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Abstract 

In Wasserstein GAN, it is important to regularize 

the discriminator to have a not big Lipschitz 

constant. In this paper, I introduce discriminator 

variance regularization to regularize the 

discriminator of Wasserstein GAN to have a 

small Lipschitz constant. Discriminator variance 

regularization simply regularizes the variance of 

the discriminator's output to be small when 

input is real data distribution or generated data 

distribution. Intuitively, a low variance of 

discriminator output implies that the 

discriminator is more likely to have a low 

Lipschitz constant. Discriminator variance 

regularization does not explicitly regularize the 

Lipschitz constant of discriminator through 

differentiation on discriminator but lowers the 

probability that the Lipschitz constant of the 

discriminator is high. Discriminator variance 

regularization is used in Wasserstein GAN with 

R1 regularization, which reduces the vibration 

of GAN. Discriminator variance regularization 

requires very little additional computing. 

 

 

1. Introduction 

In Wasserstein GAN (WGAN) [1], it is important 

to regularize the discriminator to have a small 

Lipschitz constant. Several gradient penalty 

methods [2, 3, 4] were proposed to regularize 

the Lipschitz constant of the discriminator 

through differentiation on the discriminator. 

 In this paper, I introduce discriminator variance 

regularization (DV regularization) for WGAN to 

regularize the discriminator to have a small 

Lipschitz constant. Discriminator variance 

regularization simply regularizes the variance of 

the discriminator's output to be low when input 

is real data distribution or generated data 

distribution. DV regularization does not 

explicitly regularize the Lipschitz constant of 

discriminator through differentiation on 

discriminator but lowers the probability that the 

Lipschitz constant of the discriminator is high. 

Also, DV regularization is used together with R1 

regularization [8] to prevent vibration of GAN. 

DV regularization requires very little additional 

computing. 
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2. Discriminator variance regularization 

 Assuming discriminator input and output are 

closed sets, the discriminator of WGAN can be 

considered a Lipschitz-continuous function. The 

problem is that the Lipschitz constant of the 

discriminator may be very large. The large 

Lipschitz constant of the discriminator causes 

the gradient to explode and prevents the 

WGAN from being trained. When training 

WGAN without regularization terms such as 

weight clipping or gradient penalty, 

discriminator output distribution for real data 

distribution or generated data distribution has 

an extremely large variance, and the WGAN is 

hard to be trained.  

 Intuitively, extremely high discriminator output 

variance indicates that the discriminator has a 

large Lipschitz constant. On the other hand, 

intuitively, if the variance of discriminator 

output is low, the discriminator would have a 

small Lipschitz constant. For example, if the 

discriminator output is constant (variance is 

zero), the Lipschitz constant of the discriminator 

is zero. More specifically, the low variance of 

discriminator output distribution indicates a low 

probability that the Lipschitz constant of the 

discriminator is high. Therefore, DV 

regularization that regularizes variance of 

discriminator output lowers the probability that 

the Lipschitz constant of the discriminator is 

high. In fact, other gradient penalty methods 

that explicitly regularize the Lipschitz constant 

of the discriminator are also basically 

probabilistic methods because training the 

model is based on Monte Carlo simulation. 

Therefore, lowering the probability that the 

Lipschitz constant of the discriminator is high is 

not illogical. 

 DV regularization regularizes variance of 

discriminator output when input is real data 

distribution or generated data distribution. DV 

regularization is defined as follows. 

 

𝐿𝑑𝑣 = 𝑣𝑎𝑟(𝐷(𝑋)) + 𝑣𝑎𝑟 (𝐷(𝐺(𝑍))) 

 

 DV regularization uses batch distribution to 

approximate the variance of adversarial values. 

DV regularization loss for each batch is defined 

as follows. 

 

𝐿𝑑𝑣 = 𝑠𝑢𝑚((𝑎𝑟 − 𝑎𝑟)∘2) + 𝑠𝑢𝑚 ((𝑎𝑔 − 𝑎𝑔)
∘2

) 

 

 The following table explains the terms used in 

the above equations. 

