ ∨ ←Value comparison

Total sum of { aa } = { qmax + 2 }+ { qmax + 4 }+ { qmax + 6 }+ { qmax + 8 }+ · · · · · ·

Therefore [Total sum of { aa } > Total sum of { aa }] holds.
In (Range 1)+(Range 2) we have [Total sum of { aa } = A > Total sum of { aa }].
We have the following (58).

f(nmax + 1)− {qmax} < 2A (58)

4.2.4. Condition for A > B

From (55) and (58) we have the following inequality.

f(nmax + 1)− [{qmax} or {qmax − 1}] < 2A

As shown in item 4.1.3.1 {f(3) − f(2)} is the maximum in all |f(n)− f(n+ 1)|. Then

the following holds.

{f(3)− f(2)} >[{qmax} or {qmax − 1}]
{f(3)− f(2)} >f(nmax)− f(nmax + 1)

We have the following inequality from the above 3 inequalities.

2A >f(nmax + 1)− [{qmax} or {qmax − 1}] > f(nmax + 1)− {f(3)− f(2)}
>f(nmax)− {f(3)− f(2)} − {f(3)− f(2)} = f(nmax)− 2{f(3)− f(2)} (59)

We have the following (60) for A > B from (52) and (59).

2A > f(nmax)− 2{f(3)− f(2)} > f(nmax)− f(2) + {f(3)− f(2)} > 2B (60)

From (60) we can have the final condition for A > B as follows.

(4/3)f(2) > f(3) (61)

(Graph 5) shows (4/3)f(2)− f(3) = (4/3)(
1

21/2−a−
1

21/2+a )− (
1

31/2−a−
1

31/2+a ).
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Graph 5： (4/3)f(2)-f(3)

Table 1：The values of (4/3)f(2)− f(3)

a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
(4/3)f(2)-f(3) 0 0.001903 0.003694 0.005257 0.00648 0.007246 0.007437 0.006933 0.005611 0.003343 0

(Graph 6) shows [differentiated {(4/3)f(2)− f(3)} regarding a] i.e. (4/3)f ′(2)− f ′(3) =

(4/3){log 2( 1
21/2−a+

1
21/2+a )} − {log 3(

1
31/2−a+

1
31/2+a )}.
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Graph 6： (4/3)f'(2)-f'(3)

Table 2：The values of (4/3)f ′(2)− f ′(3)

a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
(4/3)f'(2)-f'(3) 0.038443 0.037313 0.033921 0.02825 0.020277 0.009967 -0.00272 -0.01785 -0.03547 -0.05567 -0.07852
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From (Graph 5) and (Graph 6) we can find [(4/3)f(2) − f(3) > 0 in 0 < a < 1/2] that

means A > B i.e. F (a) > 0 in 0 < a < 1/2.

4.3. Verification of A > B (nmax is even number.)

nmax is even number as follows.

F (a) = f(2)− f(3) + f(4)− f(5) + f(6)− · · · · · ·
= {f(2)− f(3)}+ {f(4)− f(5)}+ · · ·+ {f(nmax − 4)− f(nmax − 3)}+ {f(nmax − 2)− f(nmax − 1)}
+{ f(nmax) − f(nmax + 1)}+ {f(nmax + 2)− f(nmax + 3)}+ {f(nmax + 4)− f(nmax + 5)}+ · · · · · ·

We can have A and B as follows.

B = {f(3)− f(2)}+ {f(5)− f(4)}+ {f(7)− f(6)}+ · · ·+ {f(nmax − 3)− f(nmax − 4)}+ {f(nmax − 1)− f(nmax − 2)}
A = { f(nmax )− f(nmax + 1)}+ {f(nmax + 2)− f(nmax + 3)}+ {f(nmax + 4)− f(nmax + 5)}+ · · · · · ·

f(nmax) = { f(nmax) − f(nmax + 1)}+ {f(nmax + 1)− f(nmax + 2)}+ {f(nmax + 2)− f(nmax + 3)}
+{f(nmax + 3)− f(nmax + 4)}+ · · · · · ·

= {0}+ {1}+ {2}+ {3}+ {4}+ · · ·+ {qmax − 3}+ {qmax − 2}+ {qmax − 1}+ {qmax}+ {qmax + 1}+ {qmax + 2}+ {qmax + 3}+ · · · · · ·

After the same process as in item 4.2.1 we can have the following (62).

f(nmax − 1)− f(2) + {f(3)− f(2)} > 2B (62)

As shown in item 4.1.3.1 {f(3) − f(2)} is the maximum in all |f(n)− f(n+ 1)|. Then

the following holds.

