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In this paper, we prove the existence of primes in the interval ]�, � + 2 �] by
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1 Introduction
We consider the existence of primes in the interval ]�, � + 2 �] . The history of this problem

seems to start in 1845 when Bertrand conjectured after numerical trials that the interval ]�, 2� − 3]
contains a prime for � ≥ 4 . This was proved by Chebycheff in 1852 in a famous work where he
got the first good quantitative estimates for the number of primes less than a given bound, say �. In
2003, Ramare and Saouter [19] proved that every interval ]� 1 − ∆−1 , �] contains a prime
number with ∆=28314000 provided � ≥ 10726905041. Also, they did mention the following:
Under the Riemann hypothesis, the interval ]� − 8

5
�����, �] contains a prime for � ≥ 2 . Of

course, these results are still far from the conjecture Cramér [5] made in 1936 on probabilistic
grounds: the interval [� − ����2�, �] contains a prime for any K>1 and � ≥ �0(�).

On the other hand, it is easy to see that the problem about the difference between consecutive
primes is similar to the problem to determine the size of intervals to contain at least one prime. In
1905, Lindelöf(1827-1908)[4,13] hypothesized that if the Riemann zeta function is

ζ 1
2

+ �� = �( � �) (1)
as t→∞, (where c is a positive constant) then c→0. In 1937, Ingham [11] proved

��+1 − �� < ��
�, 1+4�

2+4�
< � < 1 (2)
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for all n∈N when he supposed that (1) is true. If the Lindelöf hypothesis is true (that is to say, if (1)
holds with an arbitrarily small c), then pn+1−pn<pΘn is true with � = 1

2
+ ϵ.

This may be compared with Cramér’s theorem[5] that, if the Riemann hypothesis is true, then

��+1 − �� = � ��

1
2 ����� , or Ramare and Saouter [19]’s theorem that, under the Riemann hypothesis,

the interval ]� − 8
5

�����, �] contains a prime for � ≥ 2.
Montgomery [15] showed that the interval ]�, � + �Θ] contains at least one prime number for

every Θ> 3
5
and � ≥ �0, Huxly [10] showed Θ> 7

12
, Iwaniec and Jutila [12] obtained Θ> 5

9
, Heath-

Brown and Iwaniec [9] had Θ> 11
20
. The more important one is the result of Baker and Harman[21]

who proved Θ>0.535. Especially, in 2001, analytical means combined with sieve methods (and the
joint efforts of Baker et al.[1]) ensures us that each of the intervals ]�, � + �0.525] for � ≥ �0
contains at least one prime.

Dorin Andrica conjectured[18] that, for all natural �, ��+1 − �� < 1. Andrew Granville[7]
introduced Zhang’s result[22] for small gaps between primes as following:

lim
�

��� (��+1 − ��) ≤ 70000000. (3)

By the GPY(Goldston, Pintz, and Yildirim) sieve method, in 2018 [14], James Maynard
represented new results for small gaps and large gaps between primes as followings:

sup
��≤�

(��+1 − ��) ≥ � ∙ ����∙�������∙�������������
����������

(4)

lim
�

��� (��+1 − ��) ≤ 246, (5)

where C is a positive constant. Of course, these don’t prove that some interval ]�, �(�)] for � ≥ 1
contains at least one prime. However, it is one of the best results about the difference between
consecutive primes. Almost all these results are proved by using the sieve method.

As it was described in [6] and [21], the prototype of sieve method is Eratosthenes (276-194
BCE) sieve. It is the following formula(see [6]) for the number of primes.

π � − π � + 1 = � −
�≤ �

�
�� +

�1<�2≤ �

�
�1 ∙ �2

� −

− �1<�2<∙�3≤ �
�

�1∙�2∙�3
� + ⋯ + −1 �( �) �

�1∙�2∙⋯∙�π �
= �� �⇨�≤ �

�(�) �
�

� (6)

(Here, as usual, π � denotes the prime counting function

π � = �≤� 1�
(7)
and, throughout, the letter p will always be a prime. As usual, the Möbius function µ(d) is (−1)ν
when d is the product of � ≥ 0 distinct primes and is zero if d has a repeated prime factor.) for
Eratosthenes sieve which used the representation method of the Möbius function µ(d).

