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Abstract

This paper discusses a few main topics in Number Theory, such as the Möbius function
and its generalization, leading up to the derivation of a neat power series for the prime
counting function, π(x). Among its main findings, we can cite the extremely useful
inversion formula for Dirichlet series (given Fa(s), we know a(n), which may provide
evidence for the Riemann hypothesis, and enabled the creation of a formula for π(x) in
the first place), and the realization that sums of divisors and the Möbius function are
particular cases of a more general concept. One of its conclusions is that it’s unnecessary
to resort to the zeros of the analytic continuation of the zeta function to obtain π(x).

Summary

1 Introduction 2

2 Indicator function k divides n, 1k|n 3
2.1 Analog of the 1k|n function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Transforming the power series of 1k|n . . . . . . . . . . . . . . . . . . . . . . . 3

3 Sum of powers of divisors of n 4
3.1 The divisors count function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Introducing Möbius µ(n) 5
4.1 Square-free numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 The Euler product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Dirichlet series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4 The unit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.5 Cube-free numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.6 Duality between µq(n) and σq0(n) . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Inversion formula for Dirichlet series 12
5.1 Riemann hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Applications 14
6.1 Square root of the zeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1



6.2 Zeta raised to i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3 The n-th prime number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.4 Modulus of µ(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.5 Liouville function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.6 Mertens function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.7 Square-free divisors of n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.8 Square root of an integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.9 Logarithm of an integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.10 Von Mangoldt function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 The prime counting function 18
7.1 The graph of π(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Asymptotic prime counting functions . . . . . . . . . . . . . . . . . . . . . . . 19

1 Introduction

Many people have devoted time trying to create formulae to generate prime numbers or to
count primes numbers, something that at times has bordered on obsession.

These formulae don’t seem to have a lot of potential to be used as new tools for analyses,
so frequently they are mere curiosities or attempts to prove oneself capable of achieving a goal
or winning an intellectual challenge. That is even more true if the formula is very complicated,
which seems to be the case of most that were discovered to date.

But oblivious to the bleak landscape, I was still very curious and eager to find my own,
and in the process, I think I may have created a new tool to look at Dirichlet series.

In this paper we create the very first power series for the prime counting function, π(x),
and for the prime-power counting function, J(x), aside from the Riemann prime counting func-
tion (which assumes the Riemann hypothesis, which is still officially unproven). Their relative
simplicity stems from a property of Dirichlet series, Fa(s), by which their generated function,
a(n), can be expressed as the product of an elementary function and a non-elementary function
given by a relatively simple power series. This property implies that the function generated
by 1/ζ(s) is well-determined by the values of 1/ζ(s) at the positive even integers and can be
shown to be the Möbius function, µ(n), independently of s, which may be evidence of the
validity of the Riemann hypothesis via one of its equivalent problems.

Though power series are arguably not the most tractable of solutions, they provide insights
that may lead to the discovery of better or more useful formulae. Besides, creating even inte-
gral representations for these power series is extremely challenging, let alone closed-forms.

After I discovered the results that are discussed here, I did some research in the literature
and was very surprised about coincidences between things I found and approaches that had
been tried by others before me. Namely, concepts such as the Möbius function, µ(n), the Von
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Mangoldt lambda function, Λ(n), and so on and so forth. Maybe these are recurring concepts
on the study of the patterns of prime numbers.

2 Indicator function k divides n, 1k|n

In paper [2] we introduced the indicator function k divides n, noted 1k|n and defined as 1
if k divides n and 0 otherwise. This function plays a key role throughout this paper. It can
be represented by means of elementary functions:

1k|n =
1

k

k∑
j=1

cos
2πnj

k
=

cos 2πn− 1

2k
+

1

2k
sin 2πn cot

πn

k

However, that closed-form is not very practical to work with. For example, if k divides n
we have an undefined product of the type 0 · ∞ (the sine is 0 and the cotangent is ∞).

Hence, it’s more practical to derive a power series for 1k|n, which can be accomplished
by expanding the cosine on the left-hand side with Taylor series and employing Faulhaber’s
formula, as explained in [2], which gives us the below:

1

2k
sin 2πn cot

πn

k
=
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

B2jk
−2j

(2j)!(2i+ 1− 2j)!
(1)

2.1 Analog of the 1k|n function

The analog of the indicator function 1k|n is the below sum:

1

k

k∑
j=1

sin
2πnj

k
=

sin 2πn

2k
+

1

k
cot

πn

k
sin2 πn

As previously, we can obtain a power series for it by expanding the sine with Taylor series
and making use of Faulhaber’s formula:

1

2k
cot

πn

k
(1− cos 2πn) =

∞∑
i=0

(−1)i(2πn)2i+1

i∑
j=0

B2jk
−2j

(2j)!(2i+ 2− 2j)!

