
Application of xgboost to time series forecasting
by taking advantage of its powerful forecasting

performance

abstract
xgboost[1] has the best forecasting performance among non-deep learning methods. However,
it works well for interpolation problems and regression, but not for future forecasting of time
series data that requires extrapolation. I think it is difficult to avoid this tendency even if we add
explanatory variables in the background of the data. Possible explanatory variables include lags of
a day or several days from the data, months, days, days of the week, holidays, and so on. In fact,
the increase or decrease in data values due to these factors is quite possible and can serve as
explanatory variables. However, even if you do this, you will not be able to capture the trend.

Introduction
Time series data with a trend may work well in the training interval, but not in the test interval or
future. The main reason is simple. The main reason is simple: it has very different basic statistics
(e.g., mean) than the trained interval, which is information that is not acquired by training at all.

Normally, when we focus on stationarity, that is, the mean and variance of the data, we want it to
show roughly the same trend at all points in time. Therefore, by taking the difference and
logarithm of the data, we can make the data stationary, create a prediction model, and then
reverse the difference and logarithm transformation of the prediction results.

af://n5
af://n8

For data that has been differenced and log-transformed in this way, xgboost[1] can be a
seemingly good predictive model. However, this is only the case if the fact that the data is
stationary by differencing can be observed at any point in time. If you change the situation of the
data slightly, the discrepancy with the measured values will be so large that it will not be a usable
prediction model.

af://n15

Overview of the proposed method
xgboost[1] can be given up as an option. For example, porohet[2] produces very good results,
but lacks explanatory power. On the other hand, xgboost[1] has explanatory power and has been
proven to have the best prediction performance among non-deep learning models, so it would
be a shame to discard it. So the idea is to use the best parts of xgboost[1] in combination with
other models as a compromise.

Fortunately, time series data can be used to isolate trends.

The data can be decomposed into trend + seasonal + remainder. If we let xgboost[1]take care
of the part without trend, and model trend with ARIMA[3], we can build a good model. However,
depending on the data, xgboost[1] may have weaknesses for repeated cycles.

Therefore, I think it is possible to deal with this problem by adding the sin and cos terms of the
Fourier expansion of the periodic component to the explanatory variables.

However, it is necessary to limit it to the day before the sin and cos terms are available. The
reason is that the sin and cos terms on the day you want to predict are essentially unknown
values. Therefore, they will be missing as explanatory variables on the day of the event, and we
will have to fill them in by predicting. So, my idea is to use the previous day's sin and cos terms as
they are to make a provisional forecast. This part of the explanatory variables can be refreshed

af://n15
https://arxiv.org/abs/1603.02754
https://facebook.github.io/prophet/

each time the prediction is made, since the sin and cos terms can be re-calculated as the
prediction progresses, thus eliminating the problem of having only the copied sin and cos terms
of the previous day. However, it is possible to reinforce this problem. As a result of decomposing
the time series data, we get seasonal, which is generally a simple repetition, and by using this
simple repetition data, we can modify the explanatory variables to be more reasonable.

Experiment

It seems that the prediction is reasonable even outside the data, i.e., in the extended future. Next,
let's experiment with example_wp_log_peyton_manning.csv, which shows the results of extended
prediction for 3 years (1096 steps).

The trend component of this data is

af://n24

The downward trend shows that the forecast model follows the trend. The data for the
component contributed by xgtboost[1] is shown in the figure below, which shows that the
forecasting model fully utilizes the superior capabilities of xgboost[1].

By the way, if we model it using only xgboost[1], we get the following.

This suggests that the idea is producing reasonable results. Other data validation includes

his data appears to be right-side-up. In fact

The trend component is falling to the right. I tried to train this data by constraining the training
interval to 40% of the total. The test interval is a very good predictor, but the extension to 3 years
(1096 steps) shows a slight upward trend, but the characteristic increase and decrease seems to
be a very good predictor. However, the characteristic increase/decrease looks like a very good
prediction.

Discussion
In the experiment, I used ARIMA[3] in combination, but it is also possible to use porphet[2] for
this part. The problem is that if you have data with very long periods, you will need data for
multiple periods. The problem is that for data with very long periods, we need data until several
of those periods appear, which increases the amount of training data and makes the
computational cost very high for non-deep learning power.

References
[1]CHEN, Tianqi; GUESTRIN, Carlos. Xgboost: A scalable tree boosting system. In: Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining. 2016. p. 785-794.

[2]KHAYYAT, Mashael, et al. Time Series Facebook Prophet Model and Python for COVID-19
Outbreak Prediction. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67.3: 3781-3793.

[3]Hyndman, RJ and Khandakar, Y (2008) "Automatic time series forecasting: The forecast package
for R", Journal of Statistical Software, 26(3).

Wang, X, Smith, KA, Hyndman, RJ (2006) "Characteristic-based clustering for time series data", Data
Mining and Knowledge Discovery, 13(3), 335-364.

af://n40
af://n43

PICCOLO, Domenico. A distance measure for classifying ARIMA models. Journal of time series
analysis, 1990, 11.2: 153-164.

Brockwell, P. J. and Davis, R. A. (1996). Introduction to Time Series and Forecasting. Springer, New
York. Sections 3.3 and 8.3.

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods. Oxford University
Press.

Gardner, G, Harvey, A. C. and Phillips, G. D. A. (1980). Algorithm AS 154: An algorithm for exact
maximum likelihood estimation of autoregressive-moving average models by means of Kalman
filtering. Applied Statistics, 29, 311--322. 10.2307/2346910.

Harvey, A. C. (1993). Time Series Models. 2nd Edition. Harvester Wheatsheaf. Sections 3.3 and 4.4.

Jones, R. H. (1980). Maximum likelihood fitting of ARMA models to time series with missing
observations. Technometrics, 22, 389--395. 10.2307/1268324.

Ripley, B. D. (2002) Time series in R 1.5.0. R News, 2/2, 2--7. https://www.r-project.org/doc/Rnews/R
news_2002-2.pdf

@inproceedings{y2021timeseriesxgboost,

 title={time series xgboost: time series xgboost},

 author={tatsuhiko.yamato},

 year={2021}

}

https://www.r-project.org/doc/Rnews/Rnews_2002-2.pdf

	abstract
	Introduction
	Overview of the proposed method
	Experiment
	Discussion
	References