In the first half of 20th century, by Brun, Vinogradov, Selberg, etc., the basis of modern sieve
method, that uses the notion of “weight” with the Möbius function µ(d), was found and, better
successes on the distribution state of primes were achieved.
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In this paper, we represent the model of Eratosthenes sieve in a different way with the absence
of the Möbius function µ(d).

The representation and method that use the Möbius function have achieved great success in the
field of Number theory and is being used as very importantly as before.

However, in this paper, we will use the simpler function of 2 variables �(�, �) instead of right
side of (6) to represent the model for Eratosthenes sieve for the convenience of discussion(see (9)
and Remarks for more details.).

Also, we will apply Eratosthenes sieve straightly for the integers in the interval ]�, � + 2 �].
(Of course, this isn’t just doctrinaire method that apply Eratosthenes sieve for the integers in the
interval ]1,2 �]. So, strictly and generally g(x, k)−g(y, k) ≠ g(x−y, k) ).

As a result, in this paper, we prove the existence of primes in this interval by inducing an
inequality which defines the lower bound of number of primes in the interval ]�, � + 2 �] and
suggest an opinion for truth of the Lindelöf hypothesis based on it with the famous success of
Ingham’s preceded work.

Theorem 1.1. Each of the intervals ]�, � + 2 �] for � ≥ 1 contains at least one prime and the
lower bound of number � = π � + 2 � − π � of primes is determined by the following
formula

� ≥ π 2 � − π � − π �
2

− π2 2 � + 4 − π2 � − 1 (8)

2 A new expression and some lemmas
Here, we recall some well-known definitions and lemmas.
Let � denote the integral part of �, and π � denote the number of primes not exceeding � for

� ≥ 1 (see (7)). And we denote by �2(�) the number of primes(twin primes) � ≤ � such that p+2 is
also a prime.
Lemma 2.1. n : composite number⇒∃� ≤ �, � �.

Proof. It is trivial from the fundamental theorem of elementary theory of numbers.

Lemma 2.2. There is certainly only one multiple of λ among consecutive λ integers.

Proof. Omitted.

Corollary 2.3. Let suppose Λ > λ ≥ 1 and Λ, λ ∈ N . Among consecutive λ positive integers, there is
no multiple of Λ, or if there exists multiple of Λ, there is only one.

Now, let �(�, �) be expressed as follows.

� �, � ≔ � − 1≤�≤�
�
��

� + 1≤�1<�2≤�
�

��1∙��2
� −

− 1≤�1<�2<�3≤�
�

��1∙��2∙��3
� + ⋯ + −1 � �

�1∙�2∙⋯∙��
, (9)

Where �� is ��ℎ prime, � ≥ 1 and � = π � .
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Remark 1(The meaning of �(�, �))
In fact, the right−hand side of (9) is the right−hand side of (6). Thus, the value of the function

�(�, �) is equal to the number of positive integers which are remained excluding the multiples of each
distinct prime �1, �2, ⋯, ��, ⋯, �� (≤ �) among the consecutive � positive integers from “1”. It is
described in detail in [6,8,21].

Now, if we consider �
�

= �
�
, then

� �, � = π � − π � + 1= the right-hand side of (6), for � = π � . (10)

Remark 2(The generalization of �(�, �))
Now, in case that π � < � ≤ π � , � ∈ �.

� �, � = π � − � + 1.

Thus,
� �, � = π � − � + 1, π � ≤ � ≤ π � , � ∈ � (11)

In fact, in (10), it was � = π � . The integers which are not the multiples of any of the primes
� ≤ � in the interval 1, � are number “1” and just the prime numbers p with � < � ≤ � by
Lemma 2.1. So (6) (or (9)) is composed.

Therefore, this imply followings.
If � = π � + 1, thus, we consider for the multiples of �� � +1, then the multiple of �� � +1 is

only one prime number(:�� � +1) in the interval 1, � .

Then � �, π � + 1 = π � − π � + 1 + 1.
By the as principle as above, if � = π � + 2, then � �, � = π � − π � + 2 + 1, ··· , and

if � = π � , then � �, � = 1.
Above “if k = π(x), then � �, � = 1 ” mean that number of the integer(“1”) which are not the

multiples of any of the primes � ≤ � in the interval 1, � .
As result, we obtain (11).

