On consecutive special primes

By D. K. K. Janabi

(November 12, 2021)

Abstract

We establish a number-theoretic conjecture about primes with a special property and give a hint for the proof.

Preliminaries

Let $w: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$, where $\mathbb{N}^{*}:=\mathbb{N} \backslash\{0\}$, that $\forall n:=\sum_{i=0}^{j} \alpha_{i} \beta^{i}$ be $w(n)=\sum_{i=0}^{j} \alpha_{i} .{ }^{1}$ Then there exist $S \in \mathbb{P}^{s} \subset \mathbb{P}^{*}:=\mathbb{P} \backslash\{2,3\}$ that $w\left(S_{i+1}\right)=w\left(S_{i}\right) \in \mathbb{P}^{*}$ for $i \in \mathbb{N}^{*}$. For such special primes let $\Omega:=S_{i+1}-S_{i}$ be a special prime gap. Here $\Omega=\sum_{i=1}^{j} g_{i}$ for $j \neq 1$ is composed of consecutive prime gaps. ${ }^{2}$ Obviously, there exists the congruence relation $\Omega \equiv 0(\bmod 3 \# \cdot 3)$ whereby we consider the case $\Omega=3 \# \cdot 3$ for special twin prime pairs. We also can introduce the counting function $\pi_{\Omega}(x, p):=\#\left\{S \leq x: w(S)=p\right.$ with $\left.p \in \mathbb{P}^{*}\right\}$.

Conjecture. There exist infinitely many Ω such that $(\Omega-1, \Omega+1) \in \mathbb{P}^{*}$.

Note on the process of proof

One may consider as highly relevant to prove the conjecture the statement of the theorem of Drmota, Mauduit and Rivat [1] [2] that there are infinitely many $p \in \mathbb{P}$ with $w(p) \in \mathbb{P}$, and, since Ω does indeed satisfy the introduced congruence relation, that clearly every twin prime pair except the very first one of the form ($3 \# \cdot n-1,3 \# \cdot n+1$) for some $n \in \mathbb{N}^{*}$ [3].

References

[1] Drmota, M.; Mauduit, C.; Rivat, J.: Primes with an average sum of digits. Compositio Mathematica. 145, pp. 271-292, 2009.

[^0][2] Harman, G.: Counting Primes whose Sum of Digits is Prime. Journal of Integer Sequences, Vol. 15, 2012.
[3] Fine, B.; Rosenberger, G.: Number Theory: An Introduction via the Density of Primes. Birkhäuser, 2016.

[^0]: ${ }^{1}$ Here we consider the expansion for the base $\beta=10$.
 ${ }^{2}$ That is $\pi\left(S_{i+1}\right)-\pi\left(S_{i}\right)>1$, where per usual one writes $\pi(x)$ for the prime counting function.

