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Abstract

The application of Bayesian inference for the purpose of model selection is very popular
nowadays. In this framework, models are compared through their marginal likelihoods, or
their quotients, called Bayes factors. However, marginal likelihoods depends on the prior
choice. For model selection, even diffuse priors can be actually very informative, unlike for
the parameter estimation problem. Furthermore, when the prior is improper, the marginal
likelihood of the corresponding model is undetermined. In this work, we discuss the issue of
prior sensitivity of the marginal likelihood and its role in model selection. We also comment
on the use of uninformative priors, which are very common choices in practice. Several
practical suggestions are discussed and many possible solutions, proposed in the literature,
to design objective priors for model selection are described. Some of them also allow the
use of improper priors. The connection between the marginal likelihood approach and the
well-known information criteria is also presented. We describe the main issues and possible
solutions by illustrative numerical examples, providing also some related code. One of them
involving a real-world application on exoplanet detection.

Keywords: Model selection, Marginal likelihood, Bayesian evidence, improper priors,
information criteria, BIC, AIC, posterior predictive.

1 Intro

In the last decades, we observe a growing trend in the use of Bayesian approaches to the problem
of inferring the parameters of physical models describing natural processes. Although Bayesian
inference has historically been used (e.g. (Robert & Casella, 2004; Liu, 2004)), it is only now
becoming more widespread. Nowadays, we can find applications of Bayesian inference methods
in fields such as remote sensing (Martino, Elvira, et al., 2021; Llorente et al., 2021), astronomy
(Feroz et al., 2019; Anfinogentov et al., 2021), cosmology (Ashton & Talbot, 2021; Ayuso et al.,
2021), or optical spectroscopy (Emmert et al., 2019; Von Toussaint, 2011).
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One of the most common problems we may encounter in Bayesian inference is that of model
selection. For this purpose, the determination of the Bayes factor is often used. This involves
the approximation of the Bayesian evidence, a.k.a., marginal likelihood, of the several models.
The marginal likelihood shows a clear dependence on the choice of the prior probability density
functions (pdfs). Many papers propose diffuse (usually uniform) prior pdfs, in order to avoid
biasing the exploration of the parameter space (see, e.g., (Pascoe et al., 2020)). In some cases, the
selected prior pdfs are diffuse or even improper (Gregory, 2011). These ideas have been borrowed
from the Bayesian parameter estimation problem, where they are adequate and objective choices.
However, in model selection, the situation is more complex as we describe below.

In a first part of this work, we describe some issues in Bayesian model selection (or hypothesis
testing) based on the marginal likelihood computation (Llorente et al., 2020; Chib & Jeliazkov,
2001; Bos, 2002). First of all, we show how the results can be affected by the choice of the prior.
The typical solution for parameter estimation of using a diffuse prior (which is said uninformative
in this scenario) cannot be considered an objective choice for the marginal likelihood computation.
With an objective choice, we refer to a prior selection that attempts to bring impartiality in the
model selection problem, and a diffuse prior can be actually a very informative prior for model
selection. Secondly, this issue becomes even more dramatic when improper priors are employed:
the Bayesian parameter estimation with improper priors is allowed if the corresponding posterior
is proper, whereas Bayesian model selection with improper priors is not allowed, due to the fact
the marginal likelihood is not completely specified (it is defined up to an arbitrary constant).
We describe all these issues by mathematical considerations and several illustrative numerical
examples. One of them involves a real-world application for detecting exo-objects (orbiting other
stars) based on a radial velocity model.
Furthermore, in the second part of this work, we show some possible solutions presented in
the literature, such as hierarchical approaches, likelihood-based priors, and the partial, intrinsic,
fractional Bayes factors (Llorente et al., 2020; O’Hagan, 1995), remarking potential benefits
and possible drawbacks of each of them. An alternative to the marginal likelihood approach
for Bayesian model selection, called posterior predictive framework (Vehtari et al., 2017, Ch.
6)(Piironen & Vehtari, 2017), is also described. Finally, the relationship between the information
criteria (Konishi & Kitagawa, 2008), such as Bayesian-Schwarz information criterion (BIC), Akaike
information criterion (AIC), and the marginal likelihood approach is discussed in Appendix B.
Therefore, the contribution is twofold: we provide (a) a gentle guide for interested practitioners
(with several warnings and advices), and (b) a work useful for more expert researchers looking for
practical solutions and/or possible alternatives. Some related code is also provided.

2 Problem statement

In many applications, the goal is to make inference about a variable of interest, θ = θ1:Dθ
=

[θ1, θ2, . . . , θDθ
] ∈ Θ ⊆ RDθ , where θd ∈ R for all d = 1, . . . , Dθ, given a set of observed

measurements, y = [y1, . . . , yDy ] ∈ RDy . In the Bayesian framework, one complete model M is
formed by a likelihood function `(y|θ,M) and a prior probability density function (pdf) g(θ|M).
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All the statistical information is summarized by the posterior pdf, i.e.,

π̄(θ|y,M) =
`(y|θ,M)g(θ|M)

p(y|M)
,

where

Z = p(y|M) =

∫
Θ

`(y|θ,M)g(θ|M)dθ, (1)

is the so-called marginal likelihood, a.k.a., Bayesian evidence (Robert & Casella, 2004; Liu, 2004).
This quantity is important for model selection purposes, as we show below. However, usually
Z = p(y|M) is unknown and difficult to approximate, so that in many cases we are only able to
evaluate the unnormalized target function,

π(θ|y,M) = `(y|θ,M)g(θ|M) ∝ π̄(θ|y,M). (2)

Model Selection and testing hypotheses. Let us consider now M possible models (or
hypotheses),M1, ...,MM , with prior probability mass pm = P (Mm), m = 1, ...,M . Note that, we
can have variables of interest θm = [θm,1, θm,2, . . . , θm,Dθm

] ∈ Θm ∈ RDθm , with possibly different
dimensions in the different models. The posterior probability of the m-th model is given by

p(Mm|y) =
pmp(y|Mm)

p(y)
∝ pmZm

where Zm = p(y|Mm) =
∫

Θm
`(y|θm,Mm)g(θm|Mm)dθm, and p(y) =

∑M
m=1 p(Mm)p(y|Mm).

Moreover, the ratio of two marginal likelihoods

BFmm′ =
Zm
Zm′

=
p(y|Mm)

p(y|Mm′)
=

p(Mm|y)/pm
p(Mm′ |y)/pm′

,

also known as Bayes factors, represents the posterior to prior odds of models m and m′. If some
quantity of interest is common to all models, the posterior of this quantity can be studied via
model averaging (Hoeting et al., 1999), i.e., a complete posterior distribution as a mixture of M
partial posteriors linearly combined with weights proportionally to p(Mm|y) (see, e..g, (Martino
et al., 2017; Urteaga et al., 2016)). Therefore, in all these scenarios, we need the computation of
Zm for all m = 1, ...,M .

Remark 1. Hereafter, whenever we focus on a single although arbitrary model Mm, we skip the
dependence on Mm in the notation, for simplicity. For instance, we denote the posterior density
as π̄(θ|y) and the marginal likelihood as Z = p(y). Thus, we write

Z =

∫
Θ

π(θ|y)dθ =

∫
Θ

`(y|θ)g(θ)dθ. (3)

Remark 2. From Eq. (3), we can see clearly that Z is an average of likelihood values `(y|θ),
weighted according to the prior pdf g(θ).

Clearly, the results of the Bayesian inference depend on the choice of the prior density, the model
prior probabilities and the actual number of data Dy.
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3 Important definitions and classifications

In this section, we describe some preliminary definitions that are necessary for a clear description
of the issues in Bayesian model selection and the corresponding possible solutions (described in
the rest of the work).

3.1 Levels in Bayesian inference

Generally speaking, in Bayesian inference we can distinguish between two types of problems or
levels of inference (MacKay, 2003, Ch. 28), described below:

• Level-1: estimation and prediction problems. In the first level, given the m-th model
Mm, we are interested in making inferences regarding parameter θm by focusing on its
posterior pdf π̄(θm|y,Mm) ∝ `(y|θm,Mm)g(θm|Mm). This is also denoted as “Level-1 of
inference” in the literature.

• Level-2: model selection problems. In the second type of problem, we focus on the
model posterior distribution p(Mm|y) ∝ p(Mm)Zm = p(Mm)

∫
Θm

`(y|θm,Mm)g(θm|Mm)
for all m = 1, . . . ,M . This is also known as “Level-2 of inference”.

More levels of inference can be recognized in the so-called hierarchical Bayesian approaches.
However, conceptually these are the two main levels of inference since they are associated with
the two main inference scenarios: parameter estimation and model selection. We will see that the
prior choice has a different impact in each of the different levels.

3.2 Type of model comparison

In the literature, we can distinguish different types of model selection, as we summarize below.
The type of model selection problem can affect the user’s choice of a suitable prior density.

• Basic model selection: In this scenario, we compare different likelihood functions (i.e.,
observation models). The likelihood functions can represent completely different models,
living even in different parameter spaces. In this scenario, the parameters θm of each model
can have a completely different physical or statistical interpretation.

• Selection in nested models: Nested models are models that belong to the same
parametric family, but the size of the model |Θm| = Dθm is also unknown and must
be inferred as well, jointly with the parameter θm. Namely, we have a sequence of
likelihoods defined in an increasing dimensional space, such as `(y|θ1,M1), `(y|θ1, θ2,M2),
`(y|θ1, θ2, θ3,M3), etc.
Famous applications which belong to this scenario are the following: variable selection (e.g.,
selecting a subset of relevant features/variables in regression or classification), order selection
(e.g., in polynomial regression or ARMA models etc.), clustering (when the number of
clusters are unknown) and dimension reduction problems (Bishop, 2006).
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3.3 Type of prior densities

The literature has plenty of works devoted to the specification and classification of different priors.
The interested readers can find gentle reviews in, e.g.,(Kass & Wasserman, 1996; Consonni et al.,
2018; Mikkola et al., 2021). Here, we provide a brief summary of concepts related to the choice
of the priors g(θ|M) over the parameters, and how this choice can affect the analysis in the two
levels of inference that we have described above.

