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Abstract

The application of Bayesian inference in physics for the purpose of model selection is
very popular nowadays. In this framework, models are compared through their marginal
likelihoods, or their quotients, called Bayes factors. However, marginal likelihoods show
strong dependence on the prior choice, even when the data are very informative, unlike the
posterior distribution. Furthermore, when the prior is improper, the marginal likelihood of
the corresponding model is undetermined. In this work, we aim to raise awareness about
the issue of prior sensitivity of the marginal likelihood and its role in model selection. We
also comment on the use of uninformative priors, which are very common choices in practice.
Several practical suggestions are provided and possible solutions allowing the use of improper
priors are discussed. The connection between the marginal likelihood approach and the well-
known information criteria is also presented. We describe all the issues and possible solutions
by illustrative numerical examples (providing some related code). One of them involving a
real-world application on exoplanet detection.

Keywords: Model selection, Marginal likelihood, Bayesian evidence, improper priors,
information criteria, BIC, AIC, posterior predictive.

1 Intro

In the last decades, we observe a growing trend in the use of Bayesian approaches to the problem
of inferring the parameters of physical models describing natural processes. Although Bayesian
inference has historically been used (e.g. [1, 2]), it is only now becoming more widespread.
Nowadays, we can find applications of Bayesian inference methods in fields such as remote sensing
[3, 4], astronomy [5, 6, 7, 8], cosmology [9, 10], or optical spectroscopy [11, 12].
One of the most common problems we may encounter in Bayesian inference is that of model
selection. For this purpose, the determination of the Bayes factor is often used. This involves
the approximation of the Bayesian evidence, a.k.a., marginal likelihood, of the several models.
The marginal likelihood shows a strong dependence on the choice of the prior probability density
functions (pdfs). Many papers propose very uninformative (usually uniform) prior pdfs, in order
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to avoid biasing the exploration of the parameter space (see, e.g., [13]). In some cases, the selected
prior pdfs are diffuse or even improper [14].

In a first part of this work, we show some issues in Bayesian model selection (or hypothesis
testing) based on the marginal likelihood computation [15, 16, 17]. First of all, the results can
be strongly affected by the choice of the prior. Indeed, the marginal likelihood is very sensitive
to the variations on the prior density, much more than the corresponding posterior distribution.
Secondly, this issue becomes even more dramatic when improper priors are employed: the Bayesian
inference with improper priors is allowed if the corresponding posterior proper, whereas Bayesian
model selection with improper priors is not allowed/possible, due to the fact the marginal likelihood
is actually not completely specified (it is defined up to an arbitrary constant). We describe all
these issues by mathematical considerations and several and illustrative numerical examples. One
of them involves a real-world application for detecting exo - objects (orbiting other stars) based
on a radial velocity model.
Furthermore, in a second part of this work, we show some possible solutions presented in the
literature, such the partial and/or intrinsic Bayes factors [15], remarking potential benefits and
possible drawbacks. An alternative to the marginal likelihood approach for Bayesian model
selection, called posterior predictive framework [18, Ch. 6][19], is also described. Finally, the
relationship between the information criteria [20], such as Bayesian-Schwarz information criterion
(BIC) Akaike information criterion (AIC), and the marginal likelihood approach is discussed in
Appendix A. Therefore, the contribution is twofold: we provide (a) a gentle guide for interested
practitioners (with several warnings and advices), and (b) and a useful work for more expert
researchers looking for practical solutions and/or possible alternatives. Some related code is also
provided (see Section 5).

2 Background

2.1 Problem statement

In many applications, the goal is to make inference about a variable of interest, θ = θ1:Dθ =
[θ1, θ2, . . . , θDθ ] ∈ Θ ⊆ RDθ , where θd ∈ R for all d = 1, . . . , Dθ, given a set of observed
measurements, y = [y1, . . . , yDy ] ∈ RDy . In the Bayesian framework, one complete model M is
formed by a likelihood function `(y|θ,M) and a prior probability density function (pdf) g(θ|M).
All the statistical information is summarized by the posterior pdf, i.e.,

π̄(θ|y,M) =
`(y|θ,M)g(θ|M)

p(y|M)
, (1)

where

Z = p(y|M) =

∫
Θ

`(y|θ,M)g(θ|M)dθ, (2)

is the so-called marginal likelihood, a.k.a., Bayesian evidence [1, 2]. This quantity is important
for model selection purpose, as we show below. However, usually Z = p(y|M) is unknown and
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difficult to approximate, so that in many cases we are only able to evaluate the unnormalized
target function,

π(θ|y,M) = `(y|θ,M)g(θ|M) ∝ π̄(θ|y,M). (3)

Model Selection and testing hypotheses. Let us consider now M possible models (or
hypotheses), M1, ...,MM , with prior probability mass pm = P (Mm), m = 1, ...,M . Note that,

we can have variables of interest θ(m) = [θ
(m)
1 , θ

(m)
2 , . . . , θ

(m)
Dm

] ∈ Θm ∈ RDm , with possibly different
dimensions in the different models. The posterior of the m-th model is given by

p(Mm|y) =
pmp(y|Mm)

p(y)
∝ pmZm (4)

where Zm = p(y|Mm) =
∫

Θ
`(y|θ,Mm)g(θ|Mm)dθ, and p(y) =

∑M
m=1 p(Mm)p(y|Mm).

Moreover, the ratio of two marginal likelihoods

BFmm′ =
Zm
Zm′

=
p(y|Mm)

p(y|Mm′)
=

p(Mm|y)/pm
p(Mm′ |y)/pm′

, (5)

also known as Bayes factors, represents the posterior to prior odds of models m and m′. If some
quantity of interest is common to all models, the posterior of this quantity can be studied via
model averaging [21], i.e., a complete posterior distribution as a mixture of M partial posteriors
linearly combined with weights proportionally to p(Mm|y) (see, e..g, [22, 23]). Therefore, in all
these scenarios, we need the computation of Zm for all m = 1, ...,M .

Remark 1. For the sake of simplicity, hereafter we skip the dependence on Mm in the notation.
For instance, we denote the posterior density as π̄(θ|y) and the marginal likelihood as Z = p(y).
Thus, we write

Z =

∫
Θ

π(θ|y)dθ =

∫
Θ

`(y|θ)g(θ)dθ. (6)

Remark 2. From Eq. (6), we can see clearly that Z is an average of likelihood values `(y|θ′),
weighted according to the prior pdf g(θ′).

