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Abstract.

This paper presents a proof of the Collatz Conjecture by showing that the sequence

of numbers generated cannot either diverge, converge to a single number, possess

more than one stable oscillation, or alternate indefinitely.
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1.0 Introduction.

The Collattz Conjecture is named after Lothar Collatz who proposed it in 1937. It

goes under many other names, which for interest are listed in Appendix B.

The conjecture states that :-

"For any positive integer, if it is even, divide by two, if it is odd, multiply by three

and add one. This will generate a sequence of numbers that always ends with unity".

Paul Erdös said about the conjecture, "Mathematics may not be ready for such

problems", while Jeffrey Lagarias, based upon the only known information about it,

said in 2010, "This is an extraordinarily difficult problem, completely out of the

reach of present day mathematics", [1].

Despite these claims, it is the intention of this paper, to provide a definitive proof of

the Collatz conjecture.

2.0 Nomenclature.

The nomenclature used in this paper is as follows :-

n Any odd number.

N Total number of odd numbers.

S Number of odd numbers covered in the pattern of Fig.3.1

where (3n + 1) produces an even number divisible by 2
p

where p ��2.

Relating to the sequence Matrix of Fig. 3.2.

R A row number.

C A column number

Oc A Basic Odd Number, (in row 2).

NR,C and nR,C Collatz sequence numbers, (in row R, column C).

mC A number representing those pairs of OC numbers that

are not divisible by 3.

3.0 Proof of the Collatz Conjecture.

3.1 Construction of the Truth Table.

To start this proof it is necessary to construct a form of truth table. This is shown

below in Fig. 2.1 and is explained as follows.

(i) The top row contains all the natural numbers starting at 1.

(ii) The second row contains all the even numbers that when divided by 2

produces an odd number, (shown as √).

(iii) The third row contains all the even numbers that when divided by 2 produces

an even number, (shown as √).

(iv) The first column contains O for odd , E for even, plus numbers representing

the number of iterations of (3n + 1)/2.

In the body of the table,

(v) The entries in the first row correspond to (ii) above.
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N 1 2222 3333 4444 5555 6666 7777 8888 9999 10101010 11111111 12121212 13131313 14141414 15151515 16161616 17171717 18181818 19191919 20202020 21212121 22222222 23232323 24242424 25252525 26 27 28 29 30 31 32 33 34 35

Odd √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Even √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√

1 ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕
2 ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕
3 ⊕⊕⊕⊕ ⊕⊕⊕⊕
4 ⊕⊕⊕⊕
5 ⊕⊕⊕⊕

N 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Odd √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Even √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√

1 ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕
2 ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕
3 ⊕⊕⊕⊕ ⊕⊕⊕⊕
4 ⊕⊕⊕⊕
5

N 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

Odd √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Even √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√

1 ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕
2 ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕
3 ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕
4 ⊕⊕⊕⊕
5 ⊕⊕⊕⊕

Fig. 3.1 – The Collatz Truth Table.
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(vi) The entries in the second row correspond to (iii) above.

(vii) The entries in the remaining rows show which odd numbers that when

iterated by multiples of (3n + 1)/2 produce an even number divisible by

2
p
 where p = 2 or higher, (shown as ⊕ ⊕ ⊕ ⊕ ).

As an example of (vii) consider 15. The sequence produced is :-

Iteration No.

of (3n + 1)/2
1 2 3 4

Sequence Generated

with Starting No.15
23 35 53 80

Fig. 3.2 – Example of Partial Sequence Generated from Starting Number 15.

The final number, (80), is divisible by 2
4
.

3.2              Proof of the Non-Divergence of the Sequence and Non-Convergence

to a Single number.

From Fig. 3.1 it can be seen that the following pattern of sequence generation is

evident.

For the number of iterations of (3n + 1)/2 in each row of the body of the table, an

even number divisible by 2
p
 where p � 2 is produced as follows, (i.e. as in (vii))

above).

Row 3, Iteration 1, Every 2
nd

 odd number starting at 1

Row 4, Iterations 2, Every 4
th

 odd number starting at 3

Row 5, Iterations 3, Every 8
th

 odd number starting at 7

Row 6, Iterations 4, Every 16
th

 odd number starting at 15

Row 7, Iterations 5, Every 32
nd

 odd number starting at 31

Row 8, Iterations 6, Every 64
th

 odd number starting at 63

Row 9, Iterations 7, Every 128
th

 odd number starting at 127

etc

Clearly this pattern can be generalised to :-

Row R, Iteration n, every 2n th odd number starting at 2
n
 – 1.

(It is interesting to note that the starting number is always a Mersenne number).