3.3.1 Subjective priors

If the user or practitioner has some belief or any a-priori knowledge about the quantity of interest
(before the data is observed), then this information should be included in the analysis by the
addition of a suitable prior density. This prior is called as informative (or more precisely, in our
opinion, subjective-informative). We can distinguish three main classes of subjective priors:

• Priors including beliefs. An informative prior pdf can be determined from previous
information, past experiments or by other sources of information (different from the
observation model). Prior elicitation ideas can be used to transform such knowledge into
a prior density. See (Mikkola et al., 2021) for a review on different approaches for prior
elicitation.

• Priors as regularizers. In this case, the practitioner/researcher desires to force that the
final solution satisfies some properties established in advance, such as smoothness (designing
specific structure in covariance matrices in Gaussian priors, e.g., see (Martino & Read,
2021)), sparsity (this is the case of LASSO regularized, i.e., Laplacian priors (Bishop,
2006)) etc. Moreover, the regularization effect produced by the prior usually yields more
computational stability, hence reducing the numerical issues.

• Conjugate priors. A prior can also be set with the goal of reducing the computation
required by the posterior analysis. Indeed, when a family of conjugate priors exists, choosing
a prior from that family simplifies the calculation of the posterior distribution, avoiding the
use of costly computational techniques.

3.3.2 Objective priors

In many scenarios, additional information and conjugate priors are not available, and “objective”
choice of priors could be desired (Consonni et al., 2018). A first (and perhaps primitive)
approach for obtaining an objective prior is related to the concept of uninformative priors,
representing the absence of a-priori knowledge (Kass & Wasserman, 1996; Consonni et al., 2018).
A second approach is related to the idea of constructing priors by the use of formal rules and
automatized procedures based on desirable criteria and properties. The term objective prior aims
at encompassing both groups of priors above (Consonni et al., 2018). Below, we give more specific
definitions.

Uninformative priors. Generally, a prior is defined as uninformative, if it has been chosen
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in order to have a minimal impact on the posterior density (Mikkola et al., 2021). In this sense,
for the inference problem of parameter estimation (Level-1), a uniform prior over all the support
Θ is the maximal expression of uninformative prior. In fact, the inference would be completely
data-driven. On the contrary, we will show that in model selection (Level-2), this prior is highly
informative. Below, we describe some classes of uninformative priors (or attempts of uninformative
priors) for the Level-1 of inference, i.e., parameter estimation.

• Uniform prior over Θ when |Θ| < ∞. If Θ is bounded, the simplest idea for
determining a non-informative prior (for Level-1, parameter estimation) is to assign equal
probabilities to all possible outcomes, such as uniform densities in the bounded support, i.e.,
g(θ) ∝ 1 ∀θ ∈ Θ.

• Locally-uniform priors. If Θ is unbounded, one can employ vague priors, i.e., densities
with probability mass spread in all the state space, with a great scale parameter (this is
the reason for the name “locally uniform”). The priors built using this philosophy have
been given different names such as diffuse, vague, flat, weakly-informative, etc. (Consonni et
al., 2018) A more extreme alternative is to use improper priors when it is possible (see the
description below).

• Improper priors. Let us consider again that Θ is unbounded. The use of improper priors,
i.e., such that

∫
Θ
g(θ)dθ =∞, is allowed for Level-1 inference when

∫
Θ
`(y|θ)g(θ)dθ <∞,

since the corresponding posteriors are proper. The simplest example is the uniform improper
prior, i.e., g(θ) ∝ 1 for all θ in the unbounded support Θ. It is often employed for expressing
the absence of a-priori information in the Level-1 of inference. However, improper priors
are not allowed for model selection (Level-2 inference), where we use the marginal likelihood
Z. Indeed, the prior g(θ) = c · h(θ) is not completely specified, since c > 0 is arbitrary.

Other authors design priors using formal rules which are theoretical and practically appealing. In
this sense, this type of priors are informative but not subjective. Some example are given below.

Reference and Jeffreys priors. Prior densities can also be designed according to other
principles such as invariance after transformations, symmetry or maximizing entropy given some
constraints (Kass & Wasserman, 1996; Consonni et al., 2018). Examples of this family are the
reference priors (Bernardo, 1979; Berger et al., 2009) and Jeffreys priors (Jeffreys, 1998). Often,
they are also improper priors. An example is g(σ) ∝ 1/σ for σ > 0 which is an improper Jeffreys
prior, and is usually applied for a variable that represents a standard deviation. More generally, the
Jeffreys prior is constructed by taking g(θ) ∝ |I(θ)| 12 where I(θ) denotes the Fisher information
matrix.

Below we discuss how the choice of the prior affects (a) the inference of θ (Level-1), and (b) the
estimation of the Bayesian evidence Z for the model selection problem (Level-2).
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4 Dependence on the choice of the prior density

In this section, we show how the marginal likelihood Z depends on the choice of prior density
(Bernardo & Smith, 1994). Here, first we show all the possible values that the evidence Z can
take when changing the prior pdf. Then, we present some reassuring asymptotic results. Finally,
we describe further issues with the use of improper priors.

4.1 Bounds of the evidence Z

Let us denote the maximum and minimum value of the likelihood function as `min = `(y|θmin) =
min
θ∈Θ

`(y|θ), and `max = `(y|θmax) = max
θ∈Θ

`(y|θ), respectively. Note that

Z =

∫
Θ

`(y|θ)g(θ)dθ ≤ `(y|θmax)

∫
Θ

g(θ)dθ = `(y|θmax).

Similarly, we can obtain Z ≥ `(y|θmin). The maximum and minimum value of Z are reached, for
instance, with two degenerate choices of the prior, g(θ) = δ(θ − θmax) and g(θ) = δ(θ − θmin),
where δ(θ) denotes the Dirac point mass at 0. Hence, for every other choice of g(θ), we have

`(y|θmin) ≤ Z ≤ `(y|θmax).

Namely, depending on the choice of the prior g(θ), we can have any value of Bayesian evidence
contained in the interval [`(y|θmin), `(y|θmax)].
The two possible extreme values correspond to the worst and the best model fit, respectively.
We can obtain Z = `(y|θmin) with the choice g(θ) = δ(θ − θmin) (which applies the greatest
possible penalty to the model), and we obtain Z = `(y|θmax), with the choice g(θ) = δ(θ − θmax)
(which does not apply any penalization to the model complexity, i.e., we have the maximum
overfitting). Indeed, Z =

∫
Θ
`(y|θ)g(θ)dθ is by definition an average of the likelihood values

weighted according to the prior.

Remark 3. Depending on the choice of the prior, the evidence Z can take any possible value in
the interval [`(y|θmin), `(y|θmax)]. Hence, in this sense, the prior g(θ) induces a penalization term
for the model complexity. See also Appendix A for further details.

Remark 4. Choosing a prior g(θ), we fix our bias-variance trade-off (a point between the
maximum under-fitting and maximum over-fitting). In this sense, the sensitivity of Z could be
also considered as a benefit, i.e., an additional degree of freedom for improving the bias-variance
trade-off.

Note that Remark 3 above it is strictly connected to Remark 2. For the relationship with the
well-known Bayesian-Schwarz information criterion (BIC) and the Akaike information criterion
(AIC), see Appendix B.
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4.2 Asymptotic considerations in Bayesian inference

Throughout this section, we consider the priors have been selected and fixed, whereas the number
of data Dy diverges to infinity, i.e., Dy → ∞. We summarize the basic consistency properties
of Bayesian inference in both inference problems (i.e., Level-1, estimation, and Level-2, model
selection) and discuss the asymptotic behavior of Bayes factors and posterior model probabilities.
For sake of simplicity, we assume that weak regularity conditions are satisfied for these results to
hold (Dawid, 2011; Kass & Raftery, 1995; Rossell & Rubio, 2021; Bernardo & Smith, 1994).
It is important to distinguish and describe two scenarios: (a) one where the true (unknown)
distribution of the data `true(y|θtrue) is included in the M possible models (M-closed scenario),
(b) and the other one where `true(y|θtrue) is not included in the possible set of models (M-open
scenario).

• M-closed scenario. When one of the models under consideration, say Mitrue , contains
`true(y|θtrue), i.e., there is θtrue such that `true(y|θtrue) = `(y|θtrue,Mitrue).

• M-open scenario. When none of the models contains `true(y|θtrue) (misspecification), then
we can define θ∗i = arg minθi KL(`true, `(·|θi,Mi)), which is the parameter that minimizes
the Kullback-Leibler (KL) divergence between `true(y|θtrue) and `(y|θi,Mi). Furthermore,
we can define

Mi∗ = arg min
i
KL(`true, `(·|θ∗i ,Mi)),

as the model that is closest in KL divergence to the true distribution of the data.

Consistency in Level-1. Consider the posterior distribution π̄(θ|y) for a fixed modelM (that is,
a particular observation model and a fixed prior). In theM-closed scenario, the posterior π̄(θ|y)
concentrates around θtrue as Dy →∞ (see Bernstein-von Mises theorem (Robert & Casella, 2004;
Liu, 2004; Bernardo & Smith, 1994)). Then, the two Bayesian point estimators, the posterior mean

θ̂mean =
∫

Θ
θπ̄(θ|y)dθ, and the maximum-a-posteriori (MAP) estimator θ̂MAP = arg maxθ∈Θ π̄(θ|y),

converge to θtrue (recovering frequentist arguments). This means that for large amounts of data,
one can use the posterior distribution to make, from a frequentist point of view, valid statements
about estimation and uncertainty. In theM-open scenario (i.e. when the model is misspecified),

then the asymptotic limits of the estimators θ̂mean and θ̂MAP approach the best-fitting parameters
θ∗i (Bernardo & Smith, 1994; Rossell & Rubio, 2021).

Consistency in Level-2. In the M-closed scenario, as the sample size diverges, Dy → ∞,
the posterior model distribution concentrates around the true model, that is, p(Mitrue |y) → 1
(Kass & Raftery, 1995; Dawid, 2011). In the M–open scenario, the posterior model distribution
concentrates on the model closest in KL divergence, that is, p(Mi∗|y)→ 1, as Dy →∞ (Dawid,
2011; Rossell & Rubio, 2021).