2.2 Transforming the power series of 1k|n

If we remove the first term from the sum in (1), we get the below:

1k|n =
cos 2πn− 1

2k
+

sin 2πn

2πn
−
∞∑
i=0

(−1)i(2πn)2i+2

i∑
j=0

B2j+2k
−2j−2

(2j + 2)!(2i+ 1− 2j)!
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If we keep extracting terms in this fashion, after extracting q terms we would obtain the
following equation:

1k|n =
cos 2πn− 1

2k
+

sin 2πn

2πn

q−1∑
i=0

(−1)i(2πn)2iB2i

(2i)!k2i
+
∞∑
i=0

(−1)i+q(2πn)2i+2q

i∑
j=0

B2j+2qk
−2j−2q

(2j + 2q)!(2i+ 1− 2j)!

Since the first two terms are clearly 0 for integer n we can discard them. This means that
1k|n has an infinite number of alternative power series and can be rewritten as:

1k|n =
∞∑
i=q

(−1)i(2πn)2i

i∑
j=q

B2jk
−2j

(2j)!(2i+ 1− 2j)!
(2)

3 Sum of powers of divisors of n

Let’s define the function σ2
m(n) as the sum of the m-th powers of the integer divisors of

n (the superscript 2 was chosen for convenience and will make sense when we reach section
(4.6)). In mathematical notation, for any complex m:

σ2
m(n) =

∑
k|n

km

By using the power series we derived for 1k|n, such as (1) or (2), we can obtain a power
series for σ2

m(n). For reasons that should be apparent soon, form (1) is preferred.

3.1 The divisors count function

Let’s start by deriving a power series for the number of divisors of an integer n, σ2
0(n), also

known as d(n). If we take equation (1) and sum k over the positive integers, we get σ2
0(n):

σ2
0(n) =

∞∑
k=1

1k|n =
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

B2jζ(2j)

(2j)!(2i+ 1− 2j)!
(3)

Now, by recalling the closed-form of the zeta function at the even integers:

ζ(2j) = −(−1)j(2π)2jB2j

2(2j)!
⇒ B2j

(2j)!
= −2(−1)j(2π)−2jζ(2j),

we can replace B2j/(2j)! in equation (3) and express σ2
0(n) in a more mnemonic form:

σ2
0(n) = −2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ(2j)2

(2i+ 1− 2j)!
(4)
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A similar rationale that also stems from equation (1) can be applied to obtain σ2
m(n) for

any complex m (here we leave the equation in its original form):

σ2
m(n) =

∞∑
k=1

1k|n · km =
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

2j−m 6=1

B2jζ(2j −m)

(2j)!(2i+ 1− 2j)!

Note we need to be careful to avoid the zeta function pole, hence 2j −m 6= 1.

And if we multiply σ2
m(n) by n−m we obtain σ2

−m(n). It’s not so obvious to see why this
works (if k is a divisor of n, k/n is the reciprocal of another divisor of n):

σ2
−m(n) =

∞∑
k=1

1k|n ·
(
k

n

)m
=
∞∑
i=0

(−1)i(2π)2in2i−m
i∑

j=0
2j−m6=1

B2jζ(2j −m)

(2j)!(2i+ 1− 2j)!

Another way to obtain σ2
m(n) can be achieved using (2):

σ2
m(n) =

∞∑
k=1

1k|n · km =
∞∑
k=1

∞∑
i=q

(−1)i(2πn)2i

i∑
j=q

B2jk
m−2j

(2j)!(2i+ 1− 2j)!
⇒

σ2
m(n) =

∞∑
i=q

(−1)i(2πn)2i

i∑
j=q

B2jζ(2j −m)

(2j)!(2i+ 1− 2j)!

And the above holds for positive or negative integer q, except that Bernoulli numbers are
not defined for negative subscripts. However, they can be analytically continued (and even
used to create a formula for Hk(n) valid for all complex k, as shown in [5]).

As we can see, the function 1k|n has a lot of interesting properties, and it will be useful on
our goal of studying the prime numbers.

4 Introducing Möbius µ(n)

The formula we created for σ2
0(n) in section (3.1) begs a question: what would happen if

we replaced ζ(2j)2 with ζ(2j)3? In other words, what does σ3
0(n) give us?

σ3
0(n) = −2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ(2j)3

(2i+ 1− 2j)!

To answer this question, we need to rewrite the initial sum that leads to the above formula:

∞∑
k1=1

∞∑
k2=1

1k1·k2|n =
∞∑
k1=1

∞∑
k2=1

(
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

B2j(k1 · k2)−2j

(2j)!(2i+ 1− 2j)!

)
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Looking at this formula we are led to conclude σ3
0(n) is the number of permutations of

elements from the set of divisors of n, taken two at a time, that are also divisors of n when
multiplied together. It’s also equal to the sum of the divisors count function, d(k), over the
integers k that divide n, as we see in section (4.6).

And how about σ1
0(n) and σ0

0(n)? The former is a constant equal to 1 for all integer n,
and the latter is the sum of the Möbius function, which we define in the next section, over the
integers k that divide n. As a preview, σ0

0(n) is 1 if n = 1 and 0 if n is an integer greater than
1, which we prove in section (4.4).

And finally, what is σ−1
0 (n)? That is the Möbius function itself, µ(n):

µ(n) = −2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ(2j)−1

(2i+ 1− 2j)!
, (5)

which we prove in section (4.5), after we define square-free numbers.