Clearly, the results of the Bayesian inference depends on the choice of the prior density and the
actual number of data Dy.

2.2 Type of prior densities

The prior distribution in Bayesian inference should express the belief about the quantity of interest
before that some data are observed. In this case, the prior is often defined as informative.
An informative prior pdf can be determined from previous information, past experiments or by
other sources of information (different from the observation model). As an alternative, when
a family of conjugate priors exists, choosing a prior from that family simplifies calculation of
the posterior distribution. However, in many scenarios, additional information and conjugate
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priors are not available. Therefore, uninformative priors are employed. Uninformative priors can
express “objective” information such as “the variable is positive” or “the parameter is less than
some threshold value”. Below, we describe some classes of uninformative priors.

Diffuse priors. The simplest idea for determining a non-informative prior is to assign equal
probabilities to all possible outcomes, such as uniform densities in bounded support. In un
unbounded domain, one can employ vague priors, i.e., densities with probability mass spread
in all the state space, with a great scale parameter. A more extreme alternative is to use improper
prior when it is possible (see the description below).

Improper priors. The use of improper priors, i.e., such that
∫

Θ
g(θ)dθ = ∞, is allowed for

inference when
∫

Θ
`(y|θ)g(θ)dθ <∞, since the corresponding posteriors are proper. However, this

is an issue for the model selection using the marginal likelihood Z. Indeed, the prior g(θ) = ch(θ)
is not completely specified, since c > 0 is arbitrary. Some possible solutions are given in Section
4.3. A uniform density over an unbounded domain is a clear example of improper prior.

Reference and Jeffreys priors. Priors densities can also be designed according to some other
principle such as invariance after transformations, symmetry or maximizing entropy given some
constraints. Examples of this family are the reference priors or Jeffreys priors [1, 24]. Often, they
are also improper priors. An example is g(σ) ∝ 1/σ for σ > 0 which is a Jeffreys improper prior,
which is usually applied for a variable that represents a standard deviation.

Below we discuss how the choice of the prior affects (a) the inference of θ, and (b) the estimation
of the Bayesian evidence Z for the model selection problem.

3 Dependence on the choice of the prior density

In this section, we show that the marginal likelihood Z is highly sensitivity to the choice of
prior density (even with strong data) [25]. It is also more sensitive than the posterior π̄(θ|y) to
variations on the prior density. Here, we first show all the values that the evidence Z can take
changing the prior pdf and then we discuss its sensitivity. Finally, we describe further issues in
the use of improper priors.

Bounds of the evidence Z. Let us denote the maximum and minimum value of the likelihood
function as `min = `(y|θmin) = min

θ∈θ
`(y|θ), and `max = `(y|θmax) = max

θ∈θ
`(y|θ), respectively. Note

that

Z =

∫
Θ

`(y|θ)g(θ)dθ ≤ `(y|θmax)

∫
Θ

g(θ)dθ = `(y|θmax).

Similarly, we can obtain Z ≥ `(y|θmin). The maximum and minimum value of Z are reached, for
instance, with two degenerate choices of the prior, g(θ) = δ(θ − θmax) and g(θ) = δ(θ − θmin).
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Hence, for every other choice of g(θ), we have

`(y|θmin) ≤ Z ≤ `(y|θmax). (7)

Namely, depending on the choice of the prior g(θ), we can have any value of Bayesian evidence
contained in the interval [`(y|θmin), `(y|θmax)].
The two possible extreme values correspond to the worst and the best model fit, respectively. We
can obtain Z = `(y|θmin) with the choice g(θ) = δ(θ − θmin) (which applies the greatest possible
penalty to the model), and we obtain Z = `(y|θmax), with the choice g(θ) = δ(θ − θmax) (which
does not apply any penalization to the model complexity, i.e., we have the maximum overfitting).
Indeed, Z =

∫
Θ
`(y|θ)g(θ)dθ is by definition an average of the likelihood values weighted according

to the prior.

Remark 3. Depending on the choice of the prior, the evidence Z can take any possible value in
the interval [`(y|θmin), `(y|θmax)]. Hence, in this sense, the choice of the prior is equivalent to
choice a penalization term for the model complexity.

Note that Remark 3 above it is strictly connected to Remark 2. For the relationship with the
well-known Bayesian-Schwarz information criterion (BIC) and the Akaike information criterion
(AIC), see Appendix A.

Consistency of Bayesian inference. Here, we consider a fixed observation model and a fixed
prior but we vary the number of data Dy. More specifically, we focus on the behavior of the
inference and model selection as Dy →∞. Just as an example, let us consider two Bayesian point
estimators, such as the minimum mean square error (MMSE) estimator

θ̂MMSE =

∫
Θ

θπ̄(θ|y)dθ, (8)

and the maximum-a-posteriori (MAP) estimator

θ̂MAP = arg max
θ∈Θ

π̄(θ|y). (9)

Both estimators depends on the posterior density, and as a consequence on the choice of the prior
pdf. However, as the number of data grows, Dy → ∞, under mild conditions, both estimators

θ̂MMSE and θ̂MAP and are consistent, i.e., they convergence to the true value of the parameters θtrue
(recovering frequentist arguments). This is due to, under mild conditions (see Bernstein-von
Mises theorem [1, 2, 25]), the probability mass represented by the posterior π̄(θ|y) becomes more
concentrate around the true value of the parameter, as the number of data grows Dy →∞. This
means that for large amounts of data, one can use the posterior distribution to make, from a
frequentist point of view, valid statements about estimation and uncertainty.
Similarly, under the assumption that one of Mm is the true generating model, the Bayes factor
(i.e., the marginal likelihood approach) will choose the correct model as the number of data grows,
Dy →∞ [26].
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Remark 4. Therefore, as number of data grows, Dy →∞, we can reduce the dependence on the
prior and obtain the correct results. However, the marginal likelihood Z is particularly sensitive
to changes of the prior pdf, as we show in the next section.

Robustness of the Bayesian inference. Here, we consider a fixed and finite number of data Dy,
but we assume variations in the choice of the prior density. The goal is to analyze the robustness
of the parameter and evidence estimations. Below, by means of illustrative examples, we show
that the posterior π̄(θ|y) is more robust under prior changes and/or variations, with respect the
marginal likelihood Z, as we state in the following remark.

Remark 5. Both the posterior density π̄(θ|y) and the marginal likelihood Z = p(y) depend on
the prior choice. However, unlike the posterior density, the marginal likelihood even with strong
data is highly sensitivity to the choice of prior density. Namely, under the assumption of strong
data and if we vary the prior density, the estimators θ̂MMSE, θ̂MAP does not change drastically, where
the marginal likelihood Z can suffer significant variations [27, 25].

