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The universal unitary principle of logic test is used to test the mathematical reasoning of pressure
equation of ideal gas, and a negative conclusion is given. The study found that, the classical molecular
kinetic theory establishes a physical model of the uniform motion of a molecule under the action of an
equivalent constant force, which violates the principle of mechanics, and the classical equations for the
pressure and temperature of ideal gas derived from such a model are all incorrect. Here we set up a
variety of physical models of molecular interaction in accordance with the principle of mechanics, and
consistently derive the modified equation of ideal gas pressure. It is proved that the pressure of ideal
gas is equal to the molecular energy in unit volume, and the thermodynamic temperature of ideal
gas is equal to the quotient of molecular average kinetic energy and Boltzmann constant. Reasoning
accords with the unitary principle. The inferences of these different models accords with the unitary
principle. Furthermore, the problem of the definite solution of the gas molecular velocity distribution
function satisfying the limit condition of light speed is proposed. Finally, the experimental suggestion
to verify the theoretical gas temperature correction equation is given.
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1 Introduction

Classical molecular kinetic theory[1, 2, 5] holds that the
thermodynamic temperature of an ideal gas is direct-
ly proportional to the average kinetic energy of a large
number of molecules. This qualitative conclusion is true.
However, it is not correct for Classical molecular kinetic
theory to establish the physical model of uniform mo-
tion of molecules under a constant force in the process
of deriving quantitative equations. Then, is the pressure
equation and temperature equation as the basic law of
ideal gas derived from the incorrect model correct?

The unitary principle[?,?] is a universal principle of
logical self consistency test. The theory of natural sci-
ence must be self consistent in logic and its inference
must conform to the unitary principle. It should be
pointed out that the theory conforming to the unitary
principle may not be correct. But the theory violating
the unitary principle must not be correct. The pressure
equation of ideal gas is tested by the unitary principle. It
is found that the classical molecular kinetic theory only
chooses the momentum theorem as one of the metrics for
inferring the pressure equation of an ideal gas for calcu-
lation, and its quantitative conclusion is not consistent
with the calculation result of the kinetic energy theo-

rem which is another metric for inferring the pressure
equation of the ideal gas, and does not meet the unitary
principle. The reason is that the classical molecular ki-
netic theory has established an incorrect physical model
of uniform motion of molecules under the action of an
equivalent constant force. The relationship between the
pressure of an ideal gas and the average molecular ve-
locity and the relationship between the temperature of
an ideal gas and the thermodynamic temperature need
to be corrected.

In order to give the correct conclusion, we study var-
ious physical models that conform to the mechanical
principles for ideal gas molecules to interact with each
other. This includes the equivalent constant force model
of single molecule gas colliding with the wall of the con-
tainer and the constant pressure circular motion model
of single molecule gas. Under the action of an equiva-
lent constant force, the motion of molecules can only be
equivalent to motion with constant acceleration. This is
one of the basic principles of mechanics. The pressure
equation derived from different models is consistent. Us-
ing the idea of squeeze theorem, we confirm the correct
form of the ideal gas pressure equation, and then modify
the basic equations of the temperature and internal en-
ergy of the ideal gas. The results show that the average
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velocity of the ideal gas molecules is equal to the max-
imum probable velocity. The product of the thermody-
namic temperature of the ideal gas and the Boltzmann
constant is equal to the average kinetic energy of the
molecule. This conclusion is called the Dongfang Tem-
perature Law of ideal gas. Based on this law, we have
discussed the average specific heat capacity at constant
volume and at constant pressure for gas, and put for-
ward new equations to explain the experimental values
of specific heat capacity of gases.

In addition, considering that the speed of light is the
maximum speed of matter, and the upper limit of tem-
perature depends on the upper limit of the average ve-
locity of molecules, we put forward a definite problem
for determining the solution of distribution of molecular
speeds with the condition of the light speed limit. How-
ever, there are mathematical difficulties in the solution
of this definite solution problem. At present, there is no
quantitative answer.

2 Classical equation of ideal gas violates u-
nitary principle

It is generally accepted that the pressure of a gas is
caused by frequent collisions between molecules. The
pressure of an ideal gas can be calculated either based
on a single molecule model or based on a multi-molecule
model. According to the unitary principle, the single
molecule model and the multi molecule model are two
metrics for calculating the ideal gas pressure, and the
conclusions of the two models should be same.