Remark 5. Under regularity conditions, Bayesian parameter estimation and model selection are
consistent. Specifically, as Dy → ∞, in the M-closed scenario, Bayesian inference gives the
correct answer by selecting the true model Mitrue, and also converging to θtrue. In the M-open
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scenario, Bayesian inference gives the best approximate answer, converging to the KL minimizers
under each model θ∗i and selecting the model with overall minimal KL divergence Mi∗.

Furthermore, in specific application frameworks and under fairly general conditions, asymptotic
expressions of quotients of posterior model probabilities and Bayes factors have been derived; see,
e.g., (Dawid, 2011; Rossell & Rubio, 2021). An important observation is that the leading terms
in those expressions do not depend on the prior densities. Namely, in the asymptotic regime,
Bayesian model selection is more sensitive to the sample size Dy than to the prior specifications
(Dawid, 2011; Rossell & Rubio, 2021). As we can see in Figure 5(b), there exists a reasonable
“default range” of the prior dispersion parameter that provides good results. Such default ranges
could be obtained, for instance, by using a measure of predictive accuracy (Rossell & Rubio, 2021).

These results for the asymptotic regime are reassuring and comforting. However, in the finite
sample size regime (i.e., Dy fixed) the results of Bayesian model selection are indeed affected by
the prior choice: as we already discussed in Sect. 4.1, the marginal likelihood can take any value
in the interval [`min, `max]. Below, we discuss this issue in the context of increasingly diffuse priors,
and compare it with Bayesian parameter estimation.

4.3 Robustness of Bayesian inference to the prior dispersion

In this section, we keep the (finite) number of data Dy fixed, and we vary the spread of the prior
density (changing some hyperparameter of the prior). Below, we consider an illustrative example
to show the perceived differences in robustness of Bayesian parameter estimation (Level-1) and
Bayesian model selection (Level-2).

4.3.1 Illustrative example

Here, we provide an alternative formulation of the Lindley-Bartlett paradox (Lindley, 1957; Villa
& Walker, 2017; Robert, 2014)) which shows the well-known robustness of the parameter posterior
distribution (Level-1) when increasingly diffuse priors are employed. These priors are common for
parameter estimation where they are seen as uninformative. However, in model selection (Level-
2), actually such priors are highly informative: an increasingly diffuse prior penalizes more and
more the considered model.
Let us assume a likelihood function that is integrable in every subset of an unbounded Θ, that is,
for all A ⊆ Θ,

∫
A∈Θ

`(y|θ)dθ < ∞. In particular, when A = Θ, the integral corresponds to the
“area below” the likelihood function

S =

∫
Θ

`(y|θ)dθ <∞. (4)

Hence, in this scenario, the normalized likelihood is a proper pdf on Θ. Then, we consider a
uniform and proper prior defined on the hyper-volume B, i.e.,

g(θ) =
1

|B|
1B(θ),
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where |B| represents the volume of B. Hence, the posterior pdf is

π̄(θ|y) =
`(y|θ)1B(θ)∫
B
`(y|θ)dθ

, (5)

which is the normalized likelihood restricted to the set B.

Level-1 of inference. As we increase the volume of B, more and more mass of the likelihood
is considered. Roughly speaking, for a |B| great enough, the posterior is insensitive to further
increase the size of B. Indeed, as |B| → ∞, we have that π̄(θ|y) becomes closer and closer to

π̄∗(θ|y) =
`(y|θ)∫

Θ
`(y|θ)dθ

=
`(y|θ)

S
. (6)

Namely, in the limit where B = Θ, the prior g(θ) becomes equivalent to an improper uniform
prior on θ, for which the Bayesian estimators coincide with their frequentist counterparts. The
posterior π̄∗(θ|y) contains only the information included in the likelihood function, and is not
affected or distorted by the prior. In this sense, when it can be used (i.e., S is finite), a uniform
improper prior is the maximal expression of a non-informative prior for the Level-1 of inference.

Level-2 of inference. We focus now on the marginal likelihood Z which, in this case, is given
by

Z =

∫
B
`(y|θ)dθ

|B|
. (7)

Now, consider increasing B until we cover all parameter space. In this situation,

|B| → ∞, but

∫
B

`(y|θ)dθ → S,

Hence,

lim
|B|→∞

Z = 0. (8)

We see that the marginal likelihood of a model with a increasingly-diffuse uniform proper prior
becomes null. This is because increasing the spread of the prior penalizes more and more the
considered model. Hence, note that, in Level-2 of inference, a diffuse uniform prior is actually
highly informative.

Now, we can already deduce some conclusions, highlighted below.

Remark 6. In the Level-1 of inference, if S =
∫

Θ
`(y|θ)dθ is finite, we can use a, proper or

improper, uniform prior as non-informative choice. Moreover, under the assumption of strong
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data1, and if we vary the prior density, the estimators θ̂mean, θ̂MAP do not change drastically. In
this case, under mild conditions and by using an improper uniform prior, we can recover the
frequentist results (Consonni et al., 2018).

Remark 7. In Level-2 inference, the concept of non-informative prior cannot be applied. Any
choice of prior (also a diffuse, flat one) is actually very informative. If S =

∫
Θ
`(y|θ)dθ is finite,

diffuse priors tend to produce smaller values of the marginal likelihood Z (Cameron & Pettitt,
2014; Bernardo & Smith, 1994). Hence, a good model can display a low value of Z only because
we choose a prior that is very spread out. Conversely, a worse model can display a bigger value of
Z due to choosing a concentrated prior (Bernardo & Smith, 1994; MacKay, 2003; R Oaks et al.,
2019; Llorente et al., 2020).

Remark 8. The evidence Z contains an implicit penalization of the model complexity. See
Appendices A-B and (MacKay, 2003, Ch. 28)(Knuth et al., 2015).

4.4 Issues with improper priors for model selection

In the previous section, we just discussed the sensitivity of Z to variations of the spread of the
prior density, and the fact a diffuse prior is highly informative in the Level-2 of inference. Even
more caution is needed in the case of employing improper priors. Indeed, we have seen that the use
of improper priors,

∫
Θ
g(θ)dθ = ∞, is allowed for Level-1 inference when

∫
Θ
`(y|θ)g(θ)dθ < ∞,

since the corresponding posteriors are proper. However, improper priors are not allowed for the
Level-2 (model selection). We describe this fact below and some possible solutions in the rest of
the work.
The use of improper priors is common in Level-1 of inference to represent weak a-priori information.
Consider g(θ) ∝ h(θ) where h(θ) is a non-negative function whose integral over the state space
does not converge,

∫
Θ
g(θ)dθ =

∫
Θ
h(θ)dθ = ∞. In that case, g(θ) is not completely specified.

Indeed, we can have different definitions g(θ) = c · h(θ) where c > 0 is (the inverse of) the
“normalizing” constant, not uniquely determinate since c formally does not exist. Regarding the
parameter inference and posterior definition, the use of improper priors poses no problems as long
as
∫

Θ
`(y|θ)h(θ)dθ <∞, indeed

π̄(θ|y) =
1

Z
π(θ|y) =

`(y|θ)ch(θ)∫
Θ
`(y|θ)ch(θ)dθ

=
`(y|θ)h(θ)∫

Θ
`(y|θ)h(θ)dθ

,

=
1

Zh
`(y|θ)h(θ) (9)

where Z =
∫

Θ
`(y|θ)g(θ)dθ, Zh =

∫
Θ
`(y|θ)h(θ)dθ and Z = cZh. Note that the unspecified

constant c > 0 is canceled out, so that the posterior π̄(θ|y) is well-defined even with an improper
prior if

∫
Θ
`(y|θ)h(θ)dθ <∞. However, the issue is not solved when we compare different models,

since Z = cZh depends on the undetermined value c. For instance, the Bayes factors depend on

1With “strong data”, we refer to a dataset under which the likelihood function is very concentrated (i.e, many
data or data that are very informative).
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the undetermined constants c1, c2 > 0 (D. J. Spiegelhalter & Smith, 1982),

BF(y) =
c1

c2

∫
Θ1
`1(y|θ)h1(θ)dθ∫

Θ2
`2(y|θ)h2(θ)dθ

=
Z1

Z2

=
c1Zh1
c2Zh2

, (10)

so that different choices of c1, c2 provide different preferable models. There exists various
approaches for dealing with this issue, as we show in the next section. More generally, we describe
different solutions for a safe choice of the priors in the Level-2 of inference.

5 Objective approaches for Bayesian model selection

In Bayesian inference, the best scenario is surely when the user has strong beliefs that can be
translated into informative priors. When this additional information is not available, a careful
strategy should be employed due to the dependence of the evidence Z with the prior choice g(θ).
Moreover, we have seen that in model selection (Level-2), the concept of non-informative prior
cannot be directly applied, since any kind of prior is actually informative in Level-2. For instance,
diffuse priors can be very informative in the Level-2 of inference.
We define as a safe scenario, an approach where the choice of the priors is virtually not favoring
any of the models (i.e., in some sense, the choice of the priors seeks to obtain impartiality in the
model selection problem (Gelman & Hennig, 2017)), and the results are not depending on some
unspecified constant c > 0 (as in the case of using improper priors). Below, we describe some
scenarios and some possible solutions for reducing, in some way, the dependence of the model
comparison on a subjective choice of the priors. Many solutions proposed in the literature are
data-driven approaches (see Section 5.3). In Section 5.3.3, we also discuss an alternative approach
for model selection in Bayesian statistics (Vehtari et al., 2017, Ch. 6)(Piironen & Vehtari, 2017).

5.1 Same priors in nested models

Generally, we are interested in comparing two or more models. The use of the same (even
improper) priors is suitable when the models have the same parameters (and hence also share
the same parameter space). With this choice, the resulting comparison seems fair and reasonable.
However, this scenario is very restricted in practice. An exception is when we have nested models,
which share some common parameters. As noted in (Kass & Raftery, 1995, Sect. 5.3), in the
context of testing hypothesis, many authors consider the use of improper priors for nuisance
parameters that appear on both null and alternative hypothesis. Since the nuisance parameters
appear on both models, the undetermined multiplicative constants cancel out in the Bayes factor.