Remark 6. Diffuse priors tend to produce smaller values of the marginal likelihood Z. This is
due to the integration would consider many values of θ that do not explain well the data, i.e., the
likelihood at θ is small. Hence, a good model can display a low value of Z only because we choose
a prior that is very spread out. Conversely, a worse model can display a bigger value of Z due to
choosing a concentrated prior [28, 15].

The next illustrative example shows the robustness of the posterior (and the corresponding
estimators) and the sensitivity of the evidence Z, under prior changes.

Illustrative example 1. Let us consider the following Gaussian conjugate model for θ,

`(y|θ) = N (y|θ, σ2) =
n∏
i=1

N (yi|θ, σ2)

g(θ) = N (θ|µ0, σ
2
0).

Hence, the posterior is also Gaussian, π̄(θ|y) = N (θ|µpost, σ
2
post), where

µpost =
1

1
σ2

0
+ n

σ2

(
µ0

σ2
0

+
nȳ

σ2

)
σ2

post =

(
1

σ2
0

+
n

σ2

)
,

where ȳ denotes the sample mean of y. The marginal likelihood is given by

Z = (2πnσ2
n)−

n
2

(
σ2

0

σ2
n

+ 1

)− 1
2

exp

(
−1

2

(
vy + ȳ2

σ2
n

+
µ2

0

σ2
0

− 1
1
σ2
n

+ 1
σ2

0

(
ȳ

σ2
n

+
µ0

σ2
0

)2
))

,

where σn = σ√
n

and vy denotes the sample variance of y. We consider a single data point (n = 1),
y = y = 2.078. We fix µ0 and vary σ0. In Figure 1, we show the corresponding posterior for
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σ0 = 3, 10, 100 in solid line, whereas the likelihood is depicted with dashed line and the prior is
shown with dotted line. The evolution of the corresponding marginal likelihood Z versus σ0 is
given in Figure 1(d).
As σ0 grows, the posterior pdf approaches the likelihood as depicted in Figures 1(a)-(b)-(c). Then,
for big values of σ0, the posterior is insensitive to the increasing of the prior dispersion. If we
consider σ0 → ∞ (corresponding to an improper prior), the posterior pdf coincides with the

likelihood function, and the inference (e.g., the estimators θ̂MMSE and θ̂MAP) is completely driven by

the observed data. In this example both estimators θ̂MMSE and θ̂MAP converges to the maximum of
the likelihood function as σ0 →∞. Note also that from Figure 1(a) to Figure 1(c) that variation
of the posterior is also negligible.
On the contrary, as σ0 grows, the marginal likelihood decreases approaching zero as shown in
Figure 1(d) (instead of converging to the normalizing constant of the likelihood, as someone could
expect). Based on this fact, many authors claim that the use of Bayes factor is not reliable. Next,
we provide another illustrative example showing that using an increasingly diffuse prior makes us
eventually select the wrong model over the true one.

The illustrative example 2 below shows how the sensitivity (with a fixed Dy we change the prior) in
the estimation of Z can affect the model selection results. Moreover, we show also the consistency
of the Bayesian factors fixing the prior and increasing the number of data Dy, i.e., Dy →∞.

Illustrative example 2. Consider two models, M1 = {`1(y|θ) = θye−θ/y!, g1(θ)} and
M2 = {`2(y|φ) = φ(1 − φ)y, g2(φ)} with different priors g1(θ) and g2(φ). Suppose we have
generated Dy independent data y = (y1, . . . , yDy) from M1 with θtrue = 2. We use a uniform
prior g2(φ) = 1 for φ ∈ (0, 1), and also a uniform prior g1(θ) = 1

L
for θ ∈ (0, L). The goal of this

example is to show the how the Bayes factor below

BF12 =
Z1

Z2

=

∫ L
0
`1(y|θ) 1

L
dθ∫ 1

0
`2(y|φ)dφ

(10)

is affected when L increases, i.e., g1(θ) becomes more diffuse. We fix L, generate Dy data from
model M1 and compute BF12. Hence, the model M1 is the correct one, since we generate the
data according to M1.
For each L = 10α (α = 1, . . . , 6), we repeat this process in 100 different runs, and count the number
of errors in model selection, i.e., whenever BF12 < 1 (note it should be greater than 1 since M1

is the true model). Table 1 shows the results when Dy = 30. Specifically, we show the maximum
and minimum values of BF12, obtained in the 100 simulations, along with the number of error.
We observe that, as L increases, i.e., we use a more diffuse prior, the model M2 is (wrongly)
selected more often. In fact, with L = 106, the Bayes factor always selects M2 over M1. Table
2 shows results when Dy = 100, where we observe that the number of errors is very low even for
large L, namely, in this example having more data compensates the potential drawbacks of the
use of diffuse priors. In addition, in Figure 2, we have computed the number of errors (over the
100 different runs) for fixed L = 105 versus the number of data Dy. We see that, for a given prior
width, increasing Dy reduces the number of times we choose the wrong model. This example
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(a) σ0 = 3 (b) σ0 = 10

(c) σ0 = 100 (d) Marginal likelihood Z versus σ0

Figure 1: In (a)-(c), we show the posterior for a Gaussian prior N (µ0, σ
2
0) with three different

choices of σ0. In (d), we show the corresponding marginal likelihood versus σ0 in log-scale. Note
that increasing σ0 (i.e. prior is more diffuse) does not change the shape of the posterior, but the
marginal likelihood is indeed decreasing.

shows that even if the number data grows Dy, diffuse priors can affect the results.
Clearly, keeping fixed the (proper) priors, and including the enough number of data Dy in our
study, we can obtain the correct results (see Figure 2). However, the number of enough data is
unknown and depends on the specific problem. Furthermore, the joint use of a huge amount of
data often jeopardized the performance of the computational methods employed for estimating
the evidence Z [15, 17].

