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Abstract

An additive model of random walks on set of natural numbers is applied to analyze
probability distribution of gaps, that is differences d = p’— p, between consecutive

prime numbers p” and p. The well known fact is that gaps between consecutive primes
can be as small as 2 (for twin primes) and arbitrary large. This work is concerns with sets
of primes DIP, with gaps d (called d -primes), where d is any even number.

For DP, we have set of twin primes, with unproved conjecture that DIP, is infinite set.
We provide some statistical analysis for frequency distribution of d-primes.
The main result of this work is the proof that DI, is infinite set for every even d .

The proof is based on modified Cramér’s probabilistic model for distribution of prime
numbers. This method has been discussed in detail in the author’s previous publication[1].

Consider an additive rule to generate stochastic or deterministic sequences
of positive integers:
Vo =0,V =V, AV,
Pin Vi, €P (1)

where Av, , :{O therwi for k=0,1,2,3,...
, otherwise

This approach leads to ‘additive model” of random walks on N in the study of prime
numbers distribution. Though the sequence {v, },_. generated recurrently, is
deterministic, each step of the ‘walk’ (1) can result either in Av,,, P,

or in 0 (if Av,,, 1s a composite number). Differences (‘gaps’) Av,,, = p... — P:

between consecutive two primes look very sporadic and hard to predict.

It is well known that gaps between two consecutive number p and p+2s p,,, and p, >3
can be as small as 2 (for twin primes) or arbitrary big. Indeed, in the sequence of n—1
consecutive integers {n!+ k|2<k < n} each integer n!+k is divisible by &,

and therefore this sequence does not include prime numbers. This means that there
exist consecutive primes p, and p,,, such that p,<n!+2 andp,, >nl+n,

which implies that Ap,,, =p,, —p, 2n.



The next definition is a generalization of the notion of twin primes.
Definition 1.

We call numbers p < p’ consecutive if there is no prime g between them (that is there
is no prime ¢ such that p <g< p”). A prime number pwe call d-primeif there exist

consecutive primes p,p’such that p’=p+d.

Notice that Ap’= p’— p=dfor d-prime p .
For example, pis 2-prime if and only if p and p”are twin primes, since for primes
p =3 twin primes are automatically consecutive.

Let us denote DP, = { p|p and p +d are consecutive primes} the set of d-primes.
For example, DP, ={2}; the set of twin primes is DP, ={3,5,11,17,29,41,...} .

One of the famous unproved conjectures is that the set DP, is infinite.

Table 6.1. d-primes for d =2,4,6 among all primes p < 200

DP, 3 511 17 29 41 59 71101 107 137 149 179 191 197
DP, 3 7 13 19 37 43 67 79 97103 109 127 163 193
DP, 23 31 47 53 61 73 83131151 157167 173

Lemma 1.

{DP,} _,, makes a partition of the set of primes P.

Proof.
Notice that DP, =@ for all odd 4 >1. Obviously, DP, "DP, foralld #d’.

Then, DP, u{ U DP }— PP, where 2-N1s set of all even natural numbers.

de2N d
This implies that any prime number pis a d-prime for an appropriate d .

Indeed, due to the Euclid Theorem, there are infinitely many prime



numbers, Therefore, for any prime p there exist the next
(that is consecutive) prime p’, so that p e DP, where d=p’—p.

Q.E.D.

The first conjecture is that DP, # @ for all even values of d>2.
The second conjecture is that every DP,is an infinite set for all even

values of d>2.
Remarkl.
For each even number d consider a partition of N by a finite number

of congruence classes {C,

0<r<d- 1} . Then, the intersection of the
partition sets with P {Cdp NPll<r<d- 1} makes a partition of the infinite

sets of all primes , such that at least one of classes C, must contain

infinitely many prime numbers. Primes populate sets DP, , - DP, N[2,N]

not evenly as illustrated by the histogram below for N =10°.