{f(3)− f(2)} >[{qmax} or {qmax − 1}]
f(nmax) >f(nmax − 1)

We have the following (63) from the same process as in item 4.2.2 and item 4.2.3 and

the above inequalities.

2A >f(nmax)− [{qmax} or {qmax − 1}] > f(nmax)− {f(3)− f(2)}
>f(nmax − 1)− {f(3)− f(2)} (63)

We have the following (64) for A > B from (62) and (63).

2A > f(nmax − 1)− {f(3)− f(2)} > f(nmax − 1)− f(2) + {f(3)− f(2)} > 2B (64)

From (64) we can have the final condition for A > B as follows.

(3/2)f(2) > f(3) (65)

In the inequality of [(3/2)f(2) > (4/3)f(2) > f(3) > 0], (3/2)f(2) > (4/3)f(2) is true

self-evidently and in item 4.2.4 we already confirmed that the following (61) is true in

0 < a < 1/2.

(4/3)f(2) > f(3) (61)

Therefore the above (65) is true in 0 < a < 1/2. Now we can confirm F (a) > 0 in

0 < a < 1/2.
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4.4. Conclusion

As shown in item 4.2 and item 4.3 F (a) = 0 has the only solution of a = 0 due to

[0 ≤ a < 1/2], [F (0) = 0] and [F (a) > 0 in 0 < a < 1/2].

4.5. Graph of F (a)

We can approximate F (a) with the average of {F (a, n − 1) + F (a, n)}/2. But we

approximate F (a) for better accuracy by the following (66). (Graph 7) shows F (a)n
calculated at 3 cases of n = 500, 1000, 5000.

F (a,n−1)+F (a,n)
2 + F (a,n)+F (a,n+1)

2

2
= F (a)n (66)

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Graph 7: F(a)n at 3 cases

n=500 n=1,000 n=5,000

Table 3：The values of F (a)n at 3 cases

a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
n=500 0 0.01932876 0.03865677 0.05798326 0.0773074 0.09662832 0.11594507 0.13525658 0.15456168 0.17385904 0.19314718
n=1,000 0 0.01932681 0.03865282 0.05797725 0.0772993 0.09661821 0.11593325 0.13524382 0.15454955 0.17385049 0.19314743
n=5,000 0 0.01932876 0.03865676 0.05798324 0.07730738 0.09662829 0.11594504 0.13525655 0.15456165 0.17385902 0.19314718

3 line graphs overlapped. Because F (a)n calculated at 3 cases of n = 500, 1000, 5000 are

equal to 4 digits after the decimal point. The range of a is 0 ≤ a < 1/2. a = 1/2 is not

included in the range. But we added F (1/2)n to calculation due to the following reason.

[f(n) at a = 1/2] is (1−1/n) and F (1/2) fluctuates due to lim
n→∞

f(n) = 1. But the value of

the above (66) converges to the fixed value on the condition of lim
n→∞

{f(n+1)−f(n)} = 0.

The condition holds due to f(n+ 1)− f(n) = 1/(n+ n2).

F (a) is a monotonically increasing function as shown in (Graph 7). So F (a) = 0 has

the only solution and the solution must be a = 0 due to the following facts. Therefore

Riemann hypothesis must be true.
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4.5.1 In 1914Ｇ.Ｈ.Hardy proved that there are infinite zero points on the line of Re(s) =

1/2.

4.5.2 All zero points found until now exist on the line of Re(s) = 1/2.
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