Remark 7. We have already discussed the sensitivity of Z to variations of the prior density.
Even more caution is needed in the case of employing improper priors. We have seen that the use
of improper priors,

∫
Θ
g(θ)dθ = ∞, is allowed for inference when

∫
Θ
`(y|θ)g(θ)dθ < ∞, since

the corresponding posteriors are proper. However, this is an issue for the model selection with Z.
Indeed, the prior g(θ) = ch(θ) is not completely specified, since c > 0 is arbitrary. We discuss it
and some possible solutions in the next sections.
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Table 1: Model comparison for Dy = 30. Minimum and maximum BF12 under true model M1

(Poisson) for 100 simulations

True model =M1 (with θtrue = 2)
L min max Errors in model choice, over 100 simulations
10 0.094 4.77×105 3
102 0.059 2.49×104 15
103 0.0012 1.46×103 31
104 1.06×10−4 339.86 67
105 1.02×10−4 41.05 84
106 1.59×10−6 0.7080 100

Table 2: Model comparison for Dy = 100. Minimum and maximum BF12 under true model M1

(Poisson) for 100 simulations

True model =M1 (θtrue = 2)
L min max Errors in model choice, over 100 simulations
10 41.27 9.05×1013 0
102 6.93 1.55×1013 0
103 14.45 2.21×1011 0
104 7.94×10−4 3.75×1011 3
105 0.5214 1.36×1012 2
106 7.98×10−4 2.07×108 7

Figure 2: Number of errors in model selection, i.e., selecting the wrong model (BF12 < 1), out of
100 independent runs, when using g1(θ) = 1

L
, θ ∈ (0, L) with L = 105 (i.e., fixing the prior), for

different number of data Dy. We can see that keeping, fix the priors, as Dy grows we decide for
the true model. However, fixing Dy, changing L we can always adulterate the result of the study
penalizing more and the model 1, as shown in Tables 1-2.
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3.1 Issues with improper priors for model selection

So far we have considered proper priors, i.e.,
∫

Θ
g(θ)dθ = 1. The use of improper priors is

common in Bayesian inference to represent weak prior information. Consider g(θ) ∝ h(θ)
where h(θ) is a non-negative function whose integral over the state space does not converge,∫

Θ
g(θ)dθ =

∫
Θ
h(θ)dθ =∞. In that case, g(θ) is not completely specified. Indeed, we can have

different definitions g(θ) = ch(θ) where c > 0 is (the inverse of) the “normalizing” constant,
not uniquely determinate since c formally does not exist. Regarding the parameter inference and
posterior definition, the use of improper priors poses no problems as long as

∫
Θ
`(y|θ)h(θ)dθ <∞,

indeed

π̄(θ|y) =
1

Z
π(θ|y) =

`(y|θ)ch(θ)∫
Θ
`(y|θ)ch(θ)dθ

=
`(y|θ)h(θ)∫

Θ
`(y|θ)h(θ)dθ

,

=
1

Zh
`(y|θ)h(θ) (11)

where Z =
∫

Θ
`(y|θ)g(θ)dθ, Zh =

∫
Θ
`(y|θ)h(θ)dθ and Z = cZh. Note that the unspecified

constant c > 0 is canceled out, so that the posterior π̄(θ|y) is well-defined even with an improper
prior if

∫
Θ
`(y|θ)h(θ)dθ <∞. However, the issue is not solved when we compare different models,

since Z = cZh depends on c. For instance, the Bayes factors depend on the undetermined constants
c1, c2 > 0 [29],

BF(y) =
c1

c2

∫
Θ1
`1(y|θ)h1(θ)dθ∫

Θ2
`2(y|θ)h2(θ)dθ

=
Z1

Z2

=
c1Zh1

c2Zh2

, (12)

so that different choices of c1, c2 provide different preferable models. There exists various
approaches for dealing with this issue. Below we describe some relevant ones.

4 Safe approaches for Bayesian model selection

In a Bayesian inference, the best scenario is surely when the user has strong beliefs that can be
translated into informative priors. When this additional information is not available, a careful
strategy should be employed due to the dependence and sensitivity of the evidence Z with the
prior choice g(θ).
We define as a safe scenario, an approach where the choice of the priors is virtually not favoring
any of the models, and the results are not depending on some unspecified constant c > 0 (as in
the case of using improper priors). Below, we describe some scenarios and some possible solutions
for reducing, in some way, the dependence of the model comparison on the choice of the priors.
In Section 4.4, we also discuss an alternative approach for model selection in Bayesian statistics
[18, Ch. 6][19].

Same priors. Generally, we are interested in comparing two or more models. The use of the
same (even improper) priors is suitable when the models have the same parameters (and hence
also share the same support space). With this choice, the resulting comparison seems fair and

10



reasonable. However, this scenario is very restricted in practice. An example is when we have
nested models, which share some common parameters. As noted in [26, Sect. 5.3], in the context
of testing hypothesis, some authors have considered improper priors on nuisance parameters that
appear on both null and alternative hypothesis. Since the nuisance parameters appear on both
models, the multiplicative constants cancel out in the Bayes factor.

4.1 Hierarchical modeling

Hierarchical models are formed by multiple levels with the purpose of estimating also the hyper-
parameters of the assumed prior densities. More specifically, additional prior pdfs (called often
hyper-priors) over the the hyper-parameters of the priors are considered [30, 25]. Below, we provide
just a summary of the new terms:

• Hyper-parameters: parameters of the prior distributions,

• Hyper-priors: prior distributions of hyper-parameters.

The underlying idea is to vary the hyper-parameters of the prior pdfs and performs different
inference problems. Namely, fixing the hyper-parameters and studying the posterior, we have
one inference problem. Then, we change the hyper-parameters and studying the corresponding
posterior, we have another inference problem.
Let us consider now that our prior pdfs can be expressed as a parametric (or non-parametric)
family of functions. We can vary the parameters in this family and even make inference on those
variables. In this sense, we reduce the dependence on the choice of the prior, since we are not
actually considering a unique prior but a family of them. Moreover, several authors claim hat the
resulting model seems to be robust, with even the posterior distribution less sensitive to the more
flexible hierarchical priors [25].
Mathematically speaking, let us denote g(θ|ν) our family of priors over θ with hyper-parameters
ν ∈ Rξ. Assuming and hyper-prior h(ν), the complete posterior is given by the following
expression,

π̄(θ,ν|y) =
`(y|θ)g(θ|ν)h(ν)

Znew

, (13)

where

Znew = p(y) =

∫
Θ

∫
Rξ
`(y|θ)g(θ|ν)h(ν)dθdν, (14)

=

∫
Rξ
Z(ν)h(ν)dν, (15)

is a Bayesian evidence that takes into account all the members of the prior family. Note that we
have set Z(ν) =

∫
Θ
`(y|θ)g(θ|ν)dθ following Eq. (6). Clearly, the model selection scheme based

on Znew is more robust than a model selection approach based on a single marginal likelihood
Z = Z(ν), considering only one possible value of ν (i.e., only a unique prior). However, the
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computation of Znew is more complex than the computation of a single Z(ν), since we have
to approximate an higher dimensional integral [15]. Hence, this approach can be much more
computational demanding. However, in some cases, it could a suitable solution: see, as an example,
the numerical experiment in Section 5.3.

