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Abstract 

By a consideration of this research, since we found that at least one prime number 

exists between n2 and n(n + 1) when n ≧ 3 holds, we have obtained a conclusion 

that Legendre's conjecture is true. 
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1. Introduction 

This is the conjecture that there is a prime number always between n2  and 

(n + 1)2 for arbitrary positive integer n. It was set up by the French mathematician 

Adrien-Marie Legendre.  (Quoted from Wikipedia) 

 

 

2. Proof 

Let n and p be positive integers. If Legendre's conjecture is true, there is at least 

one prime number p satisfying the following inequalities. 

n2 < p < (n + 1)2 (n ≧ 1) … (1) 

Ⅰ. When n < 3 

There are prime numbers 2 and 3 between 1 and 4. In the same way, there are 

prime numbers 5  and 7 . Therefore, Legendre's conjecture is true when n < 3 

holds. 

 

Ⅱ. When n ≧ 3 

Suppose that p satisfies the following inequalities, 

n2 < p < n(n + 1) … (2) 

Let q be a positive integer. If any p is a composite number and has prime factors, 

the largest possible factor of p in the range of the inequalities (2) is n(n + 1)/2 − 1 

and p must be divided by q which is from n + 2 to (n2 + n − 2)/2 since n and 

n + 1 cannot divide p and the product of two factors between 2 and n − 1 cannot 
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be p. 

n + 1 < q < n(n + 1)/2 … (3) 

We will consider the case where p is divisible by q satisfying the inequalities above. 

Let r be a positive integer and the quotient when p is divided. r must be satisfied 

the following inequalities. 

1 < r < n … (4) 

If it is assumed that p are all composite numbers in the range of the inequalities (2), 

p must be divided by q in the inequalities (3). When p is a composite number, one 

p corresponds to some combinations of q and r. p has a one-to-one correspondence 

with q since the maximum value of p in the inequalities (2) is less than twice the 

minimum value of p and the maximum p is equal to or more than double the other 

p  if p  has a one-to-many correspondence with q . And p  has a one-to-many 

correspondence with r. 

We will apply a rule to select the relations from p to r and consider the case when 

n = 9 holds. 

When p = 82, (q, r) = (41,2) 

When p = 84, (q, r) = (42,2), (28, 3), (21,4), (14, 6), (12, 7) 

When p = 85, (q, r) = (17,5) 

When p = 86, (q, r) = (43,2) 

When p = 87, (q, r) = (29,3) 

When p = 88, (q, r) = (44,2), (22, 4), (11,8) 

Define [p, r] as a relation from p to r. We will select the relations between p and r 

so that there are all one-to-one correspondences. At first the relations are selected 

by r which are multiples of 2 for each p. [82,2] is sorted out when p = 82 holds. 

Then [84,4] is sorted out since r = 2 has been selected. When p = 86 holds, there 

is one combination (q, r) = (43,2) and r = 2 has been taken from. In this case, we 

consider to use the factor 2 of 6 and think that there is a relation [86,6]. Then 

[88,8] is sorted out. Next, we select the relation by 3 multiples r and [87,3] is 

sorted out. 

When r is a composite number, we skip the number since we have already taken 

from the relations by a multiple of the prime factor of r. Next, we select the 

relations by multiples of prime numbers greater than or equal to 5. 

Let a(n, r) and b(n, r) be integers and a(n, r) be the number of r multiples in the 

range of the inequalities (2) and b(n, r) be that in the range of the inequalities (4). 

The following inequalities hold. 

a(n, r) ≦ b(n, r) + 1 
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When n = 8 holds, a(8,5) = 2, b(8,5) = 1 and a(8,5) > b(8,5) hold. 

When p = 65, (q, r) = (13,5) 

When p = 66, (q, r) = (33,2), (22,3), (11,6) 

When p = 68, (q, r) = (34,2), (17,4) 

When p = 69, (q, r) = (23,3) 

When p = 70, (q, r) = (35,2), (14,5), (10,7) 

Let s be a positive integer. Starting with the smallest prime number 2, for the sth 

p that is a multiple of the prime number, we select a relation with r as s multiples 

of the prime number. In this case, we select the relations [66,2], [68,4], [70,6] when 

r = 2  holds, [69,3]  when r = 3  holds and [65,5]  when r = 5  holds. Let t  be a 

prime number less than r. In the case of a(n, r) > b(n, r), the actual increase in the 

number of relations between p and r at the time of making the selection is less 

than or equal to b(n, r) because one of the t adjacent multiples of r is a multiple of 

t and the relations have already been selected by t multiples. The value of t can be 

considered 2 or 3 since a(n, t) = b(n, t) holds as follows. 

 

Let m be an integer. 

・When n = 2m and m > 1 

a(2m, 2) = floor(((2m)2 + 2m − 1)/2) − floor((2m)2/2) = m − 1 

b(2m, 2) = floor((2m − 1)/2) = m − 1 

・When n = 2m + 1 and m > 0 

a(2m + 1,2) = floor(((2m + 1)2 + 2m + 1 − 1)/2) − floor((2m + 1)2/2) = m 

b(2m + 1,2) = floor((2m + 1 − 1)/2) = m 

Therefore, a(n, 2) = b(n, 2) holds when n ≧ 3 holds. 