Investigating an ideal gas consisted of the same
molecules, in which the mass of the molecule is m, the
average speed is v̄, and the mean square value of the
velocity is v2. It is assumed that the average distance
between gas molecules or the average distance between
the gas molecules that is impacting the container wall
and the container wall is l, and l is just the free path of
the molecules. If the whole process of molecular collision
is equivalent to constant force action, the molecule’s mo-
tion is equivalent to a uniform decrease in velocity from
v̄ to 0, whereas it increases uniformly from 0 to v̄ in the
opposite direction. That time is a collision period. The
force a molecule marked i on the container wall and the
average reaction force on the molecule are equal, which
is denoted by Fi.

The standard theory selects the multi particle mod-
el, first calculates the collision period ∆t = 2l/v̄iz by a
component motion of uniform motion, such as the mo-
tion in oz direction. Then it uses the component form of
momentum theorem

∑
(−Fi∆t) =

∑
(−2miv̄iz) as one

of the metrics to calculate the equivalent constant force
F =

∑
Fi acting on the collision cross section A. So∑

(−Fil) =
∑(

−miv̄
2
iz

)
. This result was wrongly writ-

ten as
∑

(−Fil) =
∑(

−miv2iz

)
in the textbook because

of the traditional interpretation of the average kinetic en-
ergy of the molecules, which actually violates the conclu-

sion of Maxwell’s velocity distribution of v2 ̸= v̄2. The
average volume of a gas corresponding to a free path is
V =

∑
Al, and the pressure is p = F/A, so

∑
Fil = pV .

As a result, the product of pressure p and volume V is

pV =
∑
mv2iz. Classical theory makes further ener-

gy equipartition hypothesis mv2x/2 = mv2y/2 = mv2z/2,

which gives v2ix = v2iy = v2iz, so v
2
iz = v2i /3. This also

needs to be understood as v2i /3 = vi
2/3, we can get the

classic pressure equation pV =
∑
mv2i /3. This equation

is combined with the experimental law pV = NkT[6, 7]

of ideal gas to give the classical expressions of absolute
temperature and average kinetic energy of ideal gas,

kT =
1

3
mv2, ε̄k =

1

2
mv2 =

3

2
kT (1)

where k is the Boltzmann constant[8], v2 is the average
of the square of the velocity, T is the thermodynamic
temperature of gas, and ε̄k is the average translational
kinetic energy of molecules.

However, if we use the kinetic energy theorem as an-
other metric to calculate, according to the classical the-
ory, the molecular collision is equivalent to the constant
force model, then there is the equation

∑∫
(−Fi) dl =∑(

0−miv2iz/2
)
. Where

∑∫
Fidl =

∑
Fil. If the hy-

pothesis of equipqrtition of energy mv2x/2 = mv2y/2 =

mv2z/2 is established, the product of the gas pressure p

and the volume V should be pV = Nmv2/6. Comb-
ing this formula with ideal gas experimental law of
pV = NkT gives the relationships that are complete-
ly different from (1),

kT =
1

6
mv2, ε̄k =

1

2
mv2 = 3kT (2)

Obviously, the two classical corollaries of momentum
theorem and kinetic energy theorem based on the as-
sumption of equipartition of energy are contradictory,
that is, the reasoning method of pressure equation and
temperature equation of ideal gas in classical thermody-
namic theory does not conform to the principle of nor-
malization, and the reasoning is naturally incorrect. The
momentum theorem and kinetic energy theorem are t-
wo parallel inferences of Newton’s law of motion, which
constitute two metrics of logical self consistency test[9].
Their deductions must be consistent. The two conflict-
ing deductions reveal the error of classical theory about
concept interpretation and calculation. There are many
reasons why the classical derivation of ideal gas pressure
equation is wrong and difficult to find. For example, in
the calculation process, the classical theory expresses the
momentum theorem

∑
Fidt =

∑
2miviz remove the in-

tegral symbol, or use the molecular velocity distribution
function f (v) and the volume microelement dV = Adt
to calculate the molecular number N = f (v) dV , so
the intermolecular collision is equivalent to the constant
force, and the molecular motion is misunderstood as the
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uniform motion, and the error of the collision time ∆t is
concealed. On the other hand, the unequal relationship

v̄2 ̸= v2 between v̄2 =
(∫ N

0
vf (v) dN/N

)2
= 8kT/πm

and v2 =
∫ N

0
v2dN

/
N = 3kT/m of classical theory from

Maxwell’s velocity distribution theory has not attracted
the attention.