5.2 Hierarchical modeling

Hierarchical models are formed by multiple levels with the purpose of estimating also the hyper-
parameters of the assumed prior densities. More specifically, additional prior pdfs (called often
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hyper-priors) over the hyper-parameters of the priors are considered (Gelman et al., 2013; Bernardo
& Smith, 1994). Below, we provide just a summary of the new terms:

• Hyper-parameters: parameters of the prior distributions,

• Hyper-priors: prior distributions on hyper-parameters.

The underlying idea is to vary the hyper-parameters of the prior pdfs and perform different
inference problems. Namely, fixing the hyper-parameters and studying the posterior, we have one
inference problem. Then, we change the hyper-parameters and study the corresponding posterior,
we have another inference problem. Let us consider now that our prior pdf can be expressed as
a parametric (or non-parametric) family of functions. We can vary the parameters in this family
and even make inference on those variables. In this sense, we reduce the dependence on the choice
of the prior, since we are not actually considering a unique prior but a family of them. For this
reason, several authors claim that the resulting (hierarchical) models seem to be more robust than
the non-hierarchical versions (Bernardo & Smith, 1994).
Mathematically speaking, let us denote g(θ|ν) our family of priors over θ with hyper-parameters
ν ∈ Rξ. Below, we discuss two possible solutions.
Empirical Bayes approach. In this case, we can compute the evidence in Eq. (3) as a function
of ν, i.e., Z(ν) = p(y|ν) =

∫
Θ
`(y|θ)g(θ|ν)dθ, and then set

ν∗ = arg max
ν

Z(ν). (11)

Thus, we can use g(θ|ν∗) as a prior over the parameter θ in our inferences (Liang et al., 2008;
Petrone et al., 2014). Note that, in this approach, the choice of the prior is in some sense data-
driven, since ν∗ is obtained by the maximization of p(y|ν) (see also Section 5.3).
Full Bayesian approach. Assuming an hyper-prior gh(ν), the complete posterior is given by
the following expression,

π̄(θ,ν|y) =
`(y|θ)g(θ|ν)gh(ν)

Znew

, (12)

where

Znew = p(y) =

∫
Θ

∫
Rξ
`(y|θ)g(θ|ν)gh(ν)dθdν, (13)

=

∫
Rξ
Z(ν)gh(ν)dν, (14)

is a Bayesian evidence that takes into account all the members of the prior family. Clearly,
the model selection scheme based on Znew could be consider more robust than a model selection
approach based on a single marginal likelihood Z = Z(ν), only using one possible value of ν (i.e.,
only a unique prior). However, the computation of Znew is more complex than the computation of
a single Z(ν), since we have to approximate a higher dimensional integral (Llorente et al., 2020).
Also in the empirical Bayes scheme, we need to compute several values Z(ν)’s for different ν’s, in
order to perform the optimization in (11).2 Hence, this approach can be much more computational

2Note that analytical solutions are generally not available.
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demanding.
Moreover, the hierarchical framework moves (in some sense) the problem “to another level”, where
we have to choose the hyper-prior gh(ν) or, in the simplest case, we have at least to decide one
possible value ν∗ for setting g(θ|ν∗). Even in this last scenario (and when S is finite), we could
choose ν∗ such that the prior g(θ|ν∗) is diffuse, reducing arbitrarily the value of the evidence Z
(potentially approaching zero). It is also important to notice that this problem is shared with all
the modern statistics, machine learning, and signal processing fields. Indeed, we always have some
parameters to tune that can dramatically change the results (e.g., regularization parameters in
Ridge Regression, LASSO, etc. (Bishop, 2006; Martino & Read, 2021)). Hence, the real question
is whether one can set these tunable parameters to reasonable values.

5.3 Data-driven and model-based approaches

Here, we describe different strategies for constructing data-driven or model-based objective priors.
Some ideas for using improper priors in the Level-2 of inference, and other possible approaches
for Bayesian model selection are also discussed.

5.3.1 Likelihood-based priors

In this section, we describe possible simple data-driven ideas for setting the priors, presented in
an increasing order of complexity, i.e., starting from the simplest idea and describing progressively
more sophisticated approaches (proposed in the literature).

Idea-1. When S =
∫

Θ
`(y|θ)dθ < ∞, we can build a proper prior based on the data and the

observation model. For instance, we can choose glike(θ) = `(y|θ)∫
Θ `(y|θ)dθ

, then the marginal likelihood

is

Z =

∫
Θ

`(y|θ)glike(θ)dθ =

∫
Θ
`2(y|θ)dθ∫

Θ
`(y|θ)dθ

. (15)

We can consider glike(θ) a non-subjective prior in the sense that it does not incorporate any
additional information, since it is based only on the data. This idea is also connected to the
posterior predictive approach, that is described in Section 5.3.3. However, this prior can be very
informative and uses the data twice, so other approaches can be designed for dealing with these
issues.

Idea-2. Less informative likelihood-based priors can be constructed using a tempering effect with
a parameter 0 < β ≤ 1 or considering only a subset of data, denoted as ysub. For instance, when∫

Θ
`(y|θ)βdθ <∞ or

∫
Θ
`(ysub|θ)dθ <∞, we can choose glike(θ) ∝ `(y|θ)β or glike(θ) ∝ `(ysub|θ),

then the marginal likelihood is

Z =

∫
Θ
`(y|θ)β+1dθ∫

Θ
`(y|θ)βdθ

, or Z =

∫
Θ
`(y|θ)`(ysub|θ)dθ∫

Θ
`(ysub|θ)dθ

. (16)
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However, we still use a subset of the data twice.

Idea-3: Data partition. In order to avoid to use part of the data twice, we can divide
the data in two subsets, y = (ytrain,ytest). Then, if Strain =

∫
Θ
`(ytrain|θ)dθ < ∞, we use

glike(θ) = 1
Strain

`(ytrain|θ), obtaining

Z =

∫
Θ
`(ytest|θ)`(ytrain|θ)dθ

Strain

. (17)

If the data are conditionally independent given θ, we have that `(ytest|θ)`(ytrain|θ) = `(y|θ) and

Z =
S

Strain

. (18)

A generalization of Eq. (18) can be obtained considering the conditional likelihood `(ytest|θ,ytrain)
such that `(ytest|θ,ytrain)`(ytrain|θ) = `(y|θ) is always satisfied (O’Hagan, 1995, Sect. 2).3 In
order to build the less possible informative glike(θ), we can look for the minimal training sets
ytrain = ymin, i.e., the sets with a minimum number of data, such that Smin =

∫
Θ
`(ymin|θ)dθ <∞

(Berger & Pericchi, 1996). The dependence on the specific partition can be alleviated by averaging
over different partitions. Assume that R is the number of considered partitions. Let us also
assume that for each possible training set y

(r)
train, we have S

(r)
train =

∫
Θ
`(y

(r)
train|θ)dθ < ∞, for

r = 1, ..., R. Thus, we can build R different priors g
(r)
train(θ) = 1

S
(r)
train

`(y
(r)
train|θ) and then consider

a mixture of posterior densities, each one with a different prior g
(r)
train(θ). In this case, we obtain

Z = 1
R

∑R
r=1

S

S
(r)
train

, where recall that S =
∫

Θ
`(y|θ)dθ. This approach is related to the partial and

intrinsic Bayes factors (O’Hagan, 1995; Berger & Pericchi, 1996).

Connection with partial and intrinsic Bayes factors. Let gbase(θ) denote an improper
baseline prior. We already discussed that using improper priors produces marginal likelihoods
that are specified up to an arbitrary constant (see Sect. 4.4). Partial Bayes factors (PBFs) are
solutions proposed for dealing with this issue, and are based on the same idea of training the prior
using some partial likelihood (O’Hagan, 1995, Sect. 2). As a result, each model is assigned a
marginal likelihood in the form of Eq. (18), but also considering the improper baseline gbase(θ),
i.e.,

Z =
Z̃

Z̃train

=

∫
`(y|θ)gbase(θ)dθ∫

`(ytrain|θ)gbase(θ)dθ
. (19)

Note that any arbitrary constant contained in gbase(θ) is canceled out in the computation of Z.
Hence, the final Bayes factor (called partial Bayes factor) between any two models is

BF12(ytest|ytrain) =
Z1

Z2

=
Z̃1/Z̃train,1

Z̃2/Z̃train,2

=
Z̃1/Z̃2

Z̃train,1/Z̃train,2

=
BF12(y)

BF12(ytrain)
, (20)

3Note that we are abusing of the notation by using the same letter “`” for different functions, since we have
`(ytest|θ,ytrain) = p(ytest|θ,ytrain), whereas `(ytest|θ) = p(ytest|θ) is not conditioned to other data.
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where we have denoted BF12(y) = Z̃1

Z̃2
and BF12(ytrain) =

Z̃train,1

Z̃train,2
. Clearly, we should take ytrain

of minimal size. As above, in order to reduce the sensitivity of the results, we can average
BF12(y

(r)
test|y

(r)
train) over the possible R partitions, leading to the intrinsic Bayes factors (Berger &

Pericchi, 1996).

Idea-4: Powered likelihood. Another alternative given in the literature is the following. We
can use a powered likelihood `(y|θ)β with 0 < β < 1 to obtain the prior, and employ as likelihood
also a tempered version, i.e., `(y|θ)1−β, so that we have

glike(θ) = g(θ|β) ∝ `(y|θ)β, and π̄(θ|y) ∝ `(y|θ)1−β`(y|θ)β,

Note that, in this case, we do not need the conditionally independent assumption to express the
marginal likelihood as ratio of normalizing constants, i.e.,

Z =

∫
`(y|θ)1−βg(θ|β)dθ =

∫
`(y|θ)1−β`(y|θ)βdθ∫

`(y|θ)βdθ
=

S

Sβ
. (21)

Furthermore, we get rid of the indeterminacy of choosing the partition. However, a tempering
value β ∈ (0, 1) must be selected. This idea is also employed in the so-called fractional Bayes
factors (O’Hagan, 1995).