4.1 Square-free numbers

A square-free number is a number that can’t be divided by any squared prime. In other
words, if n is square-free, p1p2 · · · pk is its unique prime decomposition. That said, we can
define a function µ(n) such that:

µ(n) =


1, if n=1

(−1)k, if n is square-free with k prime factors

0, if n is not square-free

This function is the Möbius function from the previous section, which was named after the
German mathematician who introduced it.

Back to equation (5), one of its advantages is the fact that it provides an analytic contin-
uation of µ(n) onto C.1 It can be rewritten in a different form:

µ(n) = −sin 2πn

πn

∞∑
j=0

n2j

ζ(2j)
(6)

The above form has the very same power series expansion as (5), but a finite
radius of convergence (|n| < 1), so (5) is by definition its analytic continuation.

However, this new form is more tractable and useful for performing manipulations in some
cases. For example, we can easily find the Taylor series expansion of (6) (that is, (5)), using

1Onto is being used loosely here.
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the Leibniz rule for the k-th derivative of the product of two functions:

(f · g)(k)(x) =
k∑
j=0

(
k

j

)
f (j)(x)g(k−j)(x)

Below the graph of µ(n) was plotted in the (0, 9) interval for some insight into its shape
and local minima and maxima (it crosses the x-axis at the square-full and half-integers):

Note we made the intercept 0 so the value at 0 doesn’t differ from the other integers (re-
moving successive terms from (5) or (6), on index j, doesn’t affect the result for integer or
half-integer n, as proved in (2)). It’s not easy to apply the Weierstrass factorization theorem
here since there are unknown zeros at every level (e.g., −1, 0 or 1), perhaps even non-real
ones. We can remove the half-integer roots dividing µ(n) by cosπn (it can be shown that the
resulting power series is (5) with 2π replaced by π), in which case we’d obtain the graph:
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Going back to equations (5) and (6), to see an example on why the two forms are the same,
we mentioned previously that σ1

1(n) = 1 for all integer n (in section (4.6) we generalize this
class of functions). In this case it’s possible to produce a closed-form using the generating
function of ζ(2j) that we’ve created in [2]:

σ1
1(n) = −sin 2πn

πn

∞∑
j=0

n2jζ(2j) = −sin 2πn

πn

(
−πn cot πn

2

)
= (cosπn)2

The analog of σ2
m(n) is µ(n)/nm, which for complex m is obtained by a simple modification

of equation (5):

µ(n)

nm
= −2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

ζ(2j+m) 6=0

(−1)j(2π)−2jζ(2j +m)−1

(2i+ 1− 2j)!
,

This result is a direct consequence of the inversion formula for Dirichlet series, discussed
in section (5). As before, we need to avoid the zeros of the zeta function if they occur.

4.2 The Euler product

The German mathematician Euler discovered an interesting relationship between the zeta
function and the primes known as Euler product, which inverted reveals a relationship between
the reciprocal of the zeta and the square-free numbers, valid when <(s) > 1:

1

ζ(s)
=
∞∏
j=1

(
1− 1

psj

)
=

(
1− 1

2s

)(
1− 1

3s

)(
1− 1

5s

)
· · ·

Let’s denote the set o square-free numbers by S and let n be a member of S. The inverted
Euler product generates all the square-free numbers in S, but each one comes multiplied by
(−1)k, where k is the number of primes in the prime decomposition of n (n = p1p2 · · · pk).

That said, it becomes evident that we can write ζ(s)−1 as a function of µ(n), if <(s) > 1:

1

ζ(s)
=
∞∑
n=1

µ(n)

ns
(7)

4.3 Dirichlet series

The right-hand side of equation (7) is one particular example of Dirichlet series. A Dirichlet
series is any infinite sum of the type:

Fa(s) =
∞∑
n=1

a(n)

ns

where a(n) is an arithmetic function and Fa(s) is its generating function.
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Given two Dirichlet series, Fa(s) and Fb(s), their product is a third Dirichlet series, Fc(s),
whose associated function, c(n), is called a Dirichlet convolution of a and b, denoted by c = a∗b.

Of particular interest to us, the product of a Dirichlet series Fa(s) and the reciprocal of
the zeta function, ζ(s)−1, is the convolution of a(n) with µ(n), which is given by the so-called
Möbius inversion formula:

c(n) =
∑
k|n

a(k)µ
(n
k

)
We shall use this result in subsequent proofs.

4.4 The unit function

Assuming n is integer, let’s prove the below assertion, that we referred to in section (4):

∑
k|n

µ(k) =

{
1, if n = 1

0, if n > 1

The proof for the above is pretty simple. If the prime decomposition of n has k primes,
then its number of square-free divisors is 2k, half of which have an odd number of prime factors
and half of which have an even number of prime factors. Since the former have a negative sign
and the latter a positive, they cancel out. The exception is n = 1, which has no prime factor. �

In terms of the function 1k|n from equation (1), or better yet, its alternative form (2), since
equation (7) requires <(s) > 1, this result implies:

∞∑
k=1

1k|n · µ(k) =
∞∑
i=1

(−1)i(2πn)2i

i∑
j=1

B2j

(2j)!(2i+ 1− 2j)!