Histogram of d-primes for p < 108
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Computer calculations show so far that the most frequent value of
consecutive primes gaps is d =6.
According to the Prime Number Theorem, the counting function

of primes on Nis given by the asymptotic formula:

X

a0= Y 1~ Li(x)= jﬂ

pel2.x 1P , Int

This leads to the heuristic assumption about the probability of prime

distribution on N. According to the Cramér’s model, occurrences of primes

in N are controlled by the sequence of independent variables {v,} , v, =k,
. . . ) lif v =kelP
and associated independent Bernoulli variables &, :{ o
0, otherwise
such that
P{¢ =1}= 1 P{gkzo}:l—iforaukﬁ (3)

Ink’ Ink

As we know, the sequence of primes {p,} _ is deterministic and is

ne

recurrently controlled by the corresponding vector of residuals

n

F :( ],rz,...,rﬂ(ﬁ)) , Where r.=mod(n,p,),i= 1,2,...,75(\/;).

The assumption that terms of the sequence {&,} _ in Cramér’s model

are independent random variables is justified by the statement
that this sequence is asymptotically independent, as proved in [1].
Validity of the choice of probabilities in Cramér’s model is supported by

the proof given in [1] that as k — o



n
P{ag - 1} ~C wherec=——and y=lim| ¥ ~—Inn |~0.577215664
k Ink 4 ~ ok
e k=1
is Euler's constant

Denote m,(x)= » 1= Y I, (p) number d-primesof in the interval

[2,x]NDP, peDP,
[2,x]. Given prime number p, the corresponding vector of residuals
F= (rl,rz,...,r”( ﬁ)) must have all non-zero components.

One of quite reasonable questions is how frequently d-primes may occur

among all prime numbers. We can evaluate the empirical probability

of d-primes by the relative frequency P{ve DP,n[2,x]}= 7:;(_(36)) :
X
1if neDP,
Denote éd(n)—{o, thorwics Then, ﬂd(x)—ngd(n).
1if v=peDP,

We have ‘randomization’ of &£(n) in the form. &(v) ={ ,
0, otherwise

Assuming the Cramer’s assumption of independence of consecutive primes,

we have:

P{éd(v) = 1} = P{v and v +d are consecutive primes}

= P{v and v+d are prime numbers with no primes in the open interval (v,v+d)}

:p{vep}-p{fj{(m)ep}}.p{(vm)ep}



d-1 d-1
Then, P{ﬂ{(v +i)e IP’}} =[][1-P{wv+i)eP}]. Following the Cramér’s model

i=1

assumption, P{v=keP}= ﬁ , we obtain:
n

P{f“(v):”v:k}: )ln(k+d) H( In(k+ )j:\y(k’d)

=

d—1
Denoting ¢(k,d)= H[l— j, we write the function ¥(k,d) as

i=1

1
In(k +i)

P(k,d)

D= o mk+d)

Thus, mathematical expectation and variance of &,(v) given v=k can be

expressed as E{&,(V)|v=k}=Y¥(k.d),Var{E,)|v=k}=V¥(k,d)-(1-¥(k.d).

This implies:
E{r,(0)} =Y E{&,W|v=k}=D ¥(k.d)
k<x k<x 2
Var{m,(x)} =Y Var{&,W|v=k} =D P(k.d)-(1-¥(k.d)) @

Using (2), we can approximate the mathematical expectation and variance of in

the integral form:

(t.d)
E{m,(x)}= ;‘PUC d) ~ J (Int ¢(1n(t+d))

o(t.d) [, o(t,d)
Var{m,(x)} ~ -[lnt )-(In( +d)) (1 (mt)'(ln(t"'d))jdt

€)

Comparison of r,(x) distribution with its mathematical expectation E{r,(x)}

is given in the pictures below computed for d =2,4 and x=1000, x=10,000
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Theorem 6.1
For each even value of d>2 there are infinitely many consecutive prime

numbers with gap equal to d, so that every DP, is an infinite set for all

even values of d>2 .
Proof.

This statement is proved by using the equivalence:

dt as x — oo

[ t,d
R ’;\P(k,d) = J(lnt)l{/((ln(tl d))

Indeed, if we assume that for some even d >2 there exists x_ such that

X

r,(x)=m,(x,, ) forallx>x_ ,then 7, (x) becomes constant for sufficiently large

values of x . But this contradicts the above equivalence since function F(x) is
strictly increasing for all x>2 because it has positive derivative

O /€ X:)

=——— > —>(0forallevend =2 and x> 2.
In(x)-In(x+d)

Q.E.D.
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