4.2 Likelihood-based priors

When
∫

Θ
`(y|θ)dθ <∞, we can build a proper prior based on the data and the observation model.

For instance, we can choose glike(θ) = `(y|θ)∫
Θ `(y|θ)dθ

, then the marginal likelihood is

Z =

∫
Θ

`(y|θ)glike(θ)dθ =

∫
Θ
`2(y|θ)dθ∫

Θ
`(y|θ)dθ

. (16)

We can consider glike(θ) a non-invasive prior in the sense that does not incorporate any additional
information, but is only based on the data. This idea is connected to posterior predictive approach,
that is described in Section 4.4.

Less informative likelihood-based priors can be constructed using a tempering effect with a
parameter 0 < β ≤ 1 or considering only a subset of data, denoted as ysub. For instance,
when

∫
Θ
`(y|θ)βdθ < ∞ or

∫
Θ
`(ysub|θ)dθ < ∞, then we can choose glike(θ) ∝ `(y|θ)β or

glike(θ) ∝ `(ysub|θ), the marginal likelihood is

Z =

∫
Θ
`(y|θ)β+1dθ∫

Θ
`(y|θ)βdθ

, or Z =

∫
Θ
`(y|θ)`(ysub|θ)dθ∫

Θ
`(ysub|θ)dθ

. (17)

This is also the key idea underlying the partial and intrinsic Bayes factors described in the next
section.

4.3 How to compute Bayes factors with improper priors

If one desire to use improper priors, a way to remove the unspecified constants cm (where m
denotes the subindex of the model) consists of building a likelihood-based prior (similarly we
have described above) and compute/approximate its normalizing constant. Instead of using the
complete likelihood, a partial likelihood approach (based only in a subset of data) has been
suggested in the so called “Partial Bayes Factors” [31, Sect. 2].

Partial Bayes Factors [31, Sect. 2]. The idea behind the partial Bayes factors consists
of using a subset of data to build proper priors and, jointly with the remaining data, they are used
to calculate the Bayes factors. This is related to the likelihood-based prior approach, described
above.
Let us consider a different improper prior gm(θ) = cmhm(θ), for each model. The method starts
by dividing the data in two subsets, y = (ytrain,ytest). The first subset ytrain is used to obtain
partial posterior distributions,

ḡm(θ|ytrain) =
cm

Z
(m)
train

`m(ytrain|θ)hm(θ), (18)
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using the improper prior. The partial posterior ḡm(θ|ytrain) is then employed as prior. Note that

Z
(m)
train = cm

∫
Θm

`m(ytrain|θ)hm(θ)dθ.

Recall that the complete posterior of m-th model is

π̄m(θ|y) = π̄m(θ|ytest,ytrain) =
cm
Zm

`m(y|θ)hm(θ), (19)

where Zm is the standard marginal likelihood, i.e.,

Zm = cm

∫
Θm

`m(y|θ)hm(θ)dθ.

Note that both Z
(m)
train and Zm both depend on the unspecified constant cm. Considering the

conditional likelihood `m(ytest|θ,ytrain) of the remaining data ytest, we can study another posterior
density conditioned only to ytest,

π̄
(m)
test(θ|ytest) =

1

Z
(m)
test|train

`m(ytest|θ,ytrain)ḡm(θ|ytrain), (20)

where ḡm(θ|ytrain) in (18) plays the role of a prior pdf.

Remark 8. In case of conditional independence of the data given θ, we have `m(ytest|θ,ytrain) =
`m(ytest|θ).

Furthermore, we can write Z
(m)
test|train as function of the standard evidence Zm,

Z
(m)
test|train =

∫
Θm

`m(ytest|θ,ytrain)ḡm(θ|ytrain)dθ,

=

∫
Θm

`m(ytest|θ,ytrain)
cm

Z
(m)
train

`m(ytrain|θ)hm(θ)dθ,

=
cm

Z
(m)
train

∫
Θm

`m(ytest|θ,ytrain)`m(ytrain|θ)hm(θ)dθ,

=
cm

Z
(m)
train

∫
Θm

`m(y|θ)hm(θ)dθ,

=
Zm

Z
(m)
train

. (21)

Remark 9. Note that Z
(m)
test|train does not depend on cm. In fact, we have

Z
(m)
test|train =

Zm

Z
(m)
train

=

∫
Θm

`m(y|θ)hm(θ)dθ∫
Θm

`m(ytrain|θ)hm(θ)dθ
,

=

∫
Θm

`m(ytest,ytrain|θ)hm(θ)dθ∫
Θm

`m(ytrain|θ)hm(θ)dθ
, (22)

i.e., in the numerator, we consider all the data whereas, in the denominator, only ytrain.
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Let us consider now two models, for simplicity. Therefore, considering ḡ1(θ|ytrain), ḡ2(θ|ytrain), as
proper priors, we can define the following partial Bayes factor

BF(ytest|ytrain) =
Z

(1)
test|train

Z
(2)
test|train

=

Z1

Z
(1)
train

Z2

Z
(2)
train

,

=
Z1

Z2

Z
(1)
train

Z
(2)
train

=
BF(y)

BF(ytrain)
. (“Bayes law for Bayes Factors”). (23)

Therefore, one can approximate firstly BF(ytrain), secondly BF(y) and then compare the model
using the partial Bayes factor BF(ytest|ytrain).

Remark 10. The trick here consists in computing two normalizing constants for each model,
instead of only one. The first normalizing constant is used for building an auxiliary proper prior,
depending on ytrain. The difference with the likelihood-based prior approach in previous section is
that ytrain is used only once (in the auxiliary proper prior).

The main drawback of the partial Bayes factor approach is the dependence on the choice of ytrain

(which could affect the selection of the model). The authors suggest finding the minimal suitable
training set ytrain, but this task is not straightforward. A training dataset ytrain is called proper,
if
∫

Θm
`m(ytrain|θ)hm(θ)dθ <∞ for all models, and it is called minimal if is proper and no subset

of ytrain is proper. Two alternatives in the literature have been proposed, the fractional Bayes
factors and the intrinsic Bayes factors.