Connection with fractional Bayes factors. Fractional Bayes factors (FBFs) are another
strategy proposed for dealing with an improper baseline gbase(θ). This time each model is assigned
a marginal likelihood analogous to that of Eq. (22) but considering the baseline prior gbase(θ), i.e.

Z =
Z̃

Z̃β
=

∫
`(y|θ)gbase(θ)dθ∫
`(y|θ)βgbase(θ)dθ

. (22)

This marginal likelihood is free of arbitrary constants. The final Bayes factor (called fractional
Bayes factor) between any two models is given as

FBF12 =
Z1

Z2

=
Z̃1/Z̃β,1

Z̃2/Z̃β,2
=

Z̃1/Z̃2

Z̃β,1/Z̃β,2
=

BF12(y)

BF12(y|β)
,

where we denoted BF12(y|β) =
Z̃β,1

Z̃β,2
. Note that FBFs uses again the idea of transforming an

improper baseline gbase(θ) into a proper posterior by conditioning on a tempered likelihood `(y|θ)β.

Idea-5: Power-prior. In the literature, other approaches with simulated data have been
proposed (Consonni et al., 2018). Let y∗ denote some imaginary data (i.e., artificial/simulated
data) and consider the following power-prior (Ibrahim et al., 2015)

glike(θ) = g(θ|y∗, β) ∝ `(y∗|θ)βgbase(θ), where 0 < β < 1. (23)

An important special case of power priors is the well-known g-prior, which is an standard prior
choice in linear models (Zellner, 1986; Liang et al., 2008). A mixture of g-priors is an objective

16



choice designed for the linear regression setting, that fulfills desirable model selection criteria
(Bayarri et al., 2012).
Two further generalizations have been proposed in the literature. If we consider y∗ are not fixed,
but random, we can take an additional step consisting in averaging the prior in Eq. (23) with
respect to the distribution of the simulated data y∗. The resulting prior is thus

glike(θ) = g(θ|β) =

∫
g(θ|y∗, β)q(y∗)dy∗,

where q(y∗) is the distribution of the artificial data. With β = 1, the above expression is called
expected posterior prior (EPPs) (Pérez & Berger, 2002). Moreover, in the case where all likelihoods
(including that of the posterior) are raised to a common power β and normalized, we obtain the
so-called power expected posterior prior (PEP priors) (Fouskakis et al., 2015).

Note that most of the approaches described above require S =
∫

Θ
`(y|θ)dθ be finite, otherwise

they cannot be applied. However, in this case, the problem is extended to the Level-1 of Bayesian
inference since the posterior would be not proper using a uniform improper prior.
5.3.2 Other model-based approaches for building the prior

Other relevant ways of designing objective priors consider the information contained in the Fisher
information matrix,

I(θ) = E`(y|θ)

[(
∂

∂θ
log `(y|θ)

)2
]
, (24)

where the expectation is w.r.t. `(y|θ) (fixing θ). With the Jeffreys approach, one takes the prior

to be g(θ) ∝ [I(θ)]−
1
2 . This prior has the property of being invariant under change of variables

(Kass & Wasserman, 1996).
The unit information prior (UIP) is based on the idea that the information encoded in a prior pdf
should be roughly the amount of information contained in a single data (Consonni et al., 2018).
The Fisher information matrix divided by the number of data, i.e., 1

Dy
I(µ), is thus proposed as

an estimate of this information. For instance, for a continuous parameter, θ ∈ Rdθ , we can take
the following Gaussian prior,

g(θ) = N

(
θ
∣∣∣µ, [ 1

Dy

I(µ)

]−1
)
,

where µ is a prior mean. In linear models, the UIP takes the same form as the g-prior (Consonni
et al., 2018). Furthermore, the use of UIP is motivated since it produces a log-Bayes factor that
is asymptotically equivalent to the BIC (Kass & Wasserman, 1996; Consonni et al., 2018).

5.3.3 Posterior predictive approach

The marginal likelihood approach is not the only option for model selection in Bayesian statistics.
We discuss an alternative strategy, called predictive model selection, that is based on the concept
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of prediction (Vehtari et al., 2017, Ch. 6)(Vehtari & Ojanen, 2012; Piironen & Vehtari, 2017).
This approach is more robust with respect to the choice of the prior density, so it can be considered
as a possible solution to the issues described above.
After fitting a Bayesian model, a popular approach for model checking (i.e. assessing the adequacy
of the model fit to the data) consists in measuring its predictive accuracy (Vehtari et al., 2017;
Piironen & Vehtari, 2017). Hence, a key quantity in these approaches is the posterior predictive
distribution of generic different data ỹ given y,

p(ỹ|y) = Eπ̄(θ|y)[`(ỹ|θ)] =

∫
Θ

`(ỹ|θ)π̄(θ|y)dθ,

=
1

Z

∫
Θ

`(ỹ|θ)`(y|θ)g(θ)dθ, (25)

Considering ỹ = y, we can observe that it exists a clear connection with likelihood-based priors
described in Section 5.3.1. Indeed, if we assume g(θ) ∝ 1 and ỹ = y, Eq. (25) becomes Eq. (15).
Note that the posterior predictive distribution in Eq. (25) is an expectation w.r.t. the posterior,
which is robust to the prior selection with informative data, unlike the marginal likelihood as we
showed in Section 4. With a generic g(θ) and ỹ = y, the above expression can be seen as a
marginal likelihood obtained using the posterior as a prior pdf, stressing even more the approach
in Idea-1 described in Section 5.3.1. It can be also considered as a “posterior” Bayes factor, in the
sense that the likelihood is averaged w.r.t. the posterior, rather than the prior (Aitkin, 1991). In
(Djuric & Kay, 1994), the predictive density in Eq. (25) is employed to derive predictive Bayesian
model selection criteria in the context of normal linear regression with multiple data sequences.
This paper explores how one should combine the different predictive densities resulting from the
different partitions into training and validation. Clearly, these strategies are less affected by the
initial prior choice.
Note that we can consider posterior predictive distributions p(ỹ|y) for vectors ỹ smaller than
y (i.e., with less components). The posterior predictive checking is based on the main idea of
considering simulated data ỹi ∼ p(ỹ|y), with i = 1, . . . , L, and comparing them with the observed
data y. After obtaining a set of fake data {ỹi}Li=1, we have to measure the discrepancy between

the true observed data y and the set {ỹi}Li=1 . This comparison can be made with test quantities
and graphical checks (e.g., posterior predictive p-values) (Vehtari et al., 2017). A drawback of
predictive model selection is that consistency (i.e., selecting the true model as Dy → ∞) is not
generally ensured (Vehtari & Ojanen, 2012).

Remark 9. Using the marginal likelihood in Eq. (17) or (19) (i.e. Idea-3 and PBFs) as a model
selection criterion amounts to selecting the model with greater predictive accuracy. In fact, they
are predictive densities of data ytest conditional on ytrain (Djuric & Kay, 1990, 1994). See also
Table 1.

6 Numerical experiments

In this section, we provide different numerical simulations testing different models, prior pdfs and
possible solutions. One of them is a well-known model based on the radial velocity technique for
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Table 1: Connection between the likelihood-based solutions of Sect. 5.3.1, with the predictive
approach in Eq. (25).

Elements in Eq. (25)
p(ỹ|y) `(ỹ|θ) `(y|θ) g(θ) Approach Uses data twice

Eq. (15) `(y|θ) `(y|θ) 1 Idea-1
Eq. (16) `(y|θ) `(ysub|θ) 1 Idea-2
Eq. (16) `(y|θ) `(y|θ)β 1 Idea-2
Eq. (17) `(ytest|θ) `(ytrain|θ) 1 Idea-3
Eq. (19) `(ytest|θ) `(ytrain|θ) gbase(θ) PBFs
Eq. (21) `(y|θ)1−β `(y|θ)β 1 Idea-4
Eq. (22) `(y|θ)1−β `(y|θ)β gbase(θ) FBFs

detecting exo-objects orbiting other stars (Gregory, 2011; Barros et al., 2016). Some related code
is also provided.4

6.1 Experiment 1

Let us consider the following Gaussian conjugate model for θ,

`(y|θ) = N (y|θ, σ2) =

Dy∏
i=1

N (yi|θ, σ2)

g(θ) = N (θ|µ0, σ
2
0).

Hence, the posterior is also Gaussian, π̄(θ|y) = N (θ|µpost, σ
2
post), where

µpost =
1

1
σ2
0

+ Dy
σ2

(
µ0

σ2
0

+
Dyȳ

σ2

)

σ2
post =

(
1

σ2
0

+
Dy

σ2

)−1

,

where ȳ denotes the sample mean of y. The marginal likelihood is given by

Z = (2πDyσ
2
n)−

Dy
2

(
σ2

0

σ2
n

+ 1

)− 1
2

exp

(
−1

2

(
vy + ȳ2

σ2
n

+
µ2

0

σ2
0

− 1
1
σ2
n

+ 1
σ2
0

(
ȳ

σ2
n

+
µ0

σ2
0

)2
))

,

where σn = σ√
Dy

and vy denotes the sample variance of y. We consider a single data point

(Dy = 1), where y = y = 2.078. We fix µ0 and vary σ0. In Figure 1, we show the corresponding
posterior for σ0 = 3, 10, 100 in solid line, whereas the likelihood is depicted with dashed line and

4Related Matlab code is available at http://www.lucamartino.altervista.org/Code Llorente Priors.m
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the prior is shown with dotted line. The evolution of the corresponding marginal likelihood Z
versus σ0 is given in Figure 1(d).
As σ0 grows, the posterior pdf approaches the likelihood as depicted in Figures 1(a)-(b)-(c). Then,
for large values of σ0, the posterior is insensitive to further increasing the prior dispersion. If we
consider σ0 → ∞ (corresponding to an improper prior), the posterior pdf coincides with the

likelihood function, and the inference (e.g., the estimators θ̂MMSE and θ̂MAP) is completely driven by

the observed data. In this example both estimators θ̂MMSE and θ̂MAP converges to the maximum of
the likelihood function as σ0 →∞. Note also from Figure 1(a) to Figure 1(c) that the variation of
the posterior is also negligible. Hence, the improper uniform prior is non-informative for Level-1
of inference. On the contrary, as σ0 grows, the marginal likelihood decreases approaching zero
as shown in Figure 1(d) (instead of converging to the normalizing constant of the likelihood,
as someone could expect). This result is consequence of the Jeffrey-Lindley-Bartlett paradox
(Lindley, 1957; Villa & Walker, 2017). This shows that diffuse priors are very informative in
Level-2 of Bayesian inference.