∞∑
k=1

µ(k)

k2j
⇒

µ0(n) =
∞∑
i=1

(−1)i(2πn)2i

i∑
j=1

(−1)j(2π)−2j

(2i+ 1− 2j)!
=

{
1, if n = 1

0, if n > 1
, since (7)⇒

∞∑
k=1

µ(k)

k2j
=

1

ζ(2j)

What this means is that, per the Möbius inversion formula, the convolution of the function
we just called µ0(n) with µ(n) is µ(n) itself:

µ(n) =
∑
k|n

µ0(k)µ
(n
k

)

Actually, the convolution of µ0(n) with any function is the function itself, and hence µ0(n)
is known as the unit function.

4.5 Cube-free numbers

A cube-free number is a number that can’t be divided by any cubed prime. In other words,
if n is cube-free, its unique prime decomposition is n = pe11 p

e2
2 · · · p

ek
k , where the ei are non-zero
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integer exponents less than or equal to 2. In this context, a prime factor pi is said to be single
if ei = 1, it’s said to be double if ei = 2, and so on. That said, we can introduce a modified
Möbius function of order 2, µ2(n), with the following properties:

µ2(n) =


1, if n=1

(−2)k, if n is cube-free with k single prime factors

0, if n is not cube-free

This definition is different from the one proposed by Tom M. Apostol in 19703, but equal
to Popovici’s function4.

Now, let’s take the Euler product from the previous section, and see what it looks like
squared:

1

ζ(s)2
=
∞∏
j=1

(
1− 1

psj

)2

=

(
1− 1

2s

)2(
1− 1

3s

)2(
1− 1

5s

)2

· · · ⇒

1

ζ(s)2
=

(
1− 2 · 1

2s
+

1

22s

)(
1− 2 · 1

3s
+

1

32s

)(
1− 2 · 1

5s
+

1

52s

)
· · ·

Looking at the expansion of ζ(s)−2 above, provided that <(s) > 1, it’s not very hard to
conclude the following equivalence:

1

ζ(s)2
=
∞∑
n=1

µ2(n)

ns
(8)

Now, the convolution of µ(n) with itself should give us µ2(n), after all the latter is generated
by ζ(s)−2:

µ2(n) =
∑
k|n

µ(k)µ
(n
k

)
And the above result allows us to state the following theorem:

Theorem 1 µ(n) =
∑
k|n

µ2(k)

Proof 1 This result stems from the Möbius inversion formula applied to the convolution
of µ(n) with itself.

It can also be proved with combinatorics, but we analyze just two possible scenarios. Due
to the multiplicative nature of µ(n) (that is, µ(xy) = µ(x)µ(y), when x and y are co-prime),
we can partition n in blocks of co-prime factors where all primes are single, double, and so on,
and analyze each one separately. If n has a block of prime factors that are not single, then it’s
not square-free and hence the sum of µ2(k) over the integers k that divide n is 0, which we show.

For the first scenario, let’s assume that n is square-free with k prime factors, n = p1p2 · · · pk.
Under this scenario we have 2k possible divisors. Let’s also assume that q = p1p2 · · · pi is a
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combination of i out of these k primes. There are Ck,i such divisors and they are such that
µ2(q) = (−2)i if i > 0. When we plug them into the sum (plus 1, to account for divisor 1) we
get:

k∑
i=0

Ck,i(−2)i = (1 + (−2))k = (−1)k = µ(n)

For the second scenario, let’s assume that n has k double prime factors, n = p2
1p

2
2 · · · p2

k.
Under this scenario we have 3k possible divisors. Let’s also assume that q = p1p2 · · · pi, i > 0,
is a combination of i out of these k primes. There are

∑k−i
j=0Ck,i,j such divisors and they are

such that µ2(q) = (−2)i if i > 0, and 1 otherwise. Let’s see why the sum would be 0:

k∑
i=0

k−i∑
j=0

Ck,i,j(−2)i = ((−2) + 1 + 1)k = 0, where Ck,i,j =
k!

i!j!(k − i− j)!
�

Now that theorem 1 has been proved, we can use it to demonstrate the validity of equation
(5). The demonstration uses equations (2) and (8), and is analogous to the previous one:

∞∑
k=1

1k|n · µ2(k) =
∞∑
i=1

(−1)i(2πn)2i

i∑
j=1

B2j

(2j)!(2i+ 1− 2j)!

∞∑
k=1

µ2(k)

k2j
⇒

µ(n) =
∞∑
i=1

(−1)i(2πn)2i

i∑
j=1

B2jζ(2j)−2

(2j)!(2i+ 1− 2j)!
=
∞∑
i=1

(−1)i(2πn)2i

i∑
j=1

(−1)j(2π)−2jζ(2j)−1

(2i+ 1− 2j)!

4.6 Duality between µq(n) and σq0(n)

From the previous expositions, we can define a generalized Möbius function of order q,
µq(n), which coincides with Popovici’s definition4: µq(n) = µ ∗ · · · ∗ µ is the q-fold Dirichlet
convolution of the Möbius function with itself. And again, because ζ(s)−1 is the generating
function of µ(n), its convolution with µq(n) justifies the below recurrence:

µq+1(n) =
∑
k|n

µq(k)µ
(n
k

)
⇒ µq(n) =

∑
k|n

µq+1(k), where µ1(n) = µ(n).