Figure 1 The schematic diagram of the equivalent constant
force action of molecular collisions. When the molecular col-
lision is equivalent to the constant force, the whole process
of each completion of the collision in the free path can only
be equivalent to the motion with constant acceleration, the
collision time is not the false inference ∆t = 2l/v̄iz of the s-
tandard course, but the correct inference ∆t = 2l/ū = 4l/v̄iz,
where ū = v̄iz/2.

The pressure is the result that the molecular colli-
sion is equivalent to the impact of the collision time
constant force. Since the interaction of the intermolec-
ular collisions is equivalent to the constant force, the
motion of the molecule can only be equivalent to a u-
niform linear motion. Figure 1 clearly shows that the
action time should be ∆t =

∫
dt = 4l/v̄iz instead of

∆t = 2l/v̄ix calculated by classical thermodynamic the-
ory. This is because the velocity of a molecule i de-
creases from v̄iz to 0 under the equivalent constant force
and increases from 0 to v̄iz, with an average velocity of
ūiz = (v̄iz + 0)/2 = v̄iz/2. and the time to return in
the free path l is ∆t = 2l/ūiz = 4l/v̄iz. Using the com-
ponent form

∑
(−Fi∆t) =

∑
(−2miv̄iz) of momentum

theorem, the equivalent constant force F =
∑
Fi = PA

acting on the collision cross section A is further calculat-
ed, and the result should be

∑
(−Fi4l) =

∑
(−2miv̄iz),

so
∑

(−Fil) =
∑(

−miv̄
2
iz

/
2
)
. This is the same as the

result calculated by the direct kinetic energy theorem,
which implies the essential difference that ε̄ = miv̄

2
iz

/
2

is the expression defined, while miv̄
2
iz

/
2 is the result

of calculation.
∑

(−Fil) =PAl = PV . Combing with
the so called energy equipartition hypothesis miv̄

2
iz

/
2 =

miv̄
2
i

/
6 gives the product of the pressure p and the vol-

ume V , which is also pV = Nmv̄2i
/
6, and then uses

the experimental law of ideal gas pV = NkT to de-
rive the formula (2). The conclusion that this derivation
does not contain incorrect concepts is obviously also de-

formed, which is due to the use of the energy partition
hypothesis which can not be proved.

To sum up, the model of uniform motion under the
equivalent constant force is not reasonable, and the cal-
culated collision time is wrong. The deduction process
and conclusion of the classical theory are not correct,
and the inference of any correct model based on the as-
sumption of the so-called equipartition theorem of kinet-
ic energy can not be accepted. The relationship between
temperature and molecular average kinetic energy is one
of the basic equations of the theory of thermodynamics.
Although it is not very influential in engineering, it has a
wide range of influence on the theory. The pressure and
temperature equations of ideal gas need to be corrected.
We need to find the inference that is consistent with the
scientific logic.

3 Correction to pressure equation of ideal
gas

Molecules are moving irregularly, so the velocity
changes continuously. Since the pressure of the gas gen-
erated in collisions between molecules, under equivalent
constant force the pressure from a frontal collision or
an oblique collision should be same. Why? A molecule
bounces-back after the frontal collision and occupy the o-
riginal channel, blocking other molecules collide with the
container. The molecule will fly in the other direction
if take an oblique collision, and the other molecules will
fill in the original channel to collide with the container
again. It is speculated that the frontal collision with low
collision frequency will produce a large force, and the
oblique collision with high collision frequency will pro-
duce a small force. Under the condition of that the same
average velocity of the same like molecules, the force per
unit area produced by the two collision models should
be same. As a matter of fact, a linear motion collision
under equivalent constant force can only be equivalent
to a frontal collision. Otherwise, the molecules will de-
scribe a curved path in space, and the classical theory
on the pressure of an ideal gas is ineffective. Collisions
between molecules have an equivalent interaction space.
The calculation of the pressure by using the component
wise of momentum theorem repeats the equivalent inter-
action space. So the equation of gas pressure from this
algorithm is not accurate.