6.2 Experiment 2: Normal linear regression

Let us consider the normal linear regression setting with two models for the observations
y = {yi}Dyi=1,

M0 : yi = β0 + εi,

M1 : yi = β0 + β1xi + εi,

where x = {xi}Dyi=1 are fixed/known and εi ∼ N (0, σ2
like) with σlike known. Hence, model M0 has

parameter θ0 = β0, and modelM1 has parameter θ1 = [β0, β1]>. We set Gaussian priors for both
models,

g0(β0) = N (β0|0, σ2
0) and g1(β0, β1) = g0(β0)N (β1|0, σ2

1). (26)

We aim to analyze the sensitivity of the Bayes factor BF01, given by

BF01 =
Z0

Z1

=

∫
`(y|β0)g0(β0)dβ0∫

`(y|x, β0, β1)g1(β0, β1)dβ0dβ1

, (27)

when we vary different features such as the dispersions σ0 and σ1.

Sensitivity w.r.t. the choice of σ0. We generate Dy = 4 observations from model M1 with
βtrue

0 = βtrue
1 = 1. We consider σ1 = 1 fixed and compute BF01 for a sequence of increasing values

of σ0. The Bayes factor BF01 versus σ0 is shown in Figure 2(a). It can be seen that BF01 is much
lower than 1 for every σ0, indicating thatM1 is the preferred model. As expected, BF01 is stable
under increasing σ0, reaching a plateau at σ0 = 10 and becoming constant from there on. This
is a well-known fact: the choice of prior for the common parameter β0 does not affect much the
comparison. This is a consequence of choosing the same prior g0(β0) for both models. In Figure
2(b), we see that increasing σ0 reduces the marginal likelihood of both models simultaneously,
hence the pitfalls of using increasingly diffuse priors are solved when we compute the quotient.
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(a) σ0 = 3 (b) σ0 = 10

(c) σ0 = 100 (d) Marginal likelihood Z versus σ0

Figure 1: In (a)-(c), we show the posterior for a Gaussian prior N (µ0, σ
2
0) with three different

choices of σ0. In (d), we show the corresponding marginal likelihood versus σ0 in log-scale. Note
that increasing σ0 (i.e. prior is more diffuse) does not change the shape of the posterior, but the
marginal likelihood is indeed decreasing.

Sensitivity w.r.t. the choice of σ1. We repeat the experiment but considering a fixed σ0 = 1,
and compute BF01 for a sequence of increasing values of σ1. The Bayes factor BF01 and both
marginal likelihoods Z0, Z1 versus σ1 are shown in Figure 3. Opposite to the previous case, this
time we see that BF01 is greater than 1 when σ1 > 500. Indeed, in Figure 3(b), we see that only Z1

decreases as σ1 increases. This is because we are only varying the dispersion of the prior in model
M1 not M0. As a consequence, increasing the dispersion of the prior on β1 makes us eventually
choose the wrong model M0 (again, this is the Lindley-Bartlett paradox).
Sensitivity w.r.t. the choice of σ0 = σ1 = σ. The choice of the prior dispersion can be guided
attending to the a-priori predictive power of the model (Rossell & Rubio, 2021). Let σ2 = σ2

0 = σ2
1

denote the (diagonal) variance of the Gaussian priors associated to models M0 (θ0 = β0) and M1

(θ1 = [β0, β1]>), i.e.,
g0(θ0) = N (β0|0, σ2), g1(θ1) = N (θ1|0, σ2I2).
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(a) BF01 (b) Z0 and Z1

Figure 2: In (a) Bayes factor versus σ0 in log-scale. In (b) Marginal likelihoods of models M0

and M1 versus σ0 in log-scale. We consider σ1 = 1 is fixed.

(a) BF01 (b) Z0 and Z1

Figure 3: In (a) Bayes factor versus σ1 in log-scale. In (b) Marginal likelihoods of models M0

and M1 versus σ1 in log-scale. We consider σ0 = 1 is fixed.

In linear regression, we can observe the prior-expected contribution to the signal-to-noise ratio of
each model,

Egm(θm)[w(θm)] = Egm(θm)

[
θ>mX>mXmθm

Dyσ2
like

]
,

where Xm denotes the Dy ×Dθm design matrix of model m, or the prior-expected R2 coefficient

Egm(θm)[R
2(θm)] = Egm(θm)

[(
1 +

1

w(θm)

)−1
]
.

The values of E[w(θm)] or E[R2(θm)] can help us decide the prior dispersion, which is modified by
the choice of the standard deviation σ. For instance, the unit information prior (UIP) is obtained
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by setting the prior dispersion of the model such E[w(θm)] equals the number of parameters
(Rossell & Rubio, 2021). Moreover, there is a range of prior dispersions that produce reasonable
values of E[w(θm)] or E[R2(θm)]. Figure 4(a) shows that for values of σ within [0.1, 10], the models
M0 and M1 display values of E[R2(θm)], from close to null predictive power, E[R2(θm)] = 0, to
perfect predictive power, E[R2(θm)] = 1. Hence, considering for σ values only inside this range of
values is well justified.
Figure 4(b) shows the BF01 versus σ within [0.1, 10] (averaged over repeated independent
simulations). We observe that, in this experiment, the Bayesian model selection approach provides
always the correct result, when the value of σ is selected within the range of reasonable values
discussed above.

(a) Prior-expected R2 (b) BF01

Figure 4: (a) Prior expected R2 coefficient of models M0 and M1 as a function of σ. In (b) Bayes
factor versus σ in log-scale.

6.3 Experiment 3

6.3.1 First analysis

Let us consider the problem of selecting between two models, M1 = {`1(y|θ) = θye−θ/y!, g1(θ)}
andM2 = {`2(y|φ) = φ(1− φ)y, g2(φ)}, namely a Poisson and a geometric distribution (Lindley,
1957). We use a uniform prior g2(φ) = 1 for the proportion φ ∈ [0, 1], and also a uniform prior
g1(θ) = 1

L
for θ ∈ [0, L]. We generate Dy independent data y = (y1, . . . , yDy) from M1 with

θtrue = 2. The goal of this example is to show empirically the sensitivity of the Bayes factor to
increasing L (i.e., g1(θ) becomes more diffuse), and the number of data Dy. For doing this, for
each pair of values (L,Dy), we study the average number of errors in model selection (i.e., the
number of times BF12 < 1) in 100 independent simulated datasets of size Dy.
First, we compute the number of errors as we increase L for two fixed sample sizes, Dy = 30
and Dy = 100. Table 2 shows the results when Dy = 30 for the values L = 10α (α = 1, . . . , 6).
Specifically, we show the maximum and minimum values of BF12, obtained in the 100 simulations,
along with the number of errors. As expected, as L increases, i.e., we use a more diffuse prior,
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the model M2 is (wrongly) selected more often. In fact, with L = 106, the Bayes factor always
selects M2 over M1 (i.e., the Lindley-Bartlett paradox). Table 3 shows results when Dy = 100.
On the contrary, we observe here that the number of errors is very low even for large L, namely,
having more data compensates the potential drawbacks of using a very diffuse prior. In addition,
in Figure 5(a), we have computed the number of errors (over the 100 different runs) for fixed
L = 105 versus the number of data Dy. We see that, for a given prior width, increasing Dy rapidly
reduces the number of times we choose the wrong model. Figure 5(b) shows the average number
of errors as a function of both L and Dy. We can see again that for fixed L, the number of
errors is very sensitive to increasing Dy. Namely, a small increase in sample size produces a large
reduction in the average number of errors (i.e. the results are consistent). On the other hand, the
number of errors is rather insensitive to increasing L, as compared to Dy. In fact, for Dy > 50,
the number of errors remains constant and close to 0 for all the considered values of L (up to
L = 104). Although increasing L eventually gives the wrong results, this effect is noticeable only
when the sample size is small enough.
Clearly, keeping fixed the (proper) priors, and including the enough number of data Dy in our
study, we can obtain the correct results (see Figure 5). However, the number of enough data is
unknown and depends on the specific problem. Furthermore, the joint use of a huge amount of
data often jeopardized the performance of the computational methods employed for estimating
the evidence Z (Llorente et al., 2020; Bos, 2002).

Table 2: Model comparison for Dy = 30. Minimum and maximum BF12 under true model M1

(Poisson) for 100 simulations.

True model =M1 (with θtrue = 2)
L min max Errors in model choice, over 100 simulations
10 0.094 4.77×105 3
102 0.059 2.49×104 15
103 0.0012 1.46×103 31
104 1.06×10−4 339.86 67
105 1.02×10−4 41.05 84
106 1.59×10−6 0.7080 100

6.3.2 Using partial and intrinsic BFs

Previously, we considered two uniform and proper priors g2(φ) = 1, φ ∈ (0, 1), and g1(θ) = 1
L
, θ ∈

(0, L). Hence, the Bayes factor is well defined. Here, we replace g1(θ) with an improper uniform
prior g̃1(θ) ∝ 1, θ ∈ (0,∞) for model M1. Our goal is to replicate Tables 2 and 3 using this
improper prior for M1.
In this situation, the Bayes factor is not well-defined due to the arbitrary constant in g̃1(θ). Hence,
we need to resort to partial Bayes factors (PBFs) (O’Hagan, 1995, Sect. 2), where we compute
the posterior of a single observation yi, denoted by a sub-index i, (training set) under prior g̃1(θ),
i.e., π̄1(θ|yi) ∝ `1(yi|θ)g̃1(θ), and use π̄1(θ|y1) now as a proper prior in the computation of BF12.