Fractional Bayes Factors [31]. Instead of using a training data, it is possible to use power
posteriors, i.e.,

FBF(y) =
BF(y)

BF(y|β)
, (24)

where the denominator is

BF(y|β) =

∫
Θ1
`1(y|θ)βg1(θ)dθ∫

Θ2
`2(y|θ)βg2(θ)dθ

=
c1

∫
Θ1
`1(y|θ)βh1(θ)dθ

c2

∫
Θ2
`2(y|θ)βh2(θ)dθ

. (25)

with 0 < β < 1, and BF(y|1) = BF(y). Note that the value β = 0 is not admissible since∫
Θm

hm(θ)dθ = ∞ for m = 1, 2. Again, since both BF(y) and BF(y|β) depend on the ratio c1
c2

,
the fractional Bayes factor FBF(y) is independent on c1 and c2 by definition.

Intrinsic Bayes factors [32]. The partial Bayes factor (23) will depend on the choice of
(minimal) training set ytrain. These authors solve the problem of choosing the training sample by
averaging the partial Bayes factor over all possible minimal training sets. They suggest using the
arithmetic mean, leading to the arithmetic intrinsic Bayes factor, or the geometric mean, leading
to the geometric intrinsic Bayes factor. Note that the Intrinsic Bayes factor is in some sense
related to the well-known cross-validation approach (see numerical example in Section 5.2).
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Remark 11. The main drawback of these approaches is their dependence on the likelihood function
and, for this reason, usually they tend to select more complex models, overweighting the likelihood
values. See the numerical experiment in Section 5.2.

4.4 Posterior predictive approach

The marginal likelihood approach is not the unique approach for model selection in Bayesian
statistics. Here, we discuss an alternative strategy, that is based on the concept of prediction [18,
Ch. 6][19]. This approach is more robust with respect to the choice of the prior density, so that
it can be considered as a possible solution to the issues described above.
After fitting a Bayesian model, a popular approach for model checking (i.e. assessing the adequacy
of the model fit to the data) consists in measuring its predictive accuracy [18, 19]. Hence, a key
quantity in these approaches is the posterior predictive distribution of generic different data ỹ
given y,

p(ỹ|y) = Eπ̄(θ|y)[`(ỹ|θ)] =

∫
Θ

`(ỹ|θ)π̄(θ|y)dθ,

=
1

Z

∫
Θ

`(ỹ|θ)`(y|θ)g(θ)dθ, (26)

Considering ỹ = y, we can observe that exists a clear connection with likelihood-based priors
described in Section 4.2. Indeed, if we assume g(θ) ∝ 1 and ỹ = y, Eq. (26) becomes Eq. (16).
Note that the posterior predictive distribution in Eq. (26) is an expectation w.r.t. the posterior,
which is robust to the prior selection with informative data, unlike the marginal likelihood as we
shown in Section 3. Therefore, this approach is less affected by the prior choice.
Note that we can consider posterior predictive distributions p(ỹ|y) for vectors ỹ smaller than
y (i.e., with less components). The posterior predictive checking is based on the main idea of
considering some simulated data ỹi ∼ p(ỹ|y), with i = 1, . . . , L, and comparing with the observed
data y. After obtaining a set of fake data {ỹi}Li=1, we have to measure the discrepancy between

the true observed data y and the set {ỹi}Li=1 . This comparison can be made with test quantities
and graphical checks (e.g., posterior predictive p-values) [18].

5 Numerical experiments

In this section, we provide different numerical simulations testing different models, prior pdfs and
possible solutions. One of them is a well-known model based on the radial velocity technique for
detecting exo-objects orbiting other stars. Some related code is also provided.1

1Related Matlab code is available at http://www.lucamartino.altervista.org/Code_Llorente_Priors.m
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5.1 First numerical analysis: harmonic detection

In this section, we study a comparison between two different models already considered in other
works [33, 34]. In the first model, the underlying signal is just a constant value,

M1 : yi = B + εi, (27)

whereas in the second model the underlying signal contains also a periodic piece,

M2 : yi = B + A1 sin

(
2π

(
t

P1

+ t1

))
+ εi, (28)

where in both εi ∼ N (0, σ2) for all i = 1, ..., Dy. We assume B = 1 A1 = 0.9, P1 = 3, t1 = 0,
σ = 1, and generate 50 values from the modelM2. Thus,M2 is the true model. We also consider
two scenarios where different priors over A and P are employed.

First experiment. We consider uniform proper priors for all the parameters: B ∼ U([−10, 10]),
A1 ∼ U([0.1, 100]), P1 ∈∼ U([0.3, 30]) and t1 ∼ U([0, 1]). Then, considered the generated data
from M2, the corresponding likelihood functions and priors, we can approximate the Bayesian
evidence Z1 of the modelM1, and Z2 of the modelM2. By applying numerical integration and/o
Monte Carlo methods [33], the marginal likelihood of both models has been computed obtaining
logZ1 = −35.74 and logZ2 = −36.33, i.e., the wrong model M1 would be chosen (Z1 > Z2).

Second experiment. We change the prior over A and P considering two proper uniform densities
but in a logarithmic scale, i.e., which are two modified Jeffreys priors [14]. The prior of A is

g(A) ∝ 1

A
, with A ∈ [1, 100],

and g(A) = 0 otherwise. Moreover, we have

g(P ) ∝ 1

P
, with P ∈ [0.3, 30],

and g(P ) = 0 otherwise. The rest of the experiment is the same as above. In this case,
logZ2 = −31.14 (approximated with the computational method described in [33, 35]). Hence,
in this case Z2 > Z1, and we select the true model M2. We have seen as the change of the forms
of the prior pdfs (keeping fixed the intervals of the analysis) affects the results.