Therefore, it follows from this and previous results that:

µq(n) = −2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ(2j)−q

(2i+ 1− 2j)!

The µq(n) expression is insightful, if we think about negative values of q. For example:

σ3
0(n) =

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ(2j)3

(2i+ 1− 2j)!
=
∑
k|n

σ2
0(k)

11



Again, notice that σ2
0(k) is the number of divisors of k, also referred to as d(k).

So, we conclude that there is a duality between µq(n) and σq0(n), they are equivalent and
can be used interchangeably, more precisely, µq(n) = σ−q0 (n).

This finding implies that for positive q the below identities hold, in principle when <(s) > 1:

1

ζ(s)q
=
∞∑
n=1

µq(n)

ns
, and ζ(s)q =

∞∑
n=1

σq0(n)

ns

The second equation is obvious for case q = 0 (since µ0(n) = σ0
0(n) = 0 for all integer n

except 1) and q = 1 (since σ1
0(n) = 1 for all integer n).

5 Inversion formula for Dirichlet series

We now enunciate a little theorem that relates a Dirichlet series to its coefficients.

Theorem 2 Suppose that Fa(s) is a Dirichlet series and a(n) is its associated arithmetic
function. Then a(n) is given by:

a(n) = −2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jFa(2j)

(2i+ 1− 2j)!

Proof 2 Although not obvious, this is a very powerful result. The above power series
converges for all n and is the analytic continuation of:

−sin 2πn

πn

∞∑
j=0

n2jFa(2j), (9)

since they have the same Taylor series expansion and (9) only converges for |n| < 1. In some
cases it’s possible to find a closed-form for a(n), like we did in section (4.1), though it can be
challenging.

As for the proof, the a(n) formula is obviously true for ζ(s)q for any integer q, which we
have already proved in the previous sections.

For the general case, the proof is sort of trivial:

−2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jFa(2j)

(2i+ 1− 2j)!
⇒

−2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2j

(2i+ 1− 2j)!

∞∑
k=1

a(k)

k2j
⇒

12



∞∑
k=1

a(k)

(
−2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jk−2j

(2i+ 1− 2j)!

)

The theorem then follows from the following equation:

−2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2πk)−2j

(2i+ 1− 2j)!
=

{
1, if n = k

0, otherwise
(10)

And the above equation is justified for being the convolution of µ0(n) and the associated
function of the series k−s, b(n), since from the convolution formula:

c(n) = (µ0 ∗ b)(n) =
∑
d|n

µ0(d)b
(n
d

)
= b(n) =

{
1, if n = k

0, otherwise

Now, using this result along with the same reasoning employed in the proof from section
(4.4), we derive equation (10). �

It’s quite remarkable that Dirichlet series have coefficients given by Taylor series. One of
the advantages of this formula is that if you know Fa(s) at the even integers, you know the
coefficients of its series expansion. And if you know the generating function of Fa(s) at the
even integers, you know the closed-form of a(n). Another advantage is that it extends a(n) to
the complex numbers (for example, primes need no longer be integers). Notice it works even
using Fa(0), which is normally a singularity (unless analytically reassigned), but removing this
term leaves the result unaltered for integer n, as mentioned in section (4.1).

The inversion formula can also be used to check if a function is a Dirichlet series (if at the
integers the a(n) are finite and not all zero, the answer is yes).

Unfortunately, the inversion formula doesn’t apply to the analytic continuation of the
Riemann zeta function (as it shouldn’t), but it would be really interesting if it did.

5.1 Riemann hypothesis

The Riemann hypothesis is equivalent to the statement that the equation:

1

ζ(s)
=
∞∑
n=1

µ(n)

ns
,

is valid for every s with real part greater than 1/2.

The inversion formula may imply the Riemann hypothesis, since it states that the function
generated by 1/ζ(s) is µ(n) regardless of s.

13



At this point we have an epiphany, evidence seems to be mounting that the Riemann hy-
pothesis is true. But all attempts at claiming to have a proof for this conjecture have been
and will be met with incredulity and derision, unless it’s a claim by some hotshot. After all,
it’s been open for more than 150 years and some people refuse to believe that it’s that simple.
It’s quite ironic that we reached a point where proving this conjecture might be easier than
having it recognized.

However, the inversion formula might help to provide a proof based on this reformulation,
since now we know that the coefficients of a Dirichlet series are the values of a certain analytic
function at the positive integers. And in the case of ζ(s)−1, this function happens to be the
µ(n) function exposed before.

6 Applications

Even though the possibilities are endless, let’s see a few examples.

6.1 Square root of the zeta

The function a(n) seems to have a predilection for rational outputs when Fa(s) is some
variation of the zeta function:√
ζ(s) = 1+

1

2 · 2s
+

1

2 · 3s
+

3

8 · 4s
+

1

2 · 5s
+

1

4 · 6s
+

1

2 · 7s
+

5

16 · 8s
+

3

8 · 9s
+

1

4 · 10s
+

1

2 · 11s
+· · ·

It’s not hard to guess the patterns of a(n): numbers with the same type of prime decom-
position have the same coefficients.