 

・When n = 3m and m > 0 

a(3m, 3) = floor(((3m)2 + 3m − 1)/3) − floor((3m)2/3) = m − 1 

b(3m, 3) = floor((3m − 1)/3) = m − 1 

・When n = 3m + 1 and m > 0 

a(3m + 1,3) = floor(((3m + 1)2 + 3m + 1 − 1)/3) − floor((3m + 1)2/3) = m 

b(3m + 1,3) = floor((3m + 1 − 1)/3) = m 

・When n = 3m + 2 and m > 0 

a(3m + 2,3) = floor(((3m + 2)2 + 3m + 2 − 1)/3) − floor((3m + 2)2/3) = m 

b(3m + 2,3) = floor((3m + 2 − 1)/3) = m 

Therefore, a(n, 3) = b(n, 3) holds when n ≧ 3 holds. 

From the above, the prime number r with a(n, r) > b(n, r) satisfies r ≧ 5. 
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We will consider the case when n = 17 holds. 

When n = 17 holds, a(17,5) = 4, b(17,5) = 3 and a(17,5) > b(17,5) hold. 

When p = 290, (q, r) = (145,2), (58,5), (29,10) 

When p = 291, (q, r) = (97,3) 

When p = 292, (q, r) = (146,2), (73,4) 

When p = 294, (q, r) = (147,2), (98,3), (49,6), (42,7), (21,14) 

When p = 295, (q, r) = (59,5) 

When p = 296, (q, r) = (148,2), (74,4), (37,8) 

When p = 297, (q, r) = (99,3), (33,9), (27,11) 

When p = 298, (q, r) = (149,2) 

When p = 299, (q, r) = (23,13) 

When p = 300, (q, r) = (150,2), (100,3), (75,4), (60,5), (50,6), (30,10), (25,12), (20,15) 

When p = 301, (q, r) = (43,7) 

When p = 302, (q, r) = (151,2) 

When p = 303, (q, r) = (101,3) 

When p = 304, (q, r) = (152,2), (76,4), (38,8), (19,16) 

When p = 305, (q, r) = (61,5) 

In the beginning, we select the relations [290,2], [292,4], [294,6], [296,8], [298,10], 

[300,12], [302,14] and [304,16] when r = 2 holds. Then we select [291,3], [297,9] 

and [303,15] when r = 3 holds. The numbers of r, 6 and 12 are skipped since 

these have already been selected when r = 2. When r = 5 holds, we should select 

the relations in the case of p = 295 and p = 305. However, there is only 5 for r 

which corresponds to p since 10 and 15 have already been taken from. With this 

method, we cannot select the one-to-one relations between p and r. 

 

And so, we will change the rules as follows. We select relations by the prime 

numbers in descending order. When a(n, r) > b(n, r) holds, a composite number p 

can be skipped since one of the relations can later be selected by multiples of a prime 

number less than r, which is 2 or 3. When n = 17 holds, the relations are selected 

as follows. 

When r = 13, [299,13] 

When r = 11, [297,11] 

When r = 7, [294,7],[301,14] 

When r = 5, [290,5],[295,10],[305,15] 

When r = 3, [291,3],[300,6],[303,9] 
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When r = 2, [292,2],[296,4],[298,8],[302,12],[304,16] 

The minimum n when there exists r with a(n, r) > b(n, r) is 7 and the minimum 

r where a(n, r) > b(n, r) holds is 5. Therefore, if we select the relations this way, 

one-to-one correspondence with all composite numbers p can be set for r for all n 

where n ≧ 3 holds. 

However, it becomes a contradiction since the number of p in the inequalities (2), 

n − 1 is greater than the number of r in the inequalities (4), n − 2 and it does not 

become a one-to-one correspondence between p and r. Therefore, the assumption 

that p are all composite numbers in the range is false and there is at least one 

prime number in the range of the inequalities (2) when n ≧ 3 holds. From the above 

Ⅰ and Ⅱ, it is proved that Legendre's conjecture is true.  (Q.E.D.) 

 

 

3. Complement 

Oppermann’s conjecture states that, for every integer x > 1, there is at least one 

prime number between x(x − 1) and x2, and at least another prime between x2 

and x(x + 1). It is named after Danish mathematician Ludvig Oppermann, who 

announced it in an unpublished lecture in March 1877.  (Quoted from Wikipedia) 

x(x + 1) < p < x(x + 2) 

Considering an integer p satisfying these inequalities, because a(x, r) ≦ b(x, r) + 1 

holds and the minimum x where there exists r with a(x, r) > b(x, r) is 9 and the 

minimum r where a(x, r) > b(x, r) holds is 7, we found that at least one prime 

number between x(x + 1) and (x + 1)2 when x ≧ 3 holds in the same way as this 

proof. Therefore, we proved that Oppermann’s conjecture is true. 
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