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Abstract

We review the closed-forms of the partial Fourier sums associated with H Pj(n)
and create an asymptotic expression for HP(n) as a way to obtain formulae for the
full Fourier series (if b is such that |b|] < 1, we get a surprising pattern, HP(n) ~
H(n) — Y 15o(—1)*¢(k)b5~1). Finally, we use the found Fourier series formulae to ob-
tain the values of the Lerch transcendent function, ®(e™, k,b), and by extension the
polylogarithm, Lig(e™), at the positive integers k.
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1 Introduction

Since the Basel problem in 1650, scholars have been eager to find closed-forms for simi-
lar infinite series, especially Dirichlet series. In this article, we create formulae for the Lerch
transcendent function, ®(e™, k, b), and the polylogarithm, Lix(e™), that hold at the positive in-
tegers k. Conversely, a formula for the Hurwitz zeta function at the negative integers, ((—k, b),
is also created, to complement a formula at the positive integers produced in [5].

The advantage of formulae that only hold at the positive integers is the fact we expect
them to be simpler and easier to work with. It’s an obvious statement if, for example, we
think about the closed-forms of the zeta function at the positive integers greater than one,
((k), and its general integral, valid for (k) > 1.

The formulae derived here are based on new expressions for the generalized harmonic

progressions:
n

1
HP(n) = —_—
which have been extensively studied in two previous papers, and vary depending on whether
the parameters, a and b, are integer® or complex®. When a = 1 and b = 0, we have a notable
particular case, the generalized harmonic numbers, Hy(n).
In [3] we derived expressions for the partial Fourier sums, C}{"(a,b,n) and S;*(a,b,n), as-
sociated with H Py(n), which we reproduce again in the next section, with a short description.

Our objective in this paper is to obtain the limit of those expressions as n gets large, and
then combine them to obtain the Lerch transcendent function, ®, at the positive integers.

In the process, we need to obtain the limit of H P(n)— H(n), with 2b a non-integer complex
number. Since this limit can also be attained by means of the digamma function, ¢ (n), this
is just a new, more interesting way of deriving that limit.

In section (3), we review the limits of the integrals that appear in the expressions of H Py(n)
as n tends to infinity, which are central to this solution.

The process of obtaining the limits of C3;(b,n) and S5} (b, n) is much simpler than that
of Cf},1(b,n) and S3;(b,n), since the latter involve the limit of HP(n), which is not finite.



2 The partial Fourier sums

The subsequent expressions are the partial sums of the Fourier series associated with the
generalized harmonic progressions from [3], and hold for all complex m, a and b and for all
integer n > 1.

By definition H Py(n) = 0 for all positive integer n, so they actually have no effect in the
sums. If b = 0, we can discard any term that has a null denominator and the equation still
holds (technically, we take the limit as b tends to 0, as we see in section (6.2)).

2.1 C3(a,b,n) and S3;_(a,b,n)
For all integer k£ > 1:
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For all integer k& > 0:
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2.1.1 The limits of CZ}(n) and S3;_(n)

For comparison purposes, let’s review some limits that we derived previously for the par-
ticular cases C3}(n) and S3;_(n) (that is, @ = 1 and b = 0). We expect the limits of the more
general expressions to coincide with them.

At infinity these particular cases become Fourier series (denoted here by C3; and S3;_ ),
which have limits given by:
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These limits only hold for real |m| > 1 (k = 0 and |m| = 1 are exceptions and also trivial
cases). So for S} = 0 the formula breaks down (see section (3) to know why). Both these
results are known in the literature, they’re rewrites of equations that feature in [1] (page 805).