6.2 Zeta raised to i

To foray into complex realm, the following coefficients were calculated using the inversion
formula:

ζ(s)i = 1 +
i

2s
+

i

3s
+
−1 + i

2 · 4s
+

i

5s
+
−1

6s
+

i

7s
+
−3 + i

6 · 8s
+
−1 + i

2 · 9s
+
−1

10s
+

i

11s
+ · · ·

6.3 The n-th prime number

If we define the prime zeta function as:

P (s) =
∞∑
n=1

pn
ns

,

then the n-th prime is given by:

pn = −2
∞∑
i=2

(−1)i(2πn)2i

i∑
j=2

(−1)j(2π)−2jP (2j)

(2i+ 1− 2j)!
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That’s despite our not knowing what the closed-form of P (s) at the even integers is. We
need to skip P (0) and P (2) to avoid singularities, since P (s) only converges for <(s) > 2.

6.4 Modulus of µ(n)

Based on the closed-form of the Dirichlet series whose associated function is |µ(n)|, which
appears in section (6.7), we can deduce that:

|µ(n)| = −2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2j

(2i+ 1− 2j)!

ζ(2j)

ζ(4j)

6.5 Liouville function

If λ(n) = (−1)Ω(n) is the Liouville function, where Ω(n) is the number of prime factors
(with multiplicity) of n, then:

λ(n) = −2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2j

(2i+ 1− 2j)!

ζ(4j)

ζ(2j)
, since

∞∑
n=1

λ(n)

ns
=
ζ(2s)

ζ(s)

6.6 Mertens function

We can extend the Mertens function to the complex domain, based on equation (5):

M(x) =
x∑

n=1

µ(n) = −2
∞∑
i=0

(−1)i(2π)2iH−2i(x)
i∑

j=0

(−1)j(2π)−2jζ(2j)−1

(2i+ 1− 2j)!
,

where H−2i(x) is the sum of the 2i-th powers of the first x positive integers. An asymptotic
power series for M(x) is possible using findings from section (7.2).

6.7 Square-free divisors of n

Looking back at the topic of integer divisors of n, now that square-free numbers and the
Euler product have been introduced, we can obtain the sum of powers of square-free divisors
of n using the following result from the literature:

∞∑
n=1

|µ(n)|
ns

=
ζ(s)

ζ(2s)

Therefore, through the same rationale as before, we conclude that for any complex m:
∞∑
k=1

1k|n·|µ(k)|·km =
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

B2j

(2j)!(2i+ 1− 2j)!

ζ(2j −m)

ζ(4j − 2m)
, with

{
2j −m 6= 1

ζ(4j − 2m) 6= 0

In particular, the number of distinct prime factors of n is:

log2

(
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

B2j

(2j)!(2i+ 1− 2j)!

ζ(2j)

ζ(4j)

)
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6.8 Square root of an integer

Using theorem 2, we can derive power series expansions for functions that are not analytic
at zero (and therefore don’t admit a Taylor series at 0), which hold only at the positive integers.

For example, if n is a positive integer then:

√
n = −2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2j

(2i+ 1− 2j)!
ζ

(
−1

2
+ 2j

)
, since ζ

(
−1

2
+ s

)
=
∞∑
n=1

√
n

ns

In fact, the inversion formula posits that for any positive integer n and complex s:

1

ns
= −2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2j

(2i+ 1− 2j)!
ζ (s+ 2j) , with s+ 2j 6= 1.

Hence, it allows us to create a power series for the sum of the square root of the first n
positive integers:

n∑
k=1

√
k = −2

∞∑
i=0

(−1)i(2π)2iH−2i(n)
i∑

j=0

(−1)j(2π)−2j

(2i+ 1− 2j)!
ζ

(
−1

2
+ 2j

)

The downside here is that we don’t know the closed-forms for the zeta function at the
half-integers.

6.9 Logarithm of an integer

Like before, if n and k are positive integers, then:

(log n)k = −2(−1)k
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ(k)(2j)

(2i+ 1− 2j)!
, since ζ(k)(s) = (−1)k

∞∑
n=1

(log n)k

ns

6.10 Von Mangoldt function

The Von Mangoldt function is defined as:

Λ(n) =

{
log p, if n = pk for some prime p and integer k ≥ 1

0, otherwise

We can obtain Λ(n) by:

Λ(n) = 2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ ′(2j)

(2i+ 1− 2j)!ζ(2j)
, since

ζ ′(s)

ζ(s)
= −

∞∑
n=1

Λ(n)

ns
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From Λ(n) we can derive another arithmetic function:

Λ(n)

log n
=

{
1/k, if n = pk for some prime p and integer k ≥ 1

0, otherwise

Hence, we are able to write log ζ(s) as a Dirichlet series as follows:

1

ζ(s)
=
∞∏
k=1

(
1− 1

psk

)
⇒ log ζ(s) = −

∞∑
k=1

log

(
1− 1

psk

)
=
∞∑
k=1

∞∑
i=1

1

i (pik)
s =

∞∑
n=2

Λ(n)

log n

1

ns

Therefore, by the inversion formula:

Λ(n)

log n
= −2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2j log ζ(2j)

