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Abstract In this paper, a novel approximation of the prime counting function, based on modified Eulerian logarithmic

integral,  is  going  to  be  presented.  Proposed  approximation  reduces  the  approximation  error  without  increase  of

computational  complexity when it  is  compared to approximation based on Eulerian logarithmic  integral.  Experimental

results were used to support the claim. Combining proposed method with |Riemannian approximation of prime counting

function it is possible to design the new approximation function that outperforms Riemannian approximation for all values

that were analyzed.

1 Introduction

In this paper, a novel approximation method for twin counting function is going to be analyzed. It is 

known that Eulerian logarithmic integral Li(n) [1] represents a good approximation of the number of 

primes π(n) smaller than some natural number n. Li function is defined by the following equation 

Li (n)=∫
2

n

( dx
ln (x )) .

However, it is well known that the error that is made by such approximation is significant for small

numbers n. In order to reduce that error we are going to define a modified logarithmic integral (MoLi)

which is given by the following equation

π(n) ∼ MoLi(n)=∫
2

n

( dx
ln(x+√n)) .

In order to assess the quality of the proposed approximation, a number of experiments were conducted



for numbers n smaller than one million.

2 Experimental results

In all experiments integration step was 0.01 and applied integration method was trapezoidal method. In

all experiments result of  approximation was rounded to the nearest integer.  In Table 1, the results of

experiments for n = 10k, k ϵ {1, 2, 3, 4, 5, 6}, were presented.

Table 1. Comparison of the proposed method with some known methods

 n = 10 n = 100 n = 1000 n = 10000 n = 100000 n = 1000000

Li(n) - π(n) 1(2) 4(5) 8(10) 16(17) 36(38) 128(130)

Riemann(n) - π(n) -1 -1 0 -2 5 -29

MoLi(n) - π(n) 0 0 0 -3 -6 24

From the Table 1 we can see that columns that represent Li function contain two values. Value in the

bracket is value taken from the literature [2, 3], while the value in front of the bracket represents result

obtained by the experiment (having in mind the value of integration step and method of integration, the

obtained value is slightly lower, as it can be expected). From results it could be seen that proposed

method produces very similar quality of approximation to the Riemann prime counting function [2]

while, at the same time, it is less computationally demanding than Riemann prime counting function.

From  Table  1  is  clear  that  proposed  approximation  outperforms  the  approximation  based  on  Li

function.

In order to assess the quality of the proposed approximation for some other values of  n,  results of

another experiment are presented in Figures 1 and 2. Figure 3 and 4 present graphical interpretation of

results presented in Table 1.



Figure 1. Absolute error of approximation (input points are defined as s*10k, where s {1, 2, ...9} and k {1, 2, 3, 4, 5})

Figure 2. Relative error of approximation (input points are defined as s*10k, where s ϵ{1, 2, ...9} and k ϵ{1, 2, 3, 4, 5})



Figure 3. Absolute error of approximation (input points are defined as 10k, where k ϵ{1, 2, 3, 4, 5, 6})

Figure 4. Relative error of approximation (input points are defined as 10k, where k ϵ{1, 2, 3, 4, 5})

From figures it  could be concluded that  proposed approximation outperforms the approximation of

prime counting function based on Li function, in the range that is analyzed. Based on rough estimations



(using  big  integration  step),  proposed  approximation  based  on  MoLi function  outperforms

approximation based on Li function in much broader range (at least till 1024).

The next Table 2,  gives comparison of  error of  Li(n)  function, Riemann  R(n),  MoLi(n) and newly

created  function  RMoLi(n)  =(2*R(n)+MoLi(n))/3  in  much  broader  range.  The  results  for  function

MoLi(n) were obtained by using CASIO computation service [4] for li function [1]. 

Table 2. Comparison of several methods for prime counting function approximation

Li(n) - π(n) R(n) - π(n) MoLi(n) - π(n) RMoLi(n)-π(n)

n = 101 2 -1 0 -1

n = 102 5 -1 0 -1

n = 103 10 0 0 0

n = 104 17 -2 -3 -2

n = 105 38 5 -6 1

n = 106 130 -29 24 -11

n = 107 339 -88 72 -35

n = 108 754 -97 51 -48

n = 109 1701 79 -207 -16

n = 1010 3104 1828 -2184 491

n = 1011 11588 2318 -3299 446

n = 1012 38263 1476 -4174 407

n = 1013 108971 5773 -13218 -557

n = 1014 314890 19200 -39818 -473

n = 1015 1052619 -73218 15868 -43523

n = 1016 3214632 -327052 166763 -162447

n = 1017 7956589 598255 -1048475 49345

n = 1018 21949555 3501366 -4772209 743508

n = 1019 99877775 -23884333 20279712 -9162985

n = 1020 222744644 4891825 -15163730 -1793360

n = 1021 597394254 86432204 -115833916 19010164

n = 1022 1932355208 127132665 -211645365 14206655



From Table 2 it can be noticed that proposed function MoLi(n) outperforms function Li(n) in the whole

range that was analyzed. Also, it can be noticed that newly proposed RMoLi(n) function is equal to (up

to n = 104) or outperforms Riemannian function for all values that were analyzed. That could rise some

interesting questions related to Riemann hypothesis, but this will not be further elaborated here.
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