2.2 C3.,(a,b,n) and S5 (a,b,n)
For all integer k& > 0:

n

3 1 g 2rlai+b) 1 2’“: (—1) (2mb\*
= (aj + b)2k+1 m T 2b2k+l (25)!

k k 2k—2j
1 m(an + b) 1] 27 (an + b) k] 2w J
HPs;
+ 2(an + by2R+1 (CO Z (29)! < m ) ) + ; 2% — 2))! < ) 25+1(1)

2\ 2 ! 2 b 2mb
7T> / (1 —u)? (cos 2mlan +bju _ cos — u) cot “2 du
m m m m

For all integer k > 1:
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2.2.1 The limits of C3}_ ,(n) and S7;(n)

T “M*
Ll —

The limits of C3}_(n) and S5 (n) for real [m| > 1 are given by:
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The exception is C| = oo, since integral fol cot mu — (1 —u) cot mu du diverges, which means
that H(n) diverges. These results are probably original.



3 The limits of the integrals

In [2] we introduced the following theorems, whose validity we now fully extend. For all
real £ > 0 and real m:

. .

2 1, ifk=0and |m|=1

Theorem 1 lim [ (1 —u)"sin T ot ™ gy =4 1 and |m|
n—oo J, m m |%|7 if |m[21

Another result we need is in the following theorem, which holds for all real k£ > 0 and real
|m| > 1 (except k = 0 and |m| = 1, for which the integral doesn’t converge):

1
2rnu | Tu mlog |m
Theorem 2 lim [ (1 —u)*cos cot — — m (1 — u) cos 2mnu cot Tu du = m log jm|

A direct consequence of theorem 2 and of the various possible formulae for H(n) (see [2]),
the below result is useful to handle the half-integers in (5.1) and (6.3):
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We don’t provide a proof for these results due to the scope, but they should be simple.

Though these limits shouldn’t converge for non-real complex m, when they are linearly
combined like l; + %[5 their infinities cancel out giving a finite value. This property is what
allows our final formula from section (6.3) to converge nearly always, even when the parameters
are not real.

4 HP(n) asymptotic behavior

Here we figure out the relationship between H P(n) and H(n).

For this exercise, we make use of the sine-based HP(n) formula from [4], which is:
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We can “expand” the sine (that is, use the identity sin(xz 4+ y) = sinx cosy + cosx siny),
getting:
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We take the first part of the integrand, change the variables, expand cos 2wb(1 — u) (with



identity cos(x 4 y) = cosx cosy — sinz siny), and by means of the theorem 1 we can conclude
that:

™

1
Jim -y /0 cos 2mb(1 — u) sin 27n(1 — u) cot (1 — u) du = g (cot 2mb + csc 2mh) (1)

Now we need to work out the second part of the integrand. We make a change of variables,
expand sin 27b(1 — u), and when using theorem 2 we need to avoid the case k =0 and m = 1
(since that integral doesn’t converge), which leads us to:

1
/ (sin 2wb(1 — u) cos 27mn(1 — u) — sin 27b(1 — w)) cot w(1 — u) du =
0
1
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0
1
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0

+ /1(— sin 27b(1 — u) + (sin 27b) (1 — u) cos 2mn(1 — u)) cot (1 — u) du

The two first integrals on the right-hand side cancel out, per theorem 2, when n goes to
infinity, leaving only the third integral to be figured.

But if we look back at the expression for H(n) from [2], we notice it matches part of the
last integral:

=4 W/O u (1 —cos2mn(l —u))cot m(1 — u) du, (2)

which means the last integral can be further split:

1
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At this point, there’s only the limit of the first integral on the right-hand side left to figure
out, but fortunately that integral is constant for all integer n'. Therefore, after simplifying
(1) further, we conclude that for sufficiently large n:
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Tt stems from fol(l — cos2mnu) cot mudu = 0 for all integer n.
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Coincidentally, the above integral is identical to the generating function of the zeta function
at the odd integers, that we’ve seen in [2]:

0 1 .
2
— 0 sin 27w

That means that for sufficiently large n and 0 < |b| < 1 we can write the interesting

approximation:
n

> g~ Hn) = (DR

k=2

Now, since formula (3) clearly doesn’t hold at the half-integers, for such b we can resort to
a different integral representation for the ((2k + 1) generating function?, which leads to:

n

1 1 !
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since cot 7b is zero for all half-integer b.

5 The full Fourier series

Although the expressions of C}*(a,b,n) and S}*(a, b,n) hold for all positive integers k and
n and complex m, a and b, the limits that we find next are constrained by the requirements
of the theorems 1 and 2 from section (3).