Collisions between gas molecules are complex. If
a molecule continuous to oblique impact with other
molecules, the average effect of this movement can be
equivalent to a local uniform circular motion. As shown
in Figure 2, it is assumed that a molecule is tied to a
cylinder with the same diameter and height. The vol-
ume of the average space occupied by the molecule is
V0 = πr2h, where r = d/2 and h = d. This is also the
size of the equivalent interaction space. Use v̄ to express
the average velocity of the equivalent uniform circular
motion of the molecules. Its average centripetal force is
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Fxy = mv̄2
/
r. This force is provided by the equivalent

cylinder side wall. According to Newton’s third law, the
size of the average force on the side of the cylinder is
equivalent to this value, and the pressure takes the form
pxy = Fxy/(πdh). Consequently, the calculated pressure
formula of the ideal gas based on the model of a single
molecule in a circular motion is

pxyV0 =
1

2
mv̄2 (3)

The results prompted us to reflect on new conclusions:
the average kinetic energy of an ideal gas is described
by the square value of the average velocity, and the gas
pressure is equal to the average molecular kinetic ener-
gy per unit volume rather than three times the average
kinetic energy of molecules.

Figure 2 Model of single molecule of uniform circular motion

Figure 3 Model of frontal collision of single molecule

All molecules remain random thermal motion. It usu-
ally establishes the elastic collision model to calculate
the ideal gas pressure. It is assumed that the aver-
age distance between molecules is d, and each molecule
takes up space of average volume V0 = d3. The process
of a molecule and other molecules with frontal collision
can be equivalently regarded as that the molecule under
the action of the average constant force F̄ does a round
straight-line movement with piecewise constant acceler-
ation. On average, in each collision period it completes

a collision between any two molecules or one molecule
and the container. In this course, molecular velocity is
from v̄ to 0, then reversely from 0 to v̄. The equiva-
lent beeline path length of the molecular back-and-forth
movement is 2d. It is obtained for the equivalent col-
lision time ∆t = 2d/(v̄/2). In the vertical direction of
movement, the equivalent constant force F̄ per unit area
of the collision cross section is the pressure, p = F̄

/
d2.

As shown in Figure 3, the applications of the momen-

tum theorem
∫∆t

0
F̄ dt = mv̄ − (−mv̄) and the kinetic

energy theorem
∫ d

0
−F̄ dy = 0 − mv̄2

/
2 give the same

conclusion F̄ = mv̄2
/
2d. Apparently, the average ve-

locity of a molecule meets the relation v̄ · v̄ = v̄2, and
the average molecular kinetic energy should be expressed
as Ek = mv̄2

/
2 rather than the classical expression

Ek = mv2
/
2. Consequently, the calculated pressure

formula of the ideal gas based on the model of a single
molecule in a frontal collision is

pV0 =
1

2
mv̄2 (4)

More generally, no matter which direction motion

of molecules, it has
∫ d

0
F · dr = 0 − mv̄2

/
2 in any

collision period. For the equivalent constant force F,∫ d

0
F · d r = −F̄ d = −pV0, combining them gives the

equation (4), showing that the above correction of the
pressure equation of an ideal gas is reliable.

Gas is composed of a large number of molecules
in thermal motion. Ideal gas molecules of statistical
sense are the identical particles. Thermal motion of
the molecule is disorderly, but even if we consider the
disordered movement as an orderly movement, the av-
erage molecular velocity will not change, so the pres-
sure and temperature of gas also remain unchanged. As
shown in Fgi.3, consider an ideal gas sealed in a cube
container, which the total molecular number is N . It
is assumed that in one collision period there are 1/6
molecules make directional collision in the six directions
respectively. The molecules of each direction in direc-
tional collisions occupy 1/6 total volume of space of the
gas, so NV0 = V . The average collision forces between
the molecules are equal, so are the average areas of the
collision cross sections. According to the equation (4),
It can be written as the following form[10],

p+x
NV0
6

=
N

6

1

2
mv̄2, p−x

NV0
6

=
N

6

1

2
mv̄2

p+y
NV0
6

=
N

6

1

2
mv̄2, p−y

NV0
6

=
N

6

1

2
mv̄2

p+z
NV0
6

=
N

6

1

2
mv̄2, p−z

NV0
6

=
N

6

1

2
mv̄2

There are the same gas pressures everywhere, p+x =
p−x = p, p+y = p−y = p and p+z = p−z = p. Com-
bining the six equations gives pNV0 = Nmv̄2

