
ON ODD PERFECT NUMBERS

THEOPHILUS AGAMA

Abstract. In this note, we introduce the notion of the disc induced by an

arithmetic function and apply this notion to the odd perfect number problem.

We show that under certain special local condition an odd perfect number
exists by exploiting this concept.

1. Introduction

Let σ : N −→ N denotes the sum-of-divisor function, defined as

σ(N) :=
∑
n|N

n

for a fixed N ∈ N. We say N is a perfect number if and only if σ(N) = 2N . If N
is perfect and is odd then we say it is an odd perfect number. It is still unknown if
there exist any odd perfect numbers and the problem for asserting their existence
or non-existence still remains an active area of research. Much work has already
been done in this area and most subtle and basic properties about odd perfect - if
they exist - are now known. The eighteenth century mathematician Leonard Euler
was the first to show that if any odd perfect number N exists then it must be of
the form

N := qβ
n∏
i=1

pαii

where q, β ≡ 1 (mod 4) and αi ≡ 0 (mod 2) for each 1 ≤ i ≤ n. It is also know that,
if an odd perfect number N exists then it must satisfy the inequality N > 101500

[1]. It is also known that (see [2]) an odd perfect number must not be divisible by
105 and must satisfy the congruence conditions (see [3])

N ≡ 1 (mod 12) and N ≡ 117 (mod 468) N ≡ 81 (mod 324).

If there are k of the exponents αi in the prime factorization of N with αi ≡ 0
(mod 2), then it is known that the smallest prime factor of N is at most k−1

2 [4].
In this case, it has been shown that (see [5])

N < 24
k+1−2k+1

and with q
∏k
i=1 pi < 2N

17
26 [6]. The scale of the largest and the second largest

prime factor of an odd perfect number - if they exist - has also been studied quite
extensively in a series of papers by several authors. It is now known that the largest
prime factor of N is greater than 1018 (see [7]) and less than (3N)

1
3 [8]. It has also
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been shown that the second largest prime factor of an odd perfect number N must
be greater than 104 and less than (2N)

1
5 [9]. The third largest prime factor is now

known to be greater than 100. All of these result could conceivably be synthesized
in a nice way to study the main question of the existence or non-existence of an
odd perfect number.
In this paper, by using the notion of the disc induced by arithmetic functions, we
show conditionally that there exists an odd perfect number.

2. Preliminary results

In this section we launch some fundamentally well-known traditional results con-
cerning odd perfect numbers.

Lemma 2.1 (Euler). Let N be an odd perfect number, then N has the unique
representation

N = qβ
n∏
i=1

pαii

where q, β ≡ 1 (mod 4) and αi ≡ 0 (mod 2) for each 1 ≤ i ≤ n.

Theorem 2.2. If N an odd perfect number then

ϕ(N) ≤ bN
2
c

where ϕ denotes the Euler totient function.

Proof. Let us assume there exists an odd perfect number N . It is clear that N
must be composite so that by the fundamental theorem of arithmetic and Lemma
3.4 the representation holds for N

N := qβ
n∏
i=1

pαii

where q, β ≡ 1 (mod 4) and αi ≡ 0 (mod 2) for each 1 ≤ i ≤ n. Next let us apply
the sum-of-divisor function σ on N and study their internal structure

σ(N) := σ

(
qβ ×

n∏
i=1

pαii

)
.

Since the sum-of-divisor function σ is multiplicative, we obtain further the decom-
position

σ(N) =

( β∑
j=0

qβ−j
)
×
( n∏
i=1

αi∑
j=0

pαi−ji

)
where we have used the elementary identity xn−1 = (x−1)(xn−1+xn−2+· · ·+x+1).
Since we have assumed that N is an odd perfect number, it follows that σ(N) = 2N
so that

2qβ
n∏
i=1

pαii =

( β∑
j=0

qβ−j
)
×
( n∏
i=1

αi∑
j=0

pαi−ji

)
.
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By rearranging terms the following representation holds( β∑
j=0

1

qj

)
×
( n∏

i=1
p
αi
i ||N

αi∑
j=0

1

pji

)
= 2.

Then we have the inequality

2 =

( β∑
j=0

1

qj

)
×
( n∏

i=1
p
αi
i ||N

αi∑
j=0

1

pji

)

≤
∏
p|N

(
1 +

1

p
+

1

p2
+ · · ·+

)

=
N

ϕ(N)

and the claimed inequality follows immediately. �

1

3. The notion of the disc induced by arithmetic functions and
application to the odd perfect number problem

In this section we introduce and study the notion of the disc induced by arith-
metic functions. We find this notion suitable for verifying the non-existence of odd
perfect numbers. We launch the following language.