(2i+ 1− 2j)!
,

and this function makes the creation of a formula for J(x) trivial. Plus, when it’s combined
with µ(n), we are able to create an exact formula for the prime counting function, π(x). Let’s
rewrite it in its simpler form:

Λ(n)

log n
= −sin 2πn

πn

∞∑
j=0

n2j log ζ(2j)

Plotted in the (0, 12) interval, we can see that the graph of this function doesn’t cross the
line y = 1 only at the primes (note we made the intercept 0 to avoid non-real):

The maxima of this function are not at the primes, which is why y = 1 has non-integer
roots. It’s fair to assume that these roots always occur next to the primes, therefore log ζ(2)
(derived from y = 1) should be roughly P (2), where P is the usual prime-zeta function.
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7 The prime counting function

We don’t even have to know the zeros of the analytic continuation of the zeta function to
be able to derive a formula for π(x).

A number is prime if it’s square-free and a prime-power. So, now that we have power series
for both µ(n) and Λ(n)/ log n, we can easily create a function that is 1 whenever n is prime,
and 0 otherwise. However, to make the convergence faster, let’s divide both by cosπn (doing
so, we’re also removing the half-integer roots):

1n∈P = −µ(n)
Λ(n)

log n
/(cos πn)2 = −

(
−2 sinπn

πn

)2 ∞∑
j=0

n2j

ζ(2j)

∞∑
j=1

n2j log ζ(2j)

This is not the only and perhaps not even the best way to derive 1n∈P, but it’s the most
obvious. If we expand the above function using Taylor series, we arrive at the below series,
which has an infinite radius of convergence:

1n∈P = − 2

π2

(
∞∑
h=1

n2h−2

h∑
j=1

log ζ(2j)

ζ(2h− 2j)
−
∞∑
h=1

n2h−2

h∑
i=1

h−i∑
j=0

log ζ(2i)

ζ(2j)

(−1)h−i−j(2π)2h−2i−2j

(2h− 2i− 2j)!

)

Fortunately, the above power series can be simplified into a better looking series (which is
also more efficient for numeric computation):

1n∈P = −8
∞∑
h=1

n2h

h∑
i=1

log ζ(2i)
h∑
j=i

(−1)h−j(2π)2h−2j

ζ(2j − 2i)(2h+ 2− 2j)!

To add the half-integer roots back, we just replace 2π with 4π in this formula. Finally, the
prime counting function is the sum of 1n∈P over n:

π(x) = −8
∞∑
h=1

H−2h(x)
h∑
i=1

log ζ(2i)
h∑
j=i

(−1)h−j(2π)2h−2j

ζ(2j − 2i)(2h+ 2− 2j)!
,

where H−2h(x) is the sum of the 2h-th powers of the first x positive integers, for which the
Faulhaber formula provides an analytic continuation.
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7.1 The graph of π(x)

Even though it’s difficult to compute the π(x) power series for large x, the zeros of the
zeta function are even harder to compute. Here is a plot of π(x) in the (0, 9) range (for some
reason, the version with half-integer zeros is not as easy to plot):

7.2 Asymptotic prime counting functions

If we look back at the formula we just built, it may be possible to simplify it when x is large
using the dominant terms of the Faulhaber formula, which is justified by the Euler-Mclaurin
formula:

H−2h(x) =
x∑

n=1

n2h ∼ x2h+1

2h+ 1
+
x2h

2

However, given the infinite number of terms of the power series, it’s understandable why
this approximation should account for only 1/2 of the total, which is captured in the following
conjecture. If x is sufficiently large:

π(x) ∼ 1x∈P

2
− 16

∞∑
h=1

x2h+1

2h+ 1

h∑
i=1

log ζ(2i)
h∑
j=i

(−1)h−j(4π)2h−2j

ζ(2j − 2i)(2h+ 2− 2j)!

It seems many of the a(n), if not all, have this property. For example, for large x, the
prime-power counting function, J(x), seems to obey the approximation:

x∑
n=2

Λ(n)

log n
∼ Λ(x)

2 log x
− 4x

∞∑
i=1

(−1)i(2πx)2i

2i+ 1

i∑
j=1

(−1)j(2π)−2j log ζ(2j)

(2i+ 1− 2j)!
,

for which we’ve produced the below comparison chart (bigger jumps at the primes):
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x Actual Appr. % diff x Actual Appr. % diff x Actual Appr. % diff
1 0.00 0.00 0.0% 26 11.08 11.06 -0.2% 51 18.12 18.10 -0.1%
2 1.00 1.06 5.8% 27 11.42 11.41 -0.1% 52 18.12 18.14 0.1%
3 2.00 1.99 -0.3% 28 11.42 11.43 0.1% 53 19.12 19.10 -0.1%
4 2.50 2.48 -0.7% 29 12.42 12.41 -0.1% 54 19.12 19.06 -0.3%
5 3.50 3.46 -1.1% 30 12.42 12.39 -0.2% 55 19.12 19.09 -0.2%
6 3.50 3.47 -0.8% 31 13.42 13.38 -0.3% 56 19.12 19.11 -0.1%
7 4.50 4.48 -0.4% 32 13.62 13.54 -0.6% 57 19.12 19.12 0.0%
8 4.83 4.79 -1.0% 33 13.62 13.56 -0.4% 58 19.12 19.16 0.2%
9 5.33 5.29 -0.8% 34 13.62 13.59 -0.2% 59 20.12 20.12 0.0%