/
2, and it

is easy to obtain pNV0 = Nmv̄2
/
2. So, the ideal gas

pressure calculated by the model of large numbers of
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molecules with ordered motion in a regular hexahedron
container takes the form

pV =
1

2
Nmv̄2 (5)

It is now clear that the pressure of an ideal gas is de-
termined by the average molecular kinetic energy and
the average molecular space. Imaging that all molecules
in the container are at rest, and their volume is neg-
ligible. After adiabatic expansion with an equal pres-
sure, the molecular volume increase from 0 to V. Gas
does work while expanding, and the work in this course
is W =

∫
V
pdV = pV . On the other hand, according

to the theorem of kinetic energy, this work is equal to
the total kinetic energy obtained by the gas molecules,
W = Nmv̄2

/
2. Combining the above two equations

reads the above equation.
By two kinds of single-molecule limit models, using

the momentum theorem and the theorem of kinetic en-
ergy respectively to calculate the pressure of ideal gas
pressure reads the equations (3) and (4) that are the
same, showing the self-consistency of the correction log-
ic, which accords with the principle of normalization.
Let N express the total number of total number of
molecules of an ideal gas, the gas volume of the ideal
gas is V = NV0. Use the equation (3) or the (4) can
also export the equation (5).

4 Dongfang Temperature Law of ideal gas

The internal energy of the ideal gas is equal to the
product of the gas pressure and the gas volume. Since
the potential energy between any ideal gas molecules is
zero, its total kinetic energy is the product of the total
gas molecules number and the kinetic energy of the gas
molecules. Therefore, the corrected gas pressure equa-
tion (5) of the ideal gas satisfies the law of conservation
of energy, it is only another representation of the en-
ergy of an ideal gas. Equation (5) combines with the
ideal gas law[11, 15] pV = NkT to get immediately the
temperature equation of ideal gas,

kT =
1

2
mv̄2 = ε̄k (6)

The results indicated that the thermodynamic temper-
ature of an ideal gas is equivalent to the quotient of the
average translational kinetic energy and Boltzmann con-
stant. Equation (6) is called the Dongfang Temperature
Law of ideal gas. Using the equation (6), the relation-
ship between the internal energy of ideal gas and the
physical quantities such as the average kinetic energy
or thermodynamic temperature of the molecule[16-19] is
revised to

U =
1

2
Nmv̄2 = PV = nRT (7)

where n is the number of moles of an ideal gas. These
modified consequences satisfy the laws of conservation

of momentum and energy. In principle, the relevant
theories[12, 20-24] established on the basis of the classical
ideal gas pressure, temperature and internal energy need
to be corrected accordingly. We are convinced that the
revised conclusion is in good agreement with the experi-
mental observations under the condition that the effects
of various objective factors are fully taken into account.

Ideal gas is a simplified model of the actual gas that
neglects the potential energy of intermolecular interac-
tion. It is an infinitely thin gas from the macroscopic
point of view and follows the ideal gas equation of state.
However, from the perspective of energy transformation
and conservation, the ideal gas molecules are the sin-
gle particles with kinetic energy but no binding energy.
Even the extremely thin monatomic gas cannot form an
ideal gas, because the single atom is a multi particle sys-
tem composed of nuclear and extra nuclear electrons. In
the effective understanding of the microscopic structure
of matter, only a large number of neutrons which are s-
tored in a container can form an ideal gas in a real sense,
but in fact no such ideal gas exists.