Without loss of generality, let’s set a = 1 to simplify the calculations:

n n

Ci(bin) = Z( L os U a5, m) = Z( L n i +b)

« (j +b)F m « (j + b)F m

And since k£ = 0 and |m| = 1 leads to trivial cases, we're not going to account for them
in the following reasoning (so remember the final formulae may not be true for £ = 0 and
m| = 1).

5.1 The limit of C3}_(b,n)

The limit of C3; (b, n) is much harder to ﬁgure out than the limit of S3}_ (b, n), which
should come as no surprise given the limits we’ve seen in sections (2.1.1) and (2 2.1) for the
particular cases. So, without further ado, let’s see how to go about it:
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Now, if we recall the approximation we found for HP(n) in (3), HP(n) ~ ¢+ H(n) for
large n (where ¢ is the part that doesn’t depend on n), we only need to solve the limit:
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m m
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We can expand the cosine in the last integral:
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But due to theorem 1, the below limit is 0 (we just need to expand the first sine):

1
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Now, by replacing H(n) with its equation (2) and adding it up to what’s left in the integral:

1
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Looking at theorem 2, we can recombine the terms conveniently into an integral that
converges as n goes to infinity:

1
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whereas the remaining integral converges on its own.

Let’s summarize the result. The below limit doesn’t change if we pick different formulae
for H(n), which is useful to figure out how the formula changes for the half-integers b:
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5.1.1 Non-integer 2b

After we put everything together, the conclusion is that for all integer £ > 0 and real
|m| > 1:
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As we can see, it takes a really convoluted function to generate this simple Fourier series.

5.1.2 Half-integer b

.

At the half-integers b, the formula reduces to:
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5.1.3 Integer b

For integer b:
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5.2 The limit of S3;_ (b, n)

In the case of S}, (b, n), regardless of integer or half-integer we have:
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This one is much simpler and we can easily deduce the limit of the integral by means of
the theorem 1, without even having to expand the sine in the integrand. Thus, for all integer

k >0 and real |m| > 1:
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5.3 CJ.(b) and S%;(b)
The next two formulae, C3}(b) and S3}.(b), are analogs and don’t require further explana-
tions.
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6 Lerch’s ¢ at the

In this section we find out the values of the Lerch transcendent function, ®(

positive integers k.

6.1

It’s straightforward to derive
the formulae from (2.1) and (2.2

™
cot —+m

m m sin 27b

1
2
/ (1 —u)*cos “mou (—1 +
0

) cot mu du

positive integers

e™, k,b), at the

Partial Lerch’s ¢ sums, E;"(b,n)

an expression for the partial sums of Lerch’s ® function using
). If 4 is the imaginary unit, we just make:

EX™ (b ) = e =C7'(b,n)+ 2S5 (b
n) = ——— =7 (b,n) + 257" (b,n
Omitting the calculations and making a simple transformation (m := 27é/m) (to bring

10
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the variables into the domain of the real numbers, which are easier to understand), we can
produce a single formula for both the odd and even powers:

i em(i+b) - emb L e em(n+b) i - i (n + b))
jzl(j+b)k_ 20 2(n + b)k g n—i—b’fj
k mkf' k 1 s mu
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From this new equation, it’s easy to see that as n goes to infinity, the sum on the left-hand
side converges only if (m) < 0. However, we can obtain an analytic continuation for this
sum, by removing the second term on the right-hand side, which explodes out to infinity if
R(m) > 0. Perhaps not surprisingly, this analytic continuation coincides with the Lerch ®
function.