Definition 3.1. Let f : N −→ N and let a, r ∈ N be fixed. Then by the disc
induced by f with center a and radius r, denoted Df (a, r), we mean

Df (a, r) := |f(m)− a| ≤ r

for m ∈ N. We say s ∈ Df (a, r) if and only if |f(s) − a| ≤ r. We say the disc
induced is degenerative if there exists some t ∈ Df (a, 0) and we call Df (a, 0) the
degenerated disc. Otherwise we say the disc induced is non-degenerative. We say
the disc induced is uniformly degenerative if it is degenerative for all a ∈ N.

Proposition 3.2. The following properties hold

(i) Let g : N −→ N be multiplicative and s = uv with (u, v) = 1 with u, v > 1.
If s ∈ Dg(a, r) for a fixed r, a ∈ N and

a <
g(u) + g(s)

2
a <

g(v) + g(s)

2

then u ∈ Dg(a, r − ε) and v ∈ Dg(a, r − δ) for some ε, δ > 0.

(ii) Let g : N −→ N be additive and s = uv with (u, v) = 1 with u, v > 1. If
s ∈ Dg(a, r) for a fixed r, a ∈ N and

a <
g(u) + g(s)

2
a <

g(v) + g(s)

2

then u ∈ Dg(a, r − ε) and v ∈ Dg(a, r − δ) for some ε, δ > 0.

1
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Proof. We only prove property (i) since the same approach could be adapted for
property (ii). Let s ∈ Dg(a, r) and write s = uv such that (u, v) = 1 with u, v > 1.
Then since g is multiplicative and

a <
g(u) + g(s)

2
a <

g(v) + g(s)

2
we can write

|g(u)− a| < |g(s)− a| = |g(u)g(v)− a| ≤ r

so that there exists some ε > 0 such that |g(s) − a| = |g(u) − a| + ε ≤ r and it
follows that u ∈ Dg(a, r − ε). It follows similarly that there exists some δ > 0 such
that v ∈ Dg(a, r − δ). �

Remark 3.3. Now we verify an important but yet trivial preparatory observation
for asserting the truth of our main result. It conveys the principal notion that no
degenerated disc induced by an arithmetic function will ever contain a composite.

Proposition 3.4. Let g : N −→ N be multiplicative (resp. additive). If s = uv
with (u, v) = 1 and u, v ≥ 3 such that at least one of the following holds

a <
g(u) + g(s)

2
a <

g(v) + g(s)

2

then s 6∈ Dg(a, 0).

Proof. Let s = uv such that (u, v) = 1 with u, v ≥ 3 and assume to the contrary
that s ∈ Dg(a, 0). Since g is multiplicative, let us assume at least one of the
following holds

a <
g(u) + g(s)

2
a <

g(v) + g(s)

2
.

Then it follows from Proposition 3.2 that at least one of the following holds

u ∈ Dg(a,−ε) v ∈ Dg(a,−δ)
for some ε, δ > 0. This is impossible since the radius of each of the degenerated
disc is negative, thereby ending the proof. �

Theorem 3.5 (Main theorem). If there exists an l ∈ Dσ(2N, ε) such that l = Nd
with (N, d) = 1 and

2N <
σ(N) + σ(l)

2

for any ε > 0, then there must exist an odd perfect number.

Proof. It suffices to show that some odd composite N must satisfy N ∈ Dσ(2N, 0).
Suppose to the contrary that there exists no odd perfect number. Let r be fixed,
then for any odd composite N we choose P = Ns with (s,N) = 1 such that
P ∈ Dσ(2N, r) and

2N <
σ(N) + σ(P )

2
.

By appealing to Proposition 3.2, we have

N ∈ Dσ(2N, r − ε)
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for some ε > 0. Again we choose Q ∈ Dσ(2N, r − ε) such that Q = Nt with
(N, t) = 1 and

2N <
σ(N) + σ(Q)

2
then by appealing one more time to Proposition 3.2 and the assumption that there
exists no odd perfect number, we obtain the containment

N ∈ Dσ(2N, r − ε− δ).
Under the assumption that there exists no odd perfect number and the additional
local condition, we obtain the following infinite descending sequence of the radius
of each smaller disc

r > r − ε > r − ε− δ > · · ·
and yet the disc will never degenerate, which is an impossible phenomenon. This
completes the proof of the theorem. �
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