The experimental laws of gas are all derived from the
actual gas under certain conditions. The specific heat
capacity of the actual gas is related to the law of the
temperature of the gas, but it is not the only connec-
tion. This is because the heat absorbed by the actual
gas molecules not only increases the total kinetic en-
ergy of the molecules, but is also absorbed by atoms
or molecules to increase the energy of the atoms in the
molecules and molecules. Ignoring the heat absorption
of the container wall molecules, the energy relation of
the constant volume process is,

Q =
∑

(∆εi +∆Emolecule +∆Eatom) (8)

Among them, Q is the heat absorbed by the gas with
the total number of N ,

∑
εi = Nε̄ = NkT , Emolecule

the energy of the molecule, and Eatom the energy of the
atom. The principle formula for calculating the average

specific heat capacity cv = 1
N

(
Q
∆T

)
of each molecule in

the process of the fixed volume is,

cv = k +
1

N

∑(
∆Emolecule + ∆Eatom

)
∆T

(9)

The specific heat capacity of any gas has its own wider
distribution range[25-27]. The molecules of a diatomic or
polyatomic gas will absorb more energy than the single
atom. According to the experimental measurements of
the constant volume ratio of the gas to the heat, the
monatomic gas cv ≈ 3k/2, the diatomic gas cv ≈ 5k/2,
the polyatomic gas cv ≈ 7k/2. In the process of con-
stant pressure, the volume of gas expands, the gas is
doing work to the outside world, and the surface area
of the solid container increases, and the number of solid
molecules that absorb heat increases. Ignoring the heat
absorption of the container wall molecules, the energy

https://orcid.org/0000-0002-3644-5170


X. D. Dongfang Mathematics & Nature July (2021) Vol. 1 No. 1 004-6

relation of the constant pressure process is,

Q =
∑

(∆εi +∆Emolecule +∆Eatom) +W (10)

Where W is the work done by the gas in the process of
constant pressure. In this way, From this, the principle
formula for calculating the average specific heat capacity

cp = 1
N

(
Q
∆T

)
of each molecule during constant pressure

is,

cp = k +
1

N

∑(
∆Emolecule + ∆Eatom

)
∆T

+
W

∆T
(11)

Considering the influence of the container, when the
gas molecules absorb heat and thus the temperature
changes, the molecules in the container wall absorb en-
ergy and the temperature changes synchronously, which
is also related to the material of the container. Consid-
er the transition of the atomic energy level, the specific
heat capacity cvof constant volume and the specific heat
capacity cp of constant pressure cannot be constant at
all times. Therefore, it is very difficult to theoretically
derive the precise formula for the specific heat capacity
of gas.

However, the experimental law of gases is not directly
related to the energy of atoms or molecules.Therefore,
the Dongfang Temperature Law of ideal gas based on
the correct physical model and the correct reasoning of
the ideal gas is generally applicable to the thin real gas.

5 Problem for determining solution of ve-
locity distribution function

The equation (6) is consistent with a conclusion of s-
tatistical physics. According to Maxwell velocity distri-
bution law, if the temperature of an ideal gas is T , the
number of molecules with the speed v makes up percent-
age f (v) of the total number of gas molecules[5], where,

f (v) = 4π
( m

2πkT

)3/2
v2e−

mv2

2kT (12)

where m is the particle mass, and kT is the product
of Boltzmann’s constant and thermodynamic tempera-
ture. The corresponding speed of the extreme point of
the above distribution function, df (v)/dv|v=vp

= 0, is

the most probable speed.

vp =

√
2kT

m
(13)

This is just the equation (6). It follows that the average
molecular speed is equal to the most probable speed.
Our modified ideal gas temperature is consistent with
the conclusion of statistical physics.

However, Maxwell velocity distribution law predicting
the statistical average values conceals a difficulty that
the roots of physical quantities with the high orders are

different. The corresponding calculations violate the ba-

sic mathematical rules of

√
|a|2 = |a|. For example,

⟨v⟩ = 1

N

∫ N

0

vdN =

∫ ∞

0

vf(v)dv =

√
8kT

πm

and √
⟨v2⟩ =

(∫ ∞

0

v2f(v)dv

)1/2

=

√
3kT

m

It was obvious that
√
⟨v2⟩ ̸= ⟨v⟩, the logic is not self-

consistent! Classical theory defined these two calcula-
tions, respectively, as the statistically average velocity
and root-mean-square speed[28-30], but ignored the na-
ture why the calculations are very different. In fact,
these results have no effects of experimental observa-
tions, and the physical quantities that have the effect of
experimental observation are the average velocity or the
most probable speed. A theory based on the relation-

ship

√
|a|2 ̸= |a| is only a formal theory. An inference

of the formal theory is often similar to but deviate from
the true law. Investigating the power radiated from a
black body in terms of its temperature. According to
the Stefan–Boltzmann law[31-33],

j∗ =
2π5k4

15c2h3
T 4 ∝ v̄8 (14)