24



Table 3: Model comparison for Dy = 100. Minimum and maximum BF12 under true model M1

(Poisson) for 100 simulations.

True model =M1 (θtrue = 2)
L min max Errors in model choice, over 100 simulations
10 41.27 9.05×1013 0
102 6.93 1.55×1013 0
103 14.45 2.21×1011 0
104 7.94×10−4 3.75×1011 3
105 0.5214 1.36×1012 2
106 7.98×10−4 2.07×108 7

(a) (b)

Figure 5: In (a) number of errors in model selection, i.e., selecting the wrong model (BF12 < 1), out of
100 independent runs, when using g1(θ) = 1

L , θ ∈ (0, L) with L = 105 (i.e., fixing the prior), for different
number of data Dy. We can see that, keeping fixed the priors, as Dy grows we choose the true model.
However, with fixed Dy, changing L we can always adulterate the result of the study penalizing more
and the model 1, as shown in Tables 2-3. (b) The average number of errors for different values of L and
Dy.

In order to avoid the dependence on the training sample, we use the intrinsic Bayes factor (IBF)
approach (Berger & Pericchi, 1996). Let y−i denote the vector of all Dy data without the i-th
component yi, i.e., y−i is a vector of Dy − 1 components. The IBF consists in averaging over all
possible training samples, resulting in

IBF12 =
1

Dy

Dy∑
i=1

∫∞
0
`1(y−i|θ)π̄1(θ|yi)dθ∫ 1

0
`2(y|φ)dφ

=
1

Dy

Dy∑
i=1

∫∞
0
`1(y|θ)dθ/

∫∞
0
`1(yi|θ)dθ∫ 1

0
`2(y|φ)dφ

. (28)
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Note that the cost of computing IBF12 increases with Dy. For this experiment, we generate data
from both models with different values of θtrue and φtrue, that is, we alternatively considerM1 and
M2 as the true model. We compute IBF12 in 100 different runs for the chosen values of θtrue and
φtrue, and we show the results in Table 4 and Table 5 for Dy = 30 and Dy = 100, respectively5.
We show the maximum and minimum values of IBF12, obtained in the 100 simulations, along
with the number of errors. When M1 is the true model, IBF12 < 1 corresponds to an error, and
conversely, when M2 is the true model, IBF12 > 1 corresponds to an error.
The results clearly show that the use of intrinsic Bayes factors allows for correctly selecting M1

when it is indeed the true model, with very few errors in model selection for the considered values
of θtrue and both Dy = 30 and Dy = 100. On the contrary, when M2 is the true model, the use
of intrinsic Bayes factors makes more probable selecting M1 for some values of φtrue. Note, for
instance, that the number of errors when φtrue = 0.8 is 66, that is, more than half of the times
we would wrongly selectM1 overM2. This is consistent with the idea underlying PBF and IBF,
where the proper prior is built using part of the data. Indeed, it tends to artificially increase the
marginal likelihood of the model where the likelihood-based prior is applied (since the resulting
prior has larger overlap with the likelihood). Increasing the number of data improves the results,
as proves the 43 errors in model selection obtained when φ = 0.8 and Dy = 100.
Another way to reduce this problem is to apply the likelihood-based priors (using the same number
of data in the construction of the prior) to both models. This results in using the following
intrinsic Bayes factor

IBF12 =
1

Dy

Dy∑
i=1

∫∞
0
`1(y−i|θ)π̄1(θ|yi)dθ∫ 1

0
`2(y−i|φ)π̄2(φ|yi)dφ

=
1

Dy

Dy∑
i=1

∫∞
0
`1(y|θ)dθ/

∫∞
0
`1(yi|θ)dθ∫ 1

0
`2(y|φ)dφ/

∫ 1

0
`2(yi|φ)dφ

. (29)

We run 100 simulations employing this procedure and observed that the number of errors in
detecting the model M2 when φtrue ∈ {0.5, 0.8} gets reduced to, respectively, 18 and 16 when
Dy = 30.

Table 4: Model comparison for Dy = 30. Minimum and maximum IBF12 under true model M1

(Poisson model) and M2 (geometric model), over 100 independent runs.

True model =M1 True model =M2

θ min IBF12 max IBF12 Errors (IBF12 < 1) φ min IBF12 max IBF12 Errors (IBF12 > 1)
5 6.28×103 3.95×1011 0 0.2 1.61×10−26 9.76 2
2 0.55 7.40×106 1 0.5 5.45×10−9 884.25 30

0.8 0.004 10.51 66

6.4 Exoplanet detection

In recent years, the problem of revealing objects orbiting other stars has acquired large attention.
Different techniques have been proposed to discover exo-objects but, nowadays, the radial velocity

5Related Matlab code is available at http://www.lucamartino.altervista.org/Code Llorente Priors.m
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Table 5: Model comparison for Dy = 100. Minimum and maximum IBF12 under true model M1

(Poisson model) and M2 (geometric model), over 100 independent runs.

True model =M1 True model =M2

θ min IBF12 max IBF12 Errors (IBF12 < 1) φ min IBF12 max IBF12 Errors (IBF12 > 1)
5 2.38×1011 4.52×1029 0 0.5 1.98×10−13 500.52 4
2 2.22×103 2.60×1014 0 0.2 2.02×10−72 3.34×10−18 0

0.8 0.003 6.69 43

Table 6: Description of parameters in Eq. (30).
For each planet:

Parameter Description Units

Ki amplitude of the curve m s−1

ωi longitude of periastron rad
ei orbit’s eccentricity . . .
Pi orbital period s
τi time of periastron passage s

Not depending on the number of planets (below):

V0 mean radial velocity m s−1

Not inferred directly - it is a function of ei, Pi, τi and t (below):

ui,t true anomaly rad

technique is still the most used (Gregory, 2011; Barros et al., 2016; Affer et al., 2019; Trifonov
et al., 2019). The problem consists in fitting a dynamical model to data acquired at different
moments spanning during long time periods (up to years). The model is highly non-linear and,
for certain sets of parameters, its evaluation is quite costly in terms of computation time. This is
due to the fact that its evaluation involves numerically integrating a differential equation, or using
an iterative procedure for solving a non-linear equation (until a certain condition is satisfied).
This loop can be very long for some sets of parameters.

6.4.1 Model description

When analyzing radial velocity data of an exoplanetary system, it is commonly accepted that the
wobbling of the star around the centre of mass is caused by the sum of the gravitational force of
each planet independently and that they do not interact with each other.
Each planet follows a Keplerian orbit and the radial velocity of the host star (which is our observed
noisy measurement yt, at time t) is given by

yt= ft(θ) + ξt,

yt = V0 +
S∑
i=1

Ki [cos (ui,t + ωi) + ei cos (ωi)] + ξt, (30)
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with t = 1, . . . , T ,6 where ξt is a Gaussian noise perturbation with variance σ2
e , S is the number

of planets and the variable of interest θ is the vector of dimension Dθ = 1 + 5S,

θ = [V0, K1, ω1, e1, P1, τ1, . . . , KS, ωS, eS, PS, τS].

The meaning of each parameter is given in Table 6. We have set

ft(θ) = V0 +
S∑
i=1

Ki [cos (ui,t + ωi) + ei cos (ωi)] . (31)

We observe the vector y = [y1, ..., yT ] of noisy measurements. The so-called true anomaly ui,t
is function of t, ei, Pi and τi, as we described in the next subsection. It represents the angular
position of the i-th exoplanet in its orbit with respect to the periastron. The assumption of no
correlation in the noise is settled in the nature of the data. The radial velocity is an indirect
measure that is determined through the combination of thousand of individual measures at each
observation.

6.4.2 Computation of ui,t and evaluation of the nonlinearity ft

The true anomaly ui,t is related to ei, Pi and τi, by the following equations:

ui,t = 2 arctan

(√
1 + ei
1− ei

tan
Ei,t
2

)
, (32)

Ei,t − ei sin (Ei,t) =
2π

Pi
(t− τi) . (33)

Hence, we need to solve the Eq. in (33) in order to obtain the value Ei,t and then replace in Eq.
(32). The solution to Eq. 33 is found iteratively applying a Newton-Raphson procedure (Martino,
Llorente, et al., 2021; López-Santiago et al., 2021). For certain sets of parameters, this iterative
procedure can be particularly slow and the computation of the likelihood becomes quite costly.
As an example, let us set S = 1 for the sake of simplicity. Given a value of θ∗ =
[V ∗0 , K

∗
1 , ω

∗
1, e
∗
1, P

∗
1 , τ

∗
1 ], in order to evaluate ft(θ

∗) we proceed as follows:

1. Given e∗1, P ∗1 , and τ ∗1 , compute approximately the values of E1,t’s for each t, from Eq. (33),
by applying the Newton-Raphson method.

2. Given the values E1,t’s previously obtained, compute u∗1,t for each t.

3. Given the values u∗1,t’s previously obtained, and V ∗0 , e∗1, ω∗1, compute ft(θ
∗) for each t.

A periodic link between the variables τ ∗1 and ω∗1 could appear and, as a consequence, the likelihood
function could have multiple equivalent (periodic) modes. This link can be broken by a proper
choice of the priors.

6More generally, we can have ytj with j = 1, ..., T .
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6.4.3 Likelihood function and model evidence

For a single object (e.g., a planet or a natural satellite), the dimension of θ is Dθ = 5 + 1 = 6,
with two objects the dimension of θ is Dθ = 11, etc. The Eq. (30) induces a likelihood function,
i.e.,

`(y|θ, σe) =
T∏
t=1

`(yt|θ, σe),

where y = {y1, . . . , yT}. Our goal is to infer the number S of planets in the system. For this
purpose, given prior densities gi(θi) for each model, we have to approximate the model evidences,

Zi =

∫
Θi

`(y|θi, σe)gi(θi)dθi.

For simplicity, we consider the noise variance σ2
e is given.