10 5.33 5.32 -0.2% 35 13.62 13.61 -0.1% 60 20.12 20.10 -0.1%
11 6.33 6.31 -0.4% 36 13.62 13.64 0.2% 61 21.12 21.08 -0.2%
12 6.33 6.30 -0.5% 37 14.62 14.61 -0.1% 62 21.12 21.05 -0.3%
13 7.33 7.29 -0.6% 38 14.62 14.57 -0.3% 63 21.12 21.09 -0.1%
14 7.33 7.27 -0.9% 39 14.62 14.61 -0.1% 64 21.28 21.27 -0.1%
15 7.33 7.32 -0.2% 40 14.62 14.65 0.2% 65 21.28 21.28 0.0%
16 7.58 7.60 0.3% 41 15.62 15.62 0.0% 66 21.28 21.31 0.1%
17 8.58 8.56 -0.2% 42 15.62 15.60 -0.1% 67 22.28 22.27 0.0%
18 8.58 8.55 -0.3% 43 16.62 16.58 -0.2% 68 22.28 22.24 -0.2%
19 9.58 9.54 -0.4% 44 16.62 16.55 -0.4% 69 22.28 22.27 0.0%
20 9.58 9.51 -0.7% 45 16.62 16.59 -0.1% 70 22.28 22.31 0.1%
21 9.58 9.56 -0.3% 46 16.62 16.63 0.1% 71 23.28 23.28 0.0%
22 9.58 9.60 0.2% 47 17.62 17.60 -0.1% 72 23.28 23.26 -0.1%
23 10.58 10.57 -0.1% 48 17.62 17.57 -0.3% 73 24.28 24.24 -0.2%
24 10.58 10.54 -0.4% 49 18.12 18.08 -0.2% 74 24.28 24.21 -0.3%
25 11.08 11.05 -0.3% 50 18.12 18.07 -0.2% 75 24.28 24.24 -0.2%

Finally, let’s have a look at the sum of d(n), and see if it’s a just a coincidence. The
asymptotic series is:

x∑
n=1

d(n) ∼ d(x)

2
− 4x

∞∑
i=1

(−1)i(2πx)2i

2i+ 1

i∑
j=1

(−1)j(2π)−2jζ(2j)2

(2i+ 1− 2j)!
,

and a comparison chart is produced below. The conclusion is that this is probably not a
coincidence, though the proof might not be simple.
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x Actual Appr. % diff x Actual Appr. % diff x Actual Appr. % diff
1 1 1.16 16.5% 26 91 91.26 0.3% 51 211 211.22 0.1%
2 3 3.21 6.9% 27 95 95.31 0.3% 52 217 217.19 0.1%
3 5 5.23 4.6% 28 101 101.21 0.2% 53 219 219.35 0.2%
4 8 8.22 2.7% 29 103 103.31 0.3% 54 227 227.36 0.2%
5 10 10.25 2.5% 30 111 111.24 0.2% 55 231 231.26 0.1%
6 14 14.23 1.6% 31 113 113.17 0.2% 56 239 239.19 0.1%
7 16 16.23 1.4% 32 119 119.28 0.2% 57 243 243.06 0.0%
8 20 20.26 1.3% 33 123 123.19 0.2% 58 247 247.20 0.1%
9 23 23.23 1.0% 34 127 127.28 0.2% 59 249 249.54 0.2%

10 27 27.21 0.8% 35 131 131.42 0.3% 60 261 261.26 0.1%
11 29 29.30 1.0% 36 140 140.16 0.1% 61 263 262.99 0.0%
12 35 35.23 0.7% 37 142 142.04 0.0% 62 267 267.36 0.1%
13 37 37.18 0.5% 38 146 146.31 0.2% 63 273 273.39 0.1%
14 41 41.30 0.7% 39 150 150.41 0.3% 64 280 280.21 0.1%
15 45 45.27 0.6% 40 158 158.22 0.1% 65 284 284.23 0.1%
16 50 50.18 0.4% 41 160 160.23 0.1% 66 292 292.13 0.0%
17 52 52.26 0.5% 42 168 168.22 0.1% 67 294 294.16 0.1%
18 58 58.25 0.4% 43 170 170.19 0.1% 68 300 300.33 0.1%
19 60 60.26 0.4% 44 176 176.35 0.2% 69 304 304.36 0.1%
20 66 66.30 0.4% 45 182 182.17 0.1% 70 312 312.26 0.1%
21 70 70.16 0.2% 46 186 186.14 0.1% 71 314 314.38 0.1%
22 74 74.19 0.3% 47 188 188.46 0.2% 72 326 326.19 0.1%
23 76 76.39 0.5% 48 198 198.31 0.2% 73 328 327.94 0.0%
24 84 84.28 0.3% 49 201 201.10 0.1% 74 332 332.33 0.1%
25 87 87.11 0.1% 50 207 207.23 0.1% 75 338 338.34 0.1%
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