Lemma 2.4. Let’s suppose we excluded the multiples of primes not exceeding � + 1 in the
interval ]�, � + 2 �]. Then, in the interval ]�, � + 2 �], there are no composite numbers.
Proof. Considering � 2 < � + 2 � < � + 1 2

, it is trivial by Lemma 2.1.

3 Proof of Theorem 1.1

There are [2 �] or [2 � + 1] consecutive integers in the interval ]�, � + 2 �].
At this time, the case that there are [2 �] consecutive integers in the interval ]�, � + 2 �] is a

foundation, so we will lay emphasis on obtain � in case that there are [2 �] integers in the
interval ]�, � + 2 �].

By Lemma 2.4, we must obtain the number of integers which are not the multiples of any of the
primes � ≤ � + 1 in the interval ]�, � + 2 �].

Remark 3 In fact, by Corollary 2.3, the number of multiples of any integer “A” in the
interval ]�, � + 2 �] is at most one more than the number of multiples of “A” in the interval [1, 2 �].
And we must take care that although any composite number gets contained in the interval ]�, � + 2 �]
one more than the interval [1, 2 �], it is just a multiple of some a prime � ≤ � + 1 by Lemma 2.1.
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At first, we will obtain ��, the number of integers which are not the multiples of any of primes
�� 2 ≤ �� ≤ �

2
in the interval ]�, � + 2 �].

1). ��, the number of integers which are not the multiples of any of primes �� in the
interval ]�, � + � �]

By the function � 2 �, � , the multiples of each prime �� (γ = 1,2,··· ,k) in the interval [1, 2 �] are
excluded from the interval [1, 2 �] without any error.

However, by Corollary 2.3, we consider the fact that the number of multiples of each prime ��

among [2 �] consecutive integers in the interval ]�, � + 2 �] is at most one more than the number of
multiples of each prime �� among [2 �] consecutive integers in the interval [1, 2 �].

That is to say, we consider the fact that the number of multiples of prime �1 = 2 among [2 �]
consecutive integers in the interval ]�, � + 2 �] is at most one more than the number of multiples of
prime �1 = 2 among [2 �] consecutive integers in the interval[1, 2 �], that the number of multiples
of prime �2 = 3 among [2 �] consecutive integers in the interval ]�, � + 2 �] is at most one more
than the number of multiples of prime �2 = 3 among [2 �] consecutive integers in the

interval[1, 2 �] and further, that the number of multiples of prime �
� �

2
among [2 �] consecutive

integers in the interval ]�, � + 2 �] is at most one more than the number of multiples of prime

�
� �

2
among [2 �] consecutive integers in the interval [1, 2 �].

On the other hand, the number of integers which are not multiples of any of 2,3, ⋯, �
� �

2
among

[2 �] consecutive integers in the interval [1, 2 �] is � 2 �, � �
2

by (11).

So, by Remark 3, ��, the number of integers which are not multiples of any of 2,3, ⋯, �
� �

2
among

[2 �] consecutive integers in the interval ]�, � + 2 �] is at least

� 2 �, � �
2

− � �
2
. (12)

Thus, for the lower bound of ��,

�� ≥ � 2 �, � �
2

− � �
2

(13)

Therefore, 1) is done.

2). The number of integers which are not multiples of any of primes ��
�

�
< �� ≤ � +

� .
In 1), we obtained the lower bound of �� , the number of integers which are not multiples of the

primes pα 2 ≤ �� ≤ �
2
.

Now, starting from (13), we are going to obtain the lower bound of T, the number of integers
which are not multiples of any of the primes �

� �
2 +1

, �
� �

2 +2
, ⋯, �� � , �� � +1 in the

interval ]�, � + 2 �].
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Considering Lemma 2.4, we are going to obtain the lower bound of the number of integers
which are not multiples of any of the primes �

� �
2 +1

, �
� �

2 +2
, ⋯, �� � , and then are going to

obtain the number of integers which are not multiples of any of a prime �� � +1 in the
interval ]�, � + 2 �].