5.2 Second numerical analysis: partial and intrinsic BFs

Consider again the models in the illustrative example 2 in Section 3:

M1 = {`1(y|θ) = θye−θ/y!, g1(θ)},
M2 = {`2(y|φ) = φ(1− φ)y, g2(φ)}
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with different priors g1(θ) and g2(φ). Previously in Section 3, we considered two uniform and
proper priors g2(φ) = 1, φ ∈ (0, 1), and g1(θ) = 1

L
, θ ∈ (0, L). Hence, the Bayes factor BF12

is well defined. Here, we replace g1(θ) with an improper uniform prior g̃1(θ) ∝ 1, θ ∈ (0,∞) for
model M1. Our goal is to replicate Tables 7 and 8 using this improper prior for M1.
In this situation, the Bayes factor is not well-defined due to the arbitrary constant in g̃1(θ).
Hence, we need to resort to partial Bayes factors [31, Sect. 2], where we compute the posterior
of a single observation yi, denoted by a sub-index i, (training set) under prior g̃1(θ), i.e.,
π̄1(θ|yi) ∝ `1(yi|θ)g̃1(θ), and use π̄1(θ|y1) now as a proper prior in the computation of BF12.
In order to avoid the dependence on the training sample, we use the approach in [32], called
the intrinsic Bayes factor (IBF). Let denote y−i the vector of all Dy data, y, without the i-th
component yi, i.e., y−i is a vector of Dy − 1 components. The IBF consists in averaging over all
possible training samples, resulting in the following intrinsic Bayes factor,

IBF12 =
1

Dy

Dy∑
i=1

∫∞
0
`1(y−i|θ)π̄1(θ|yi)dθ∫ 1

0
`2(y|φ)dφ

=
1

Dy

Dy∑
i=1

∫∞
0
`1(y|θ)dθ/

∫∞
0
`1(yi|θ)dθ∫ 1

0
`2(y|φ)dφ

. (29)

Note that the cost of computing IBF12 increases with Dy. For this experiment, we generate data
from both models with different values of θ and φ, that is, we alternatively considerM1 andM2

as the true model. Specifically, we used θtrue ∈ {5, 2} and φtrue ∈ {0.5, 0.2, 0.8}. We compute
IBF12 in 100 different runs for the chosen values of θ and φ, and we show the results in Table
3 and Table 4 for Dy = 30 and Dy = 100, respectively2. We show the maximum and minimum
values of IBF12, obtained in the 100 simulations, along with the number of errors. When M1 is
the true model, IBF12 < 1 corresponds to an error, and conversely, when M2 is the true model,
IBF12 > 1 corresponds to an error.

The results clearly show that the use of intrinsic Bayes factors allows for correctly selecting
M1 when it is indeed the true model, with very few errors in model selection for the considered
values of θtrue and both Dy = 30 and Dy = 100. On the contrary, whenM2 is the true model, the
use of intrinsic Bayes factors makes more probable selecting M1 (as the most likely model) for
some values of φtrue. Note, for instance, that the number of errors when φtrue = 0.8 is 66, that is,
more than half of the times we would wrongly selectM1 overM2. This is consistent with the idea
underlying partial/intrinic Bayes factors, where the proper prior is built using part of the data.
Indeed, it tends to artificially increase the marginal likelihood of the model where the likelihood-
based prior is applied (since the resulting prior has larger overlap with the likelihood). Increasing
the number of data improves the results, as proves the 43 errors in model selection obtained when
φ = 0.8 and Dy = 100. Another way to reduce the problem is to apply the likelihood-based priors
(using the same number of data in the construction of the prior) to both models.

5.3 Exoplanet detection

In recent years, the problem of revealing objects orbiting other stars has acquired large attention.
Different techniques have been proposed to discover exo-objects but, nowadays, the radial velocity
technique is still the most used [14, 36, 37, 38]. The problem consists in fitting a dynamical model

2Related Matlab code is available at http://www.lucamartino.altervista.org/Code_Llorente_Priors.m
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Table 3: Model comparison for Dy = 30. Minimum and maximum IBF12 under true model M1

(Poisson model) and M2 (geometric model), over 100 independent runs.

True model =M1 True model =M2

θ min IBF12 max IBF12 Errors (IBF12 < 1) φ min IBF12 max IBF12 Errors (IBF12 > 1)
5 6.28×103 3.95×1011 0 0.2 1.61×10−26 9.76 2
2 0.55 7.40×106 1 0.5 5.45×10−9 884.25 30

0.8 0.004 10.51 66

Table 4: Model comparison for Dy = 100. Minimum and maximum IBF12 under true model M1

(Poisson model) and M2 (geometric model), over 100 independent runs.

True model =M1 True model =M2

θ min IBF12 max IBF12 Errors (IBF12 < 1) φ min IBF12 max IBF12 Errors (IBF12 > 1)
5 2.38×1011 4.52×1029 0 0.5 1.98×10−13 500.52 4
2 2.22×103 2.60×1014 0 0.2 2.02×10−72 3.34×10−18 0

0.8 0.003 6.69 43

to data acquired at different moments spanning during long time periods (up to years). The model
is highly non-linear and, for certain sets of parameters, its evaluation is quite costly in terms of
computation time. This is due to the fact that its evaluation involves numerically integrating
a differential equation, or using an iterative procedure for solving a non-linear equation (until a
certain condition is satisfied). This loop can be very long for some sets of parameters.

5.3.1 Likelihood function

When analyzing radial velocity data of an exoplanetary system, it is commonly accepted that the
wobbling of the star around the centre of mass is caused by the sum of the gravitational force of
each planet independently and that they do not interact with each other. Each planet follows a
Keplerian orbit and the radial velocity of the host star is given by

yt = V0 +
S∑
i=1

Ki [cos (ui,t + ωi) + ei cos (ωi)] + ξt, (30)

with t = 1, . . . , T .3 The number of objects in the system is S. Both yt, ui,t depend on time t,
and ξt is a Gaussian noise perturbation with variance σ2

e . We consider the noise variance σ2
e an

unknown parameter as well. The meaning of each parameter in Eq. (30) is given in Table 5. The
likelihood function is jointly defined by (30) and some indicator variables described below. The
angle ui,t is the true anomaly of the planet i and it can be determined from

dui,t
dt

=
2π

Pi

(1 + ei cosui,t)
2

(1− ei)
3
2

3More generally, we can have ytj with j = 1, ..., T .
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Table 5: Description of parameters in Eq. (30).
Parameter Description Units

For each planet

Ki amplitude of the curve m s−1

ui,t true anomaly rad
ωi longitude of periastron rad
ei orbit’s eccentricity . . .
Pi orbital period s
τi time of periastron passage s

Below: not depending on the number of objects/satellite

V0 mean radial velocity m s−1

This equation has analytical solution. As a result, the true anomaly ui,t can be determined from
the mean anomaly Mi,t. However, the analytical solution contains a non linear term that needs
to be determined by iterating. First, we define the mean anomaly Mi,t as

Mi,t =
2π

Pi
(t− τi) ,

where τi is the time of periastron passage of the planet i and Pi is the period of its orbit (see
Table 5). Then, through the Kepler’s equation,