6.4.4 Experiments

Let us denote M0 and M1 the models corresponding to zero and one planets. We generate a set
of data y according to the model with one planet and parameter values V true

0 = 5, Ktrue
1 = 25,

ωtrue
1 = 0.61, etrue

1 = 0.1, P true
1 = 15, and τ true

1 = 3. We consider Dy = 25 total number of
observations. All the data are generated with σ2

e = 15. The rest of trajectories are generated
according to the transition model (and the corresponding measurements yt according to the
observation model). Our goal is to compute the ratio BF10 = Z1

Z0
, where Z1 and Z0 denote

respectively the marginal likelihood of the model with zero planet and the model with one planet.
As we commented above, the model with zero planet has only one parameter, namely, θ0 = V0 and
we choose a uniform prior U([−20, 20]). For simplicity, in the model with one planet we consider
only two degrees of freedom, i.e., θ1 = [V0, P1]. The rest of parameters are set to their true values.
We use the same prior for V0 in M1. For the period P1, we use U([0, Pmax]) with Pmax > 0.
Namely, we use a uniform prior with varying width. When Pmax = 365, we are considering a
uniform prior over all the possible values of P . We know that BF10 should be greater than 1
since the data were generated according to model 1. However, we aim to show that increasing
Pmax (which corresponds to use a prior that is more diffuse) makes that BF10 eventually becomes
smaller than 1. For the computation of Z0 and Z1 we use a very thin grid within the prior bounds.
In Figure 6(a), we show the Bayes factor as a function of Pmax. For Pmax greater than 200, we
have BF10 < 1, that is, we wrongly choose the model with zero planets. This illustrates again the
problematic with the use of vague priors.
Hierarchical solution. Let us denote as Z1(Pmax) the marginal likelihood of model M1 for
each given value of Pmax. We consider the extended posterior where we use a hyperprior for Pmax,
gh(Pmax) = U([10, 365]), hence the new marginal likelihood is

Znew,1 =

∫ 365

10

Z1(Pmax)gh(Pmax)dPmax.

The value of Znew,1 is 9.1095× 10−44, which is greater than Z0 = 5.4601× 10−44. Hence, with this
hierarchical modeling, we select the true model. Note that gh(Pmax) = U([10, 365]) is virtually the

29



0 100 200 300
P

max

1

5

10
BF

10

(a)

0 5 10 15 20 25
Num. of data for building the prior

0

5

10

15

Idea-1

log BF
10

 - Idea-2

log BF
10

 - Idea-3

(b)

Figure 6: (a) The Bayes factor BF10 as a function of prior width Pmax. Increasing Pmax (i.e. making the
prior for P1 more diffuse) eventually produces BF10 < 1. Note also that, when Pmax is small (lower than
Pmax = 15), we have BF10 < 1, preferring the model with zero planet M0. (b) The log-BF10 obtained
using likelihood-based priors in both models (specifically, the ideas 2 and 3 in Section 5.3.1) adding
sequentially data in the prior construction. Note that log-BF10 > 0 preferring always (and correctly) the
model with one planet. Figure (b) also shows Idea-1 as limit of Idea-2, which provides an upper-bound
for the rest of values.

more diffused hyper-prior that we can use in this experiment, since the parameter P1 represents a
period of rotation (measured in “days”), so it varies between 0 and 365.
Likelihood-based priors. Another possible solution is to employ likelihood-based priors. We
apply the Idea-2 and Idea-3 given in Section 5.3.1 to both models. In Idea-2, a subset of data
is used twice (for building the prior and in the likelihood as well) whereas, in Idea-3, the data
are split in training (for building the prior) and test (used only in the likelihood). Note that, if
we use all the data (Dy = 25) for building the prior, Idea-2 becomes Idea-1 in Section 5.3.1. We
start building the prior with only one datum (the first one), and compute the corresponding BF10.
Then, we add sequentially the rest of data, starting from the second one, until we consider the
25-th data for Idea-2, and the 24-th data for Idea-3. The log-BF10 is given in Figure 6(b). In this
case, we always choose the true model. As expected, Idea-2 tends to favour the more complex
model with respect to Idea-3. Again as expected, Idea-1 provides an upper bound for the BF10

obtained by Idea-2 and Idea-3.

7 Conclusions

In this work, we have highlighted some important considerations regarding the computation of
marginal likelihoods, which are fundamental quantities for Bayesian model selection. We have
discussed the dependence on the choice of the prior density and shown some comforting asymptotic
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results. Moreover, we have remarked that the use of improper priors is not suitable for model
selection. More generally, we have also discussed that the use of diffuse priors, whether proper
(vague priors) or improper, are actually very informative for the model selection procedure (Level-2
of inference). We have shown by means of illustrative examples the potential pitfalls of using vague
priors, and we have provided and discussed several possible solutions for these scenarios, such as
the construction of likelihood-based or model-based priors, and partial/fractional Bayes factors.
We have also described an alternative for Bayesian model selection to the marginal likelihood
approach, called posterior predictive. Furthermore, the connection with the information criteria
has been also presented. One of the considered numerical experiment is a real-world astronomical
application, consisted on detecting the number of objects orbiting a star.
We list below some final highlights of the work:

• Clearly, for a finite number of data Dy, the results of Bayesian inference depends on the
choice of the prior densities. However, the Bayesian model selection (based on the model
evidence Z) is consistent, i.e., selects the true/best model as Dy → ∞, under very mild
assumptions on the prior densities.

• Improper priors are not allowed in Level-2 since the marginal likelihoods are undetermined.

• Considering a a finite number of data Dy, uniform priors can be highly informative in model
selection, i.e., the Level-2 of inference (unlike in Level-1).

• As a consequence of the previous points, in absence of a-priori information, there is a need
of procedures for designing objective priors for the Level-2 of inference. The construction
of objective priors is generally based on data, likelihood functions and/or observation
models. The simplest scheme, in this sense, is the empirical Bayes approach, where the
prior parameters are tuned maximizing the marginal likelihood. Other more sophisticated
schemes use parts of the data for building a suitable objective prior.

• Alternative approaches to standard Bayesian model selection (which is based on the model
evidence Z) rely on the concept of prediction (recalling the frequentist idea of cross-
validation). These approaches seems to be more robust with respect to the choice of the
prior densities, but the consistency is not generally ensured (Vehtari & Ojanen, 2012).
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Appendices

A Implicit model penalization contained in Z

The illustrative example in Section 4.3.1 allows us to show that the marginal likelihood Z contains
an implicit model penalization (MacKay, 2003, Ch. 28). In that example, we consider the
uniform prior g(θ) = 1

|B|1B(θ), where |B| represents the volume of B. Without loss of generality,
let us consider the case of B being a hypercube centered at the origin with side length δ, i.e,
B = [−δ/2, δ/2]Dθ ⊆ Θ, with volume |B| = δDθ . From Eq. (7), we have

logZ = log

∫
B

`(y|θ)dθ − log |B|,

= log

∫
B

`(y|θ)dθ −Dθ log δ. (34)

Note that both terms depend on the size δ and the dimensionality Dθ.7 For a fixed Dθ, increasing
δ affects both the fitting and penalty terms. Both terms grows as δ increases. However, note that
while the first term is bounded by SDθ

=
∫

Θ
`(y|θ)dθ,8 and the second term can grow indefinitely

in δ. Hence, we have the following upper bound for logZ, that is

logZ ≤ logSDθ︸ ︷︷ ︸
fitting

−Dθ log δ︸ ︷︷ ︸
penalty

, (35)

where we can interpret the first term in the above equation as a fitting term, and the second term
as a penalty term over the model complexity/order (MacKay, 2003, Ch. 28).

Remark 10. This penalty term can also be interpreted as an implicit log-prior term over the
corresponding model.

Moreover, for δ → ∞, we have logZ → −∞ (keeping fixed Dθ). Similar considerations and
the connection with information criteria are also given in the following Appendix B.

7B depends on both δ and Dθ, whereas the `(y|θ) depends on Dθ.
8B and Θ depend both on the parameter dimension Dθ. Hence, also S depends on Dθ. For this reason, here

we use the more proper notation SDθ
=
∫
Θ
`(y|θ)dθ.
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B Marginal likelihood Z and information criteria

The marginal likelihood can be expressed as

Z = `maxW, (36)

where W ∈ [0, 1] is the Occam factor (Knuth et al., 2015, Sect. 3). More specifically, the Occam
factor is defined as

W =
1

`max

∫
Θ

g(θ)`(y|θ)dθ, (37)

and it is `min

`max
≤ W ≤ 1. The factor W measures the penalty of the model complexity intrinsically

contained in the marginal likelihood Z: this penalization depends on the chosen prior and the
number of data involved.

Considering the expression (36) and taking the logarithm, we obtain

logZ = log `max + logW (38)

Note that log `max is a fitting term whereas logW is a penalty for the model complexity. Instead of
maximizing Z (or logZ) for model selection purposes, several authors consider the minimization
of some cost functions C derived by different information criteria (Schwarz et al., 1978; Hannan
& Quinn, 1979; D. Spiegelhalter et al., 2002). Most of the criteria, suggested in the literature, can
be expressed as

C = −2 log `max︸ ︷︷ ︸
fitting

+2ηDθ︸ ︷︷ ︸
penalization

, (39)

where η is a real value that is often chosen as function of the number of data Dy, and Dθ is the
dimension of θ, i.e., the number of parameters. The first term is a fitting term (which fosters
the choice of more complex models), whereas the second one is a model penalization term (which
promotes the choice of simpler models).

Remark 11. Note that the expression of C is similar to

−2 logZ = −2 log `max − 2 logW,

considering Eq. (38), where −2 logW plays the role of the second factor 2ηDθ in Eq. (39).

The expression (39) encompasses several well-known information criteria proposed in the literature
and shown in Table 7, which differ for the choice of η.

Remark 12. The penalty term 2ηDθ in the information criteria is the same for every parameter.
The Bayesian approach allows the choice of different penalties, assuming different priors, one for
each parameter, i.e., for each component of θ.
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Table 7: Different information criterion for model selection.
Criterion Choice of η

Bayesian-Schwarz information criterion (BIC) (Schwarz et al., 1978) 1
2 logDy

Akaike information criterion (AIC) (D. Spiegelhalter et al., 2002) 1
Hannan-Quinn information criterion (HQIC) (Hannan & Quinn, 1979) log(log(Dy))
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