2 �, the size of the interval ]�, � + 2 �] divided by �
2
gives 4. Thus 2 �

�
2

= 4, so there are at most 4

multiples of �
� �

2 +1
> �

2
in the interval ]�, � + 2 �].

And the factors �1, �2, �3, �4 � < �� ∙ �
� �

2 +1
≤ � + 2 � of these 4 multiples �� ∙

�
� �

2 +1
, � = 1,2,3,4 of �

� �
2 +1

are the consecutive integers, and at most 2 integers among them are

odd integers.
If these odd integers (2 factors) are composite numbers, then they trivially are composed including

prime factors that are smaller than �+2 � �
2

< �
2

for � > 48 + 32 ∙ 2 by Lemma 2.1.

Because,

�� ≤ �+2 �
�

� �
2 +1

< �+2 �
�

2

,

So

�� ≤
� + 2 �
�

� �
2 +1

<
� + 2 �

�
2

<
�

2

for, � > 48 + 32 ∙ 2, then the composite numbers �� ∙ �
� �

2 +1
are the multiples of at least a

prime ≤ �� by Lemma 2.1.
Therefore, it means that the composite numbers(multiples of �

� �
2 +1

) have already been

calculated in the process of obtaining ��.
Of course, if 2 integers among the factors �1, �2, �3, �4 are the even numbers, then the

multiples �� ∙ �
� �

2 +1
of them also have already been calculated in the process of obtaining ��.

Thus, if we suppose that there are as few prime numbers as possible in the interval
]�, � + 2 �], we must suppose that such factors (odd integers Fi) are the primes.

And then, such factors are consecutive odd integers, so they are twin primes

� ≤ �
�� �

≤ twin primes ≤ �+2 �
�

� �
2 +1

< �+2 �
�

2

= 2 � + 4 ..

As a result, it implies that all π2 2 � + 4 − π2 � twin primes which are contained in the

interval �, 2 � + 4 are individually combined with each π2 2 � + 4 − π2 � primes among

the primes ��
�

2
< �� ≤ � to form at most 2 ∙ π2 2 � + 4 − π2 � composite numbers in the

interval ]�, � + 2 �].
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So, except such composite numbers π2 2 � + 4 − π2 � in the interval ]�, � + 2 �] and if

there are more other composite numbers in the interval ]�, � + 2 �], then they are π � − π �
2

−

π2 2 � + 4 − π2 � composite numbers that are made more by prime numbers ��
�

2
< �� ≤

� that are remained by excluding π2 2 � + 4 − π2 � among π � − π �
2

prime numbers

��
�

2
< �� ≤ � .

Now, considering π � ≤ π � + 1 ≤ π � + 1, Lemma 2.4 and Lemma 2.1, we obtain the
following with accompanied by “-1”.

� ≥ � 2 �, �
�

2
− π

�
2 − 2 ∙ π2 2 � + 4 − π2 � −

− π � − π �
2

− π2 2 � + 4 − π2 � − 1.
Thus,

� ≥ � 2 �, � �
2

− π �
2

− π2 2 � + 4 − π2 � − π � − π �
2

− 1.

Therefore, by (11), we have

� ≥ π 2 � − π � − π �
2

− π2 2 � + 4 − π2 � . (14)

Heretofore, we saw the case there are 2 � integers in the interval ]�, � + 2 �].
In case there are 2 � + 1 integers in the interval ]�, � + 2 �],considering Lemma 2.4 and

Lemma 2.1, we have the right-hand of (8) for � by the right-hand of (14) with accompanied by “-1”.
Because one(= 2 � + 1 − 2 � ) integer may be a composite number.

On the other hand, Theorem 1 of [20] is

�
����

1 + 1
2����

< � � < �
����

1 + 3
2����

for 59 ≤ �. (15)

And for π2(x), [18] introduced the result of Halberstam and Richert:

π2 � ≤ 2 ∙ � ∙ �>2 1 − 1
�−1 2

�
���� 2� , (16)

Where 2 ∙ �>2 1 − 1
�−1 2� = 1.32032⋯.