6.2 Partial polylogarithm sums, E]"(0,n)

When b = 0, we have one interesting particular case:

n ; k ;
e mhk—i
— = —H;(n
; jk nk an; ;(k‘—j)! ()
mF ! mu
—_— 1 —w)f=t (em™ — 1) coth — du (4
gy | = e = e Bl au ()

To obtain this expression, we take the limit as b tends to 0:

£1—>0 Qbk 2b"32% B

jl

6.3 Lerch’s ¢

The limits we found in section (5) allow us to find the below infinite sum:

ET Tim Gy (b, ) + 457" (b, n)
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6.3.1 Non-integer 2b

After we carry out all the algebraic calculations, we find that for all integer £ > 1 and all
complex m (except m such that £(m) >= 0 and |I(m)| > 27):

2 omlj+b) 1 , k—z j k mkf'
- | emb_ b+1
; (] + b)k 2bk € Z Z j’ + )

Jj=0 Jj=

T mk k—1

m m
_n " e (22
o= O Og( 27r)

k

1 )
m mu 27 sin 2wbu
- 1 — )i tlembeeoth — 4+ 25 [ 14 22077 t Tu d

2(k:—1)!/0 (1-w) B < - sin27rb)co rua

The infinite sum on the left-hand side converges whenever R(m) < 0, whereas the expres-
sion on the right-hand size, E*(b), is well defined always, except when 2b is an integer. At
m = 0, although improper, the expression has a limit.

This sum is related to the Lerch function by the below relation:

d(e™, k,b) = —msz+b

6.3.2 Half-integer b

For half-integer b, the formula is only slightly different. For all integer £ > 1 and all
complex m (except m such that R(m) >= 0 and |I(m)| > 27):

1
m—log (—@> _m—/ (1 — )t e™u coth 78— T cos hu cot — du
)! 2(k = 1) Jo 2 m 2

6.3.3 Integer b

When b is a positive integer, E}*(b) becomes an incomplete polylogarithm series, which
we cover next. Therefore it’s very simple to derive its formula, we just need to subtract the
missing part from the full polylogarithm. A similar reasoning is used if b is a negative integer.
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Nonetheless, the formula when b is a positive integer is:

= emUth 1 2 (mbY i
Zmb)k‘_@(e 20 RO M=yt

J=0 Jj=2
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k 1

2
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6.4 The polylogarithm, Li;(e™)

The limit of E]*(0,n) when n tends to infinity is the limit of the expression we just found
when b tends to 0, and it relies on the following two notable limits:

2

h—
, 1 b (mb)? 7 mk oomF sin 2mbu
ST (6 _; i) ey ot = g and oy T

Therefore, for all integer £ > 1 and all complex m (except m such that R(m) >= 0 and
|S(m)| > 2m):

mj k—1

Z?T:_(Z—U ( )*Zm
7&

k—j

J=1

k 1 9
S (1 —u)* coth@——ﬂ(l—u) cot Tu du
20k — 1)1 J, 2 m

This infinite sum is known as the polylogarithm, Lix(e™), and the formula on the right-
hand side provides an analytic continuation for it for when $(m) > 0.

Note how the first limit fit perfectly into the second sum (together with the other ((j)
values, except for the singularity). And it’s easy to show that when m goes to 0, the formula

we found goes to ((k), if k > 2.

The formula we found for Lix(e™) allows us to deduce the following power series for e™:

I n
im y
k—oco s (k — j)'

6.5 The Hurwitz zeta function, ((—k,b)

The literature teaches us that the Hurwitz zeta function is related to the polylogarithm
function by means of a relatively simple relation:

(2m)*

(k. . 1>'C<1 — k, b) = ’i,fk ij<€2ﬂ’ib) + ’Lk Lik(672ﬂib>7
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which holds roughly speaking for |R(b)| < 1.

Since the formula we have for Li,(e™) holds at the positive integers k, this relation allows
us to obtain a formula for ((—k,b) that holds at the negative integers —k. Without showing
the simple but long calculations involved, we conclude that despite the constraints of the initial
relation, the below formula holds for every b:

[(k+1)/2] . o .
b* (—=1)7(2m b)~>¢(27) Bii11(b)
—k,b) = — + 2k bFH! =
(k) =5+ ; k+1-2)) k1

where Byy1(b) are the Bernoulli polynomials, whose relation with the Hurwitz zeta is also
known from literature. So we conclude we found an alternative expression for said Bernoulli
polynomials.
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