Mi,t = Ei,t − ei sinEi,t, (31)

where Ei,t is the eccentric anomaly. Equation (31) has no analytic solution and it must be solved
by an iterative procedure. A Newton-Raphson method is typically used to find the roots of this
equation [39]. For certain sets of parameters, this iterative procedure can be particularly slow
and the computation of the likelihood becomes quite costly. We also have

tan
ui,t
2

=

√
1 + ei
1− ei

tan
Ei,t
2
, (32)

Therefore, the variable of interest θ is the vector of dimension dθ = 1+5S (where S is the number
of planets),

θ = [V0, K1, ω1, e1, P1, τ1, . . . , KS, ωS, eS, PS, τS],

For a single object (e.g., a planet or a natural satellite), the dimension of θ is dθ = 5+1 = 6, with
two objects the dimension of θ is dθ = 11, etc. All the Eqs. from (30) to (32) induce a likelihood
function `(y|θ, σe) =

∏T
t=1 `(yt|θ, σe), where y = {y1, . . . , yT}. Given a prior density g(θ), the

complete posterior is

p(θ|y, σe) =
1

p(y|σe)
`(y|θ, σe)g(θ),

where

Z = p(y|σe) =

∫
Θ

`(y|θ, σe)g(θ)dθ.
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Our goal is to infer the number S of planets in the system. For this purpose, we have to
approximate the model evidence Z = p(y|σe) of each model. For simplicity, we consider the
noise variance σ2

e is given.

5.3.2 Experiments

Let us denote M0 and M1 the models corresponding to zero and one planets. We generate a
set of data y according to the model with one planet and parameter values V = 5, K1 = 25,
ω1 = 0.61, e1 = 0.1, P1 = 15, and τ1 = 3. We consider 25 total number of observations. All
the data are generated with σ2

e = 15. The rest of trajectories are generated according to the
transition model (and the corresponding measurements yt according to the observation model).
Our goal is to compute the ratio BF10 = Z1

Z0
, where Z1 and Z0 denote respectively the marginal

likelihood of the model with zero planet and the model with one planet. As we commented above,
the model with zero planet has only one parameter, namely, θ0 = V0 with prior U([−20, 20]). For
simplicity, in the model with one planet we consider only two degrees of freedom, i.e., θ1 = [V1, P1].
The rest of parameters are set to their true values. In this model, we use the same prior for V1,
while for P1, we use U([0, Pmax]) with Pmax > 0. We know that BF10 should be greater than 1
since the data were generated according to model 1. However, we aim to show that increasing
Pmax (which corresponds to use a prior that is more uninformative) makes that BF10 eventually
becomes smaller than 1. For the computation of Z0 and Z1 we use a very thin grid within the
prior bounds. In Figure 3, we show the Bayes factor as a function of Pmax. For Pmax greater than
200, we have BF10 < 1, that is, we wrongly choose the model with zero planets. This illustrates
the problematic with the use of vague priors.

Figure 3: The Bayes factor BF10 as a function of prior width Pmax. Increasing Pmax (i.e. making
the prior for P1 more uninformative) eventually produces BF10 < 1. Note also that, when Pmax is
small (lower than Ptrue = 15), we have BF10 < 1, preferring the model with zero planet M0.

Hierarchical solution. Let us denote as Z1(Pmax), the marginal likelihood for each given
value of Pmax. Now, we consider the extended posterior where we use a prior for Pmax, as
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h(Pmax) = U([10, 365]), hence the new marginal likelihood is

Znew,1 =

∫
Z1(Pmax)h(Pmax)dPmax.

The value of Znew,1 is 9.1095× 10−44, which is greater than Z0 = 5.4601× 10−44. Hence, with this
hierarchical modeling, we select the true model.

6 Conclusions

In this work, we have highlighted that the marginal likelihoods, which are fundamental quantities
for Bayesian model selection, display strong dependence on the choice of the prior density.
Moreover, we have explained why the use of improper priors is not suitable for model selection.
More generally, we have also discussed the use of uninformative priors, whether proper (vague
priors) or improper, and its effect on the model selection procedure. We have shown by
means of illustrative examples the potential pitfalls of using vague priors, and we have provided
and discussed possible solutions for all these scenario. We have also described an alternative
for Bayesian model selection to the marginal likelihood approach, called posterior predictive.
Furthermore, the connection with the information criteria has been also presented. One of the
considered numerical experiment is a real-world astronomical application, consisted on detectiing
the number of objects orbiting a star.
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Appendices

A Marginal likelihood and information criteria

The marginal likelihood can be expressed as

Z = `maxW, (33)

where W ∈ [0, 1] is the Occam factor [40, Sect. 3]. More specifically, the Occam factor is defined
as

W =
1

`max

∫
Θ

g(θ)`(y|θ)dθ, (34)
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and it is `min

`max
≤ W ≤ 1. The factor W measures the penalty of the model complexity intrinsically

contained in the marginal likelihood Z: this penalization depends on the chosen prior and the
number of data involved.

Considering the expression (33) and taking the logarithm, we obtain

logZ = log `max + logW (35)

Note that log `max is a fitting term whereas logW is a penalty for the model complexity. Instead of
maximizing Z (or logZ) for model selection purposes, several authors consider the minimization
of some cost functions C derived by different information criteria [41, 42, 43]. Most of the criteria,
suggested in the literature, can be expressed as

C = −2 log `max︸ ︷︷ ︸
fitting

+2ηDθ︸ ︷︷ ︸
penalization

, (36)

where η is a real value that is often chosen as function of the number of data Dy, and Dθ is the
dimension of θ, i.e., the number of parameters. The first term is a fitting term (which fosters
the choice of more complex models), whereas the second one is a model penalization term (which
promotes the choice of simpler models).

Remark 12. Note that the expression of C is similar to

−2 logZ = −2 log `max − 2 logW,

considering Eq. (35), where −2 logW plays the role of the second factor 2ηDθ in Eq. (36).

The expression (36) encompasses several well-known information criteria proposed in the literature
and shown in Table 6, which differ for the choice of η.

Remark 13. The penalty term 2ηDθ in the information criteria is the same for every parameter.
The Bayesian approach allows the choice of different penalties, assuming different priors, one for
each parameter, i.e., for each component of θ.

Table 6: Different information criterion for model selection.

Criterion Choice of η

Bayesian-Schwarz information criterion (BIC) [41] 1
2 logDy

Akaike information criterion (AIC) [43] 1
Hannan-Quinn information criterion (HQIC) [42] log(log(Dy))
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