 

 

 

 

 

 

 

 

 



𝑏 Batch size 

𝑋 Real data random variable 

𝑥 𝑏 real data  

𝑍 Latent random variable 

𝑧 𝑏 latent codes 

𝐷 Discriminator 

𝐺 Generator 

𝑎𝑟 Adversarial values of real data (i.e., 

𝐷(𝑥)). 𝑏-dimensional vector. 

𝑎𝑔 Adversarial values of generated data 

(i.e., 𝐷(𝐺(𝑧))). 𝑏-dimensional vector 

𝑎𝑟̅̅ ̅ Mean of 𝑎𝑟 

𝑎𝑔 Mean of 𝑎𝑔 

𝑣𝑒𝑐∘2 Element-wise square of example 

vector 𝑣𝑒𝑐 

𝑠𝑢𝑚 A function that calculates the sum of 

the input vector 

𝑣𝑎𝑟 A function that calculates the 

variance of a random variable 

𝐿𝑑𝑣 DV regularization loss 

𝜆𝑑𝑣 DV regularization loss weight 

 

 Simply, DV regularization loss is a sum of the 

variance of real adversarial values 𝑎𝑟 and fake 

adversarial values 𝑎𝑔 . DV regularization 

multiplied by 𝜆𝑑𝑣 and added to discriminator 

loss. 

 R1 regularization on the discriminator makes 

the training stable when the WGAN almost 

converges. However, R1 regularization alone 

does not make the discriminator satisfy the 

Lipschitz condition, so the WGAN is hard to be 

trained. Therefore, R1 regularization should be 

used together with an additional regularization 

term to make the GAN converges stably. 

 

3. Experiment results 

I used StyleGAN2 [5] architecture with a 

reduced filter size of convolution for the 

experiment. The model was trained to generate 

the CelebA dataset [7] resized to 128 × 128 

resolution. Following hyperparameters were 

used for model training. 

 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝐴𝑑𝑎𝑚 (

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001
𝑏𝑒𝑡𝑎1 = 0.0

𝑏𝑒𝑡𝑎2 = 0.99
) 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑑𝑒𝑐𝑎𝑦 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ = 2% 

𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 512 

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 𝑏 = 32 

𝑒𝑝𝑜𝑐ℎ = 50 

 

 Note that the mapper of the generator was 

trained with × 0.01  learning rate, same as 

StyleGAN2. The following figure shows the 

performance of various regularization methods 

in WGAN. FID [6] was used for model 

performance evaluation. The lower the FID, the 

better generative performance. 

 

Figure 1. WGAN performance for each 

regularization method 



 In Fig. 1, "GP" represents the gradient penalty 

method of [2]. "R1" represents the R1 

regularization method of [8]. The number in 

front of each method represents the loss weight. 

"DV" represents DV regularization. Two losses 

connected by an underbar mean that the two 

losses are added. For example, "10R1_1DV" 

represents that 10 × 𝐿𝑟1 + 1 × 𝐿𝑑𝑣 was used for 

WGAN discriminator regularization. The original 

paper introduced R1 regularization [8] used 

𝛾/2 for R1 regularization weight, so based on 

the original paper, 𝛾 is 𝜆𝑟1 × 2. 

 In Fig. 1, one can see the performance of DV 

regularization with R1 regularization is the best. 

Also, in the DV regularization without R1 

regularization (1DV in Fig. 1), mode collapse 

occurred at epoch 14. 

 The following figure shows generated image 

with R1 regularization and DV regularization. 

 

 

Figure 2. Generated images with 10R1_1DV 

 

I also trained the 10R1_1DV model with larger 

filter sizes. The FID of the model was 12.676382. 

The following figure shows the example of 

generated images with the thicker model. 

 

 

Figure 3. Generated images with 10R1_1DV, 

thicker model 

 

4. Conclusion 

In this paper, I introduced discriminator variance 

regularization for Wasserstein GAN to 

regularize the discriminator of Wasserstein GAN 

to have a small Lipschitz constant. Discriminator 

variance regularization does not explicitly 

regularize the Lipschitz constant of 

discriminator through differentiation on 

discriminator but lowers the probability that the 

Lipschitz constant of the discriminator is high. 

Discriminator variance regularization with R1 

regularization boosts Wasserstein GAN training. 
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