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 Additive walks on  and Proof of Twin- and Primes Conjecture 
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     Abstract 

An additive model of random walks on set of natural numbers  is applied to analyze  
probability distribution of gaps, that is differences ,  between consecutive  
prime numbers  and . The well known fact is that gaps between consecutive primes  
can be as small as 2 (for twin primes) and arbitrary large. This work is concerns with sets  
of primes  with gaps  (called -primes), where  is any even number.  
For  we have set of twin primes, with unproved conjecture that  is infinite set.  
We provide some statistical analysis for frequency distribution of d-primes.  
The main result of this work is the proof that  is infinite set for every even .  
The proof is based on modified Cramér’s probabilistic model for distribution of prime  
numbers. This method has been discussed in detail in the author’s previous publication[1]. 

Consider an additive rule to generate stochastic or deterministic sequences 

of positive integers: 

          (1)        

This approach leads to ‘additive model’ of random walks on  in the study of prime  

numbers distribution. Though the sequence generated recurrently, is  

deterministic, each step of the ‘walk’ (1) can result either in  ,  

or  in   (if is a composite number). Differences (‘gaps’)  

between consecutive two primes look very sporadic and hard to predict.  

It is well known that gaps between two consecutive number s  

can be as small as 2 (for twin primes) or arbitrary big. Indeed, in the sequence of  

consecutive integers  each integer  is divisible by ,  

and therefore this sequence does not include prime numbers. This means that there  

exist consecutive primes such  that ,  

which implies that . 
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The next definition is a generalization of the notion of twin primes. 

Definition 1. 

We call numbers  consecutive if there is no prime between them (that is there  

is no prime such that ). A prime number we call if  there exist 

consecutive primes such that .  

Notice that for . 

For example, is  if and only if are twin primes, since for primes 

twin primes are automatically consecutive. 

Let us denote  the set of . 

For example, ; the set of twin primes is . 

One of the famous unproved conjectures is that the set is infinite. 

Table  6.1.  

Lemma 1. 

makes a partition of the set of primes . 

Proof. 

Notice that  for all odd . Obviously, . 

Then, is set of all even natural numbers. 

This implies that any prime number is a for an appropriate .  

Indeed, due to the Euclid Theorem, there are infinitely many prime  
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numbers, Therefore, for any prime  there exist the next 

(that is consecutive) prime , so that . 

Q.E.D. 

The first  conjecture is that  for all even values of . 

The second conjecture is that every is an infinite set for all even 

values of . 

Remark1. 

For each even number  consider a partition of by a finite number  

of congruence classes . Then, the intersection of the  

partition sets with     makes a partition of the infinite 

sets of all primes , such that at least one of classes must contain  

infinitely many prime numbers. Primes populate sets  

not evenly as illustrated by the histogram below for . 
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Computer calculations show so far that the most frequent value of 

consecutive primes gaps is . 

According to the Prime Number Theorem, the counting function 

of primes on is given by the asymptotic formula: 

            

This leads to the heuristic assumption about the probability of prime  

distribution on . According to the Cramér’s model, occurrences of primes  

in  are controlled by the sequence of independent  variables , ,  

and associated independent Bernoulli variables  

such that 

                                      (3) 

As we know, the sequence of primes is deterministic and is 

recurrently controlled by the corresponding vector of residuals 

           , where . 

The assumption that terms of the sequence in Cramér’s model 

are independent random variables is justified by the statement  

that this sequence is asymptotically independent, as proved in [1]. 

Validity of the choice of probabilities in Cramér’s model is supported by 

the proof given in [1] that  as :     
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Denote    number of  in the interval  

.  Given prime number , the corresponding vector of residuals 

   must have all non-zero components. 

One of quite reasonable questions is how frequently  may occur  

among all prime numbers. We can evaluate the empirical probability  

of   by the relative frequency . 

Denote  .   Then, . 

We have ‘randomization’ of  in the form. . 

Assuming the Cramer’s assumption of independence of consecutive primes,  

we have: 
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Then, . Following the Cramér’s model 

assumption, , we obtain: 

 

Denoting , we write the function  as 

                                

Thus, mathematical expectation and variance of   given   can be 

expressed as  . 

This implies: 

                                     (2) 

Using (2), we can approximate the mathematical expectation and variance of  in 

the integral form: 

                                       (3)              
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Theorem 6.1 

For each even value of   there are infinitely many consecutive prime  

numbers with gap equal to , so that every  is an infinite set for all  

even values of    . 

Proof. 

This statement is proved by using the equivalence:    

                

Indeed, if we assume that for some even  there exists  such that 

, then  becomes constant for sufficiently large 

values of   . But this contradicts the above equivalence since function   is 

strictly increasing for  all  because it has positive derivative

  

Q.E.D. 

d ≥ 2

d DPd

d ≥ 2
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ln t( ) ⋅ ln(t + d)( ) dt2
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d ≥ 2 xmax

π d (x) = π d (xmax ) for all x > xmax π d (x)
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> 0 for all even d ≥ 2 and x > 2.
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