Where j∗ is the black-body radiant exitance, h is the
Planck’s constant, k is the Boltzmann constant, and c is
the speed of light in a vacuum. Now that the term v̄8

appears in the Stefan–Boltzmann law, then according to
the Maxwell velocity distribution law, we can define the
generally statistical averages to compare their roots,

n
√
⟨vn⟩ = 1

N

(∫ N

0

vndN

)1/n

Apparently, different values of n lead to the results vary
widely. These formal consequences have no physical
meaning. But giving them different definitions or as-
sumptions respectively would be representative of the
logical difficulties.

Since the molecular speed cannot reach the speed of
light, it can only describe roughly the gas molecules ve-
locity distribution by Maxwell speed distribution func-
tion of depending on the normalized conditions that the
speed limit is infinity[34-36]. Formally, using the rela-
tivistic energy equation E2 = p2c2 + m2

0c
4 can rewrite

the Maxwell velocity distribution functions[37-41], but we
cannot strictly prove the result of rewriting. In fact,
the relativistic normalization coefficient written in the
speed of light[42] can not be expressed by the elemen-
tary function, so it is difficult to obtain the accurate
rate distribution function. It usually considers that a
velocity distribution function gives the probability, per
unit speed, of finding the particle with a speed near v.

https://orcid.org/0000-0002-3644-5170


X. D. Dongfang Mathematics & Nature July (2021) Vol. 1 No. 1 004-7

We found a velocity distribution function can also be
understood as describing the probability of a molecule
reaches the speed v, and the corresponding results are
not affected. An accurate gas molecule velocity distri-
bution function should be determined by the following
boundary value problem,

ψ (v = 0) = 0, ψ (v = c) = 0∫ c

0

ψ (v) dv = 1,
dψ (v)

dv

∣∣∣∣
v=v̄

= 0

v̄ =

(∫ c

0

vnψ (v) dv

)1/n

, n = 1, 2, · · ·

(15)

We do not know yet whether this molecular velocity dis-
tribution function exists, and whether the iconic factor
of relativity is included in the solution. However, it can
be sure that the Maxwell velocity distribution function
must be an approximation of the solution of this bound-
ary value problem.

6 Comments and conclusions

The Dongfang Temperature Law of ideal gas was dis-
covered when we studied the com quantum theory[44] of
stellar radiation temperature. According to the unitary
principle of logical self consistency test, all the prob-
lems and the final conclusions presented in this paper
are very easy to understand. In short, this paper estab-
lishes several correct physical models to calculate the
pressure of ideal gas, and modifies the pressure formula

and temperature formula of an ideal gas. The modified
temperature formula is just the Dongfang temperature
law of ideal gas. Computations that violate the common
sense of physics in physics standard courses are usual-
ly difficult to be discovered directly, and correcting such
calculations is not easy to be accepted. The main reason
is that some simple causality has not attracted the at-
tention of researchers. Since the average force produced
by a gas molecular collision is equivalent to a constant
force, the motion of a gas molecule must be equivalent
to a motion with constant acceleration; otherwise all the
inferences are contrary to the law of conservation of en-
ergy. Investigating any equivalent motion of a molecule
in a collision period, both the momentum theorem and
the kinetic energy theorem can be used independently
to calculate the pressure of the ideal gas, and then the
correct conclusion of the temperature and the internal
energy[28-30] can be calculated. The ideal gas pressure
is equal to the kinetic energy of the molecule in a unit
volume, and the product of the thermodynamic temper-
ature of the ideal gas and the Boltzmann constant is
equal to the average kinetic energy of the molecule. In
the laboratory, the number of molecules, gas pressure
and gas temperature of the same kind of gas in an adi-
abatic sealed container can be measured. If the average
speed of the same kind of gas molecules at the same tem-
perature is measured, the modified temperature law of
ideal gas can be verified experimentally. Therefore, the
determination of the average speed of gas molecules at
a certain temperature is a very meaningful basic exper-
iment.
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Guided Reading

The physical and mathematical logic in this article

ever racked my brains, and in previous years, the arti-

cle had been misread by reviewers of academic journals.