If N is the total number of odd numbers, then the total numbers of odd numbers

covered in the above pattern is :-

NS �
�

�
�
�

� +++= �
8

1

4

1

2

1
(3.1)

therefore

�
�

�
�
�

�
++++= �

8

1

4

1

2

1
1

2

1

N

S
(3.2)

so that
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N

S

N

S
+=1

2
(3.3)

and therefore

NS = (3.4)

Consequently, all odd numbers are covered in the above pattern. Consequently,

where p ��2��because

n
n

p
<

+

2

13
(3.5)

the sequence of numbers starting at any number can never diverge.

Concerning convergence to a single number, this is automatically excluded by the

nature of the conjecture. The sequence therefore alternates.

3.3              Proof that Only One Stable Oscillation Can Exist.

If the sequence oscillates, then if n is the low number in the oscillation

n
n

p
=

+

2

13
(3.6)

(i) If p = 1, then

nn 213 =+ (3.7)

This is clearly not possible for a positive n.

(vi) If p = 2, then

nn 413 =+ (3.8)

and so

n = 1

This clearly meets the Collatz Conjecture.

(iii) If p > 2, then a simple derivation to show that no other stable oscillation exists is

not available because of the infinite number of possible sequence generations.

Instead, it is necessary to construct a matrix from which simple rules for sequence

generation can be deduced. The initial part of this  matrix is shown in Fig. 3.3 below

and contains all of the numbers that appear in the sequence.

Explanation of the matrix is as follows :-

(i) Row 2 contains all of the odd numbers from 1 to ∞. These are referred to as

Basic Odd Numbers, (OC).

(ii) Row 1 contains numbers representing those pairs of Basic Odd Numbers that

are not divisible by three, (mC).

(iii) The numbers in the red, green and blue cells, (NR,C and nR,C), are those

numbers which reduce down, via the sequence generator, to the Basic Odd

Numbers in Row 2, i.e.

19
2

116213
8

=
+x

(3.9)
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The Sequence Generation Matrix.

       Col.

 Row
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1 2 3 4 5 6 7 8

2 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

3 5 3 9 7 17 11 25 15 33 19 41 23 49 27 57 31 65

4 21 13 37 29 69 45 101 61 133 77 165 93 197 109 229 125 261

5 85 53 149 117 277 181 405 245 533 309 661 373 789 437 917 501 1,045

6 341 213 597 469 1,109 725 1,621 981 2,133 1,237 2,645 1,493 3,157 1,749 3,669 2,005 4,181

7 1,365 853 2,389 1,877 4,437 2,901 6,485 3,925 8,533 4,949 10,581 5,973 12,629 6,997 14,677 8,021 16,725

8 5,461 3,413 9,557 7,509 17,749 11,605 25,941 15,701 34,133 19,797 42,325 23,893 50,517 27,989 58,709 32,085 66,901

9 21,845 13,653 38,229 30,037 70,997 46,421 103,765 62,805 136,533 79,189 169,301 95,573 202,069 111,957 234,837 128,341 267,605

10 87,381 54,613 152,917 120,149 283,989 185,685 415,061 251,221 546,133 316,757 677,205 382,293 808,277 447,829 939,349 513,365 1,070,421

Fig. 3.3 The Sequence Generation Matrix.
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From this matrix it is clear that the sequence number in any green or blue cell, where

the column number is not divisible by three can be given by :-

( )

3

12 22

,

−
=

−
C

R

CR

Ox
N (3.10)

and where the column number is divisible by three :-

( ){ }

3

12 122

,

−
=

−−
C

R

CR

Ox
N (3.11)

and for the red cells the relationship is :-

( )

3

12
12

1,

−
=

−R

RN (3.12)

Now because R and C can be considered as independent variables, it is clear from

(3.10), (3.11) and (3.12) that NR,C can never repeat in the red, green or blue cells.

Therefore, there is only one stable oscillation, which is 4-2-1, as shown above.

Note that, from the above three formula, OC and NR,C that are divisible by three can

never be generated in the sequence. They can only appear in it as a starting number,

(or half a starting even number).

Appendix A provides a guide to (a) constructing/extending the matrix and (b)

locating the row and column numbers of any random sequence number.

Clearly, to reach the above stable oscillation, the sequence must encounter an even

number that is a power of two. Then by multiple divisions of 2, the above oscillatory

result is reached.

3.4              Proof of the Non-Existance of an Alternating Infinite Sequence.

If the sequence never encounters an even number that is a power of two, then it must

alternate indefinitely. If so then the value of n can never repeat otherwise the

sequence would oscillate with n > 1, and this was disproved in Section 3.3 above.