And, the best values obtained for C have been:C = 3.5 by Bombieri, Friedlander and
Iwaniec (1986), or C = 3.13 by S.Lou(private communication)[18]. Therefore,

� ≥ π 2 � − π � − π
�

2 − π2 2 � + 4 − π2 � − 1 =

= π 2 � − π � − π
�

2 − π2 2 � + 4 + π2 � − 1 >

(Now, considering π2 � > 1 for � > 48 + 32 ∙ 2)

> π 2 � − π � − π
�

2
− π2 2 � + 4 >

>
2 �

��� 2 �
1 +

1
2 ∙ ��� 2 �

−
�

��� �
1 +

3
2 ∙ ��� �

−
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−
� 2

��� � 2
1 +

3
2 ∙ ��� � 2

− 2 ∙ � ∙
�>2

1 −
1

� − 1 2 ∙
2 � + 4

��� 2 � + 4
2� >

> 0, for � ≥ �43.3181, with � = 3.13.

And, if we consider the result (for � ∈ N) that is concluded from the following Code(Mathematica)

and 2 � =
2 � , � − � < 1

2

2 � + 1, � − � ≥ 1
2

, we obtain the result that the interval ]�, � + 2 �] for 1 ≤

� < �43.3181 = 6498480147552563678.1040339⋯ contains at least one prime.
Code.
(x=1;Label[begin];b=2*Sqrt[x]//N;c=PrimePi[x];d=PrimePi[x+b];e=d-c;

Print[SequenceForm[“T=”,e]];x+=1;If[x<6498480147552563679,Goto[begin]])

Therefore, Theorem 1.1 is fully proved.∎

4 Andrica’ conjecture and Lindelöf hypothesis
The idea of Theorem 1.1 shows the following.

First, by the PNT(Prime Number Theorem), T→∞ as � → ∞.
In detail,

�1 ∙ �
����

< π � + 2 � − π � < �2 ∙ �
����

, for some C2> C1> 0. (17)

Second, if we put � = ��, we have

∀� ∈ �, ∃��+1 − �� < ��
�, � = 1

2
+ � �� , ∃� �� 0 ≤ � �� ≤ 1

���2 ��
(18)

In fact,

∀� ∈ �, ∃��+1 ∈ ��, �� + 2��

1
2 by Theorem 1.1 ⇨

⇨ ��+1 < �� + 2��

1
2 because �� + 2��

1
2 ≠ integer, ��+1 = integer ⇨

⇨ ��+1 − �� < ��

1
2+ 1

���2 ��

Also,

∀� ∈ �, ∃��+1 ∈ ��, �� + 2��

1
2 by Theorem 1.1 ⇨ ��+1 − �� < 1 for � ≥ 1.

Thus, following proposition does hold good.

Proposition 4.1. Andrica’ conjecture is true.

And, if we choose � �� that satisfies 0 ≤ � �� ≤ 1
���2 ��

, we have (18).

This shows the following results.

1) 1
2

< � < 1 for � ≥ 3.
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2) � �1 = 0 for � = 1 ⇒ 3 ∈ ]2,2 + 2],
therefore , ��+1 ∈ ��, �� + ��

� and 1
2

≤ � < 1.

3) � �2 = log3 2 − 1
2

< 0.131 < 1
log2 3

for � = 2 ⇒

⇒ 5 ∈ ]3,3 + 3
1
2+� �2 ], therefore ��+1 ∈ ��, �� + ��

� , and 1
2

< � < 1.

4) � �� → 0 as � → ∞, therefore � → 1
2

as � → ∞.
Proposition 4.2. The Lindelöf hypothesis is true.

Proof. If (2) is true, we have

� → 0 as � → ∞ (19)

from 1), 2), 3) and 4).
In fact, the result of [11] is

ζ 1
2

+ �� = � � � , � → ∞ ⇒ ∀� ∈ �, ∃��+1 − �� < ��
�, 1+4�

2+4�
< � < 1.

Now, from 1), 2), 3) and 4), if we consider the relation � ≤ � (see 257page of [11]),

∀� ∈ �, ∃��+1 − �� < ��
�,

1 + 4�
2 + 4�

< � < 1 ⇒

⇒ � → 0 as � → ∞ because � → ∞ ⇒ � → ∞ ⇔ � → ∞ .

Thus, ζ 1
2

+ �� = � � � , � → ∞ ⇒ � → 0. ∎
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