Here is a list of the simple logical structure of the article,

hoping that it will not cause misunderstanding.

• Calculation errors in standard textbooks

1. The classical molecular kinetic theory establish-

es the equivalent constant-force model to describe

molecular collisions, this is not a problem.

2. The classical molecular kinetic theory does not cal-

culate the collision period between molecule and

container wall in detail, the molecular motion un-

der the equivalent constant force action is treated

as a uniform motion, and the collision half period is

understood to be ∆t/2 = l/v̄. These are all wrong.

3. The classical molecular kinetic theory have use an

unfounded hypothesis, v2x = v2y = v2z , which is mag-

nified to the equipartition theorem of energy, and

this hypothesis is actually not true;

4. On the basis of the above unreasonable logic, clas-

sical molecular dynamic theory uses the momen-

tum theorem, one of the deductions of Newton’s

law of motion, to derive an incorrect pressure for-

mula pV =
∑
mv2i /3 and an incorrect temperature

formula kT = mv2/3;

5. However, if the kinetic energy theorem, another d-

eduction of Newton’s law of motion, is used, the

logical inference of the classical molecular dynamic

theory should be pV =
∑
mv2i /3 and kT = mv2/3.

6. The molecular collision half period of the equiva-

lent constant force action model is actually ∆t/2 =

2l/v, If one would again quote the unfounded hy-

pothesis, v2x = v2y = v2z , the inference of the mo-

mentum theorem would also be kT = mv2/3, this

conclusion is obviously not acceptable.

Therefore, even if the so-called the equipartition theo-

rem of energy based on the unfounded hypothesis v2x =

v2y = v2z is recognized, the conclusion of the molecular

dynamic theory can only be kT = mv2/3 rather than

kT = mv2/3. But the hypothesis of v2x = v2y = v2z is not

reasonable, and the two classical results are not correc-

t. I build a variety of models and calculate them from

different angles to get consistent results.

• Calculation correction and correct inference

1. In one collision period, the article considers two ex-

treme models to describe the collision of molecules:
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uniformly accelerated linear motion and uniform

circular motion;

2. For circular motion model, the article uses the cen-

tripetal force equation to calculate the ideal gas

pressure, the result is pV = Nmv̄2
/
2, where N is

the total number of molecules and V is the vol-

ume of ideal gas. So, the temperature equation is

kT = mv̄2
/
2, which called the Dongfang Tempera-

ture Law of ideal gas;

3. For the uniform acceleration linear motion model,

one can prove that the collision time of a molecule

in the free path is ∆t = 4l/v̄. The article uses

the momentum theorem and the kinetic theorem

to calculate the ideal gas pressure respectively, and

the results are the same equation, pV = Nmv̄2
/
2,

whereN is the total number of molecules. Thinking

about it further also reads the ideal gas tempera-

ture equation kT = mv̄2
/
2;

4. Now that the conclusions of the two extreme mod-

els are the same, by the squeezing theorem, the

temperature of the ideal gas inevitably satisfies the

formula kT = mv̄2
/
2. The actual motion of the

molecular collisions is between the uniform circu-

lar motion and the special model of the unifor-

m velocity linear motion. Therefore, the equation

kT = mv̄2
/
2 is the correct inference of the relation-

ship between the ideal gas temperature and kinetic

energy;

5. The revised calculation explains that the physical

quantity which has physical significance is the aver-

age velocity v̄ rather than the average square speed

v2. The hypothesis v2x = v2y = v2z of classical text-

book is unable to be proven, and it’s actually su-

perfluous.

One can also establish a variety of different physical

models to prove the Dongfang Temperature Law of ideal

gas, thus realizing that some simple concepts and calcu-

lations in physics may be misunderstood, and the errors

of the conclusions derived from the incorrect methods

have been difficult to be found. Physical computation

requires a universal test rule, and meaningless arguments

should be avoided.
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