Therefore n would have to increase indefinitely, but this would result in divergence

and this was disproved in Section 3.2 above.

It is therefore concluded that whatever starting number for n that is chosen, the

sequence must eventually encounter an even number that is a power of two and

degenerate down to the oscillatory state of 4-2-1.

Therefore, the consequence is, that the Collatz Conjecture is true.

4.0              Conclusions.

It is believed that all outstanding mathematical problems can, and will eventually be

solved. It is also believed that this largely depends upon the approach taken. Some

problems can be solved in multiple ways, such as Leonard Euler's Basel problem.

Others, such as this conjecture and the Goldbach conjecture, [2], may have very few

or even only one approach that yields a solution. Those that have not yet been

solved, such as the analytical determination of the circumference of an ellipse, may

have an approach that has not yet been found. Alternatively, a solution to such

problems may require a further advance in mathematical theory.
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Appendix A.

Sequence Generation Matrix Characteristics.

A.1             Construction/Extension.

The construction of the sequence matrix could be effected using the sequence

generator, {(3n+1)/2}, or (3.10), (3.11) and (3.12), but either of these would be

somewhat laborious. A simpler method is described below.

After having constructed/extended the row and column numbers, to the desired size,

repeat for the rows containing OC and mC. Then,

(i) The numbers in the green cells can, where the column number is divisible by

three, be first constructed/extended horizontally, by :-

CCC mON 2,2,3 −= (A.1)

and where the column number is not divisible by three, by :-

CCC mON 2,2,3 += (A.2)

(ii) The numbers in the red and blue cells can then be constructed/extended

vertically, starting at R = 4 by :-

( ) 14 ,1, += − CRCR NN (A.3)

A.2             Locating the Row and Column Numbers of Any Random Sequence

Number.

This exercise is conducted for four examples. (i) a number in the red column not in

the matrix, (ii) a number in the matrix in a blue column where C is divisible by three,

(iii) ) a number in the matrix in a blue column where C is not divisible by three, and

(iv) a number completely outside the range of the matrix of Fig. 3.3.

To effect these exercises, note that the inverse of the sequence generator equation is

3

12 ,
,

−
= CR

p

CR

nx
N (A.4)

(i)                NR,C = 1, 898,101.

Via the sequence generator this number generates a new number given by :-

pCR

x
n

2

1101,898,13
,

+
=

= 1 with p = 22

1,898,101 is therefore in a red cell where C = 1. Consequently mC = 0.

From (3.12)

( )12 −= Rp

so that the row number is

121
2

22
=+=R
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(ii)              NR,C = 808,277.

Via the sequence generator, this number generates a new number given by :-

pCR

x
n

2

1277,8083
,

+
=

= 37 with p =16.

Via the inverse of the sequence equation, 37 is generated by 49 with p = 2.

From (A.2)

6
2

3749
=

−
=Cm

so that

1913 =+= CmC

and with p = 16, from (3.10)

102
2

16
2

2
=+=+=

p
R

(iii)             NR,C = 382,293.

Via the sequence generator, this number generates a new number given by :-

pCR

x
n

2

1293,3823
,

+
=

=35 with p =15.

Via the inverse of the sequence equation, 35 is generated by 23 with p = 1.

From (A.1)

6
2

2335
=

−
=Cm

so that

183 == CmC

and with p = 15, from (3.11)

102
2

16
2

2

1
=+=+

+
=

p
R

(iv)              NR,C = 37,294,461.

Via the sequence generator, this number generates a new number given by :-

pCR

x
n

2

1461,294,373
,

+
=

= 13,985,423 with p = 3.

13,985,423 is therefore an OC number.

Via the inverse of the sequence equation, this value of OC is produced by 9,323,615

with p = 1.

From (A.1)

929,330,2
2

615,323,9423,985,13
=

−
=Cm
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and

787,992,63 == CmC

Finally, with p = 3

42
2

4
2

2

1
=+=+

+
=

P
R

Appendix B.

Alternative Names of this Conjecture, [1].

The Collatz Conjecture is known by a number of alternative names as follows.

(i) The 3n + 1 problem.

(ii) The 3n + 1 conjecture.

(iii) The Ulam Conjecture, (after Stanislav Ulam).

(iv) Kakutani's Problem, ( after Shizuo Kakutani).

(v) The Thwaites Conjecture, (after Sir Bryan Thwaites).

(vi) Hasse's Algorithm, (after Helmut Hasse).

(vii) The Syracuse Problem.

The sequence of numbers involved is sometimes referred to as the Hailstone

sequence or Hailstone numbers, (because the values are subject to multiple ascents

and descents like hailstones in a cloud). They are also referred to as Wondrous

numbers.
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