To Options

Equivalent ABC Conjecture Proved on Two Pages

A. A. Frempong
 Abstract

By applying basic mathematical principles, the author proves an equivalent ABC conjecture, The equivalent ABC conjecture proved in this paper states that for every positive real number ε, there exists only finitely many triples (A, B, C) of coprime positive integers, with $A+B=C$, such that $C<K_{\varepsilon} \operatorname{rad}(d)^{1+\varepsilon}$, where d is the product of distinct prime factors of A, B, and C, and K_{ε} is a constant. From the hypothesis, $A+B=C$, it was proved that $C<K_{\varepsilon} \operatorname{rad}(d)^{1+\varepsilon}$.

To First Page

Options

Option 1 Page 3Introduction
Option 2 Page 4Equivaīent ÁBC Conjecture Proved on Two Pages
Option 3
Discussion Page 6
Conclusion

Back to Options

Option 1

Introduction

The equivalent conjecture states that for every positive real number ε, there exists only finitely many triples (A, B, C) of coprime positive integers, with $A+B=C$, such that $C<K_{\varepsilon} \operatorname{rad}(d)^{1+\varepsilon}$ where d is the product of distinct prime factors of A, B, and C, and K_{ε} is a constant. If $A+B-C=0,|A+B-C|=|0|=0$. For a positive number, $\delta, 0<\delta$, one can write $|A+B-C|<\delta$ From above, the hypothesis would be, $|A+B-C|<\delta$, and the conclusion would be $C<K_{\varepsilon} \operatorname{rad}(d)^{1+\varepsilon}$.

Back to Options

Option 2

Equivalent ABC Conjecture Proved on Two Pages

The equivalent ABC conjecture, in this paper, states that for every positive real number ε, there exists only finitely many triples (A, B, C) of coprime positive integers, with $A+B=C$, such that $C<K_{\varepsilon} \operatorname{rad}(d)^{1+\varepsilon}$, where d is the product of distinct prime factors of A, B, C, and K_{ε} is a constant.
Given: $1 . A+B=C$, where A, B and C are positive integers. with A, B and C being coprime.
2. $d=$ product of the distinct prime factors of A, B and C.

Required: To prove that $C<K_{\varepsilon} \operatorname{rad}(d)^{1+\varepsilon}$
Plan: Hypothesis $A+B=C$,
$A+B-C=0$,
and $|A+B-C|=|0|=0$
For a positive number, $\delta, 0<\delta$, one can write $|A+B-C|<\delta$.

$$
\begin{aligned}
& \text { Conclusion: } K_{\varepsilon} \operatorname{rad}(d)^{1+\varepsilon}>C \text {; } \\
& \log \left\{K_{\varepsilon} \operatorname{rad}(d)^{1+\varepsilon}\right\}>\log C \\
& \log K_{\varepsilon}+\log \left\{\operatorname{rad}(d)^{1+\varepsilon}\right\}>\log C: \\
& \log K_{\varepsilon}+(1+\varepsilon) \log (\operatorname{rad}(d))>\log C \text { : } \\
& \log K_{\varepsilon}+\log (\operatorname{rad}(d))+\varepsilon \log \operatorname{rad}(d)>\log C \text { : } \\
& \varepsilon \log \operatorname{rad}(d)>\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d)) \\
& \varepsilon>\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log \operatorname{rad}(d)} \text { or } \\
& \frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}<\varepsilon \text { (equivalent conclusion) }
\end{aligned}
$$

The proof would be complete after showing that if $|A+B-C|<\delta$, then

$$
\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}<\varepsilon \text { (equivalent conclusion) }
$$

Proof: One will apply the continued inequality method to handle the inequalities involved.
Step 1: $|A+B-C|<\delta \quad(\delta>0)$ (hypothesis) (2)
One applies the absolute value symbol to the equivalent conclusion from above to

$$
\begin{equation*}
\text { obtain }\left|\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}\right|<\varepsilon \tag{3}
\end{equation*}
$$

(The above absolute value symbol will be removed in the last step)
The hypothesis $|A+B-C|<\delta$ is equivalent to

$$
\begin{equation*}
-\delta<A+B-C<\delta \text { (hypothesis) } \tag{4}
\end{equation*}
$$

The conclusion , $\left|\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))\}}\right|<\varepsilon$ is equivalent to
$-\varepsilon<\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}<\varepsilon \quad$ conclusion (5)
Step 2: Make the middle terms of (4) and (5) the same. Then (4) becomes.
$-\delta+\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}<A+B-C+\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}<\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}+\delta$ (hypoth)
and (5) becomes $-\varepsilon+A+B-C<A+B-C+\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}<\varepsilon+A+B-C$

Since (6) and (7) have the same middle terms, equate the left sides to each other and equate the right sides to each other. Then one obtains
$-\delta+\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}=-\varepsilon+A+B-C$ and one solves for δ to obtain
$\delta=\varepsilon+\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}-A-B+C$, say δ_{1} followed by solving
$\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}+\delta=\varepsilon+A+B-C$ for δ to
obtain $\delta=\varepsilon-\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}+A+B-C$, say δ_{2}
$|A+B-C|<\delta$, implies that
$-\delta<A+B-C<\delta$ (hypothesis)
For $\varepsilon>0$, choose $\delta=\min \left(\delta_{1} \delta_{2}\right)$.
$-\delta<A+B-C<\delta$ (hypothesis) implies that
$-\delta_{1} \leq-\delta<A+B-C<\delta \leq \delta_{2} \quad$ (hypothesis) (8)
Step 3: Replace the left and right sides of (8) by

$$
\begin{aligned}
& \delta=\varepsilon+\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}-A-B+C \text {, say } \delta_{1} \text { and } \\
& \delta=\varepsilon-\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}+A+B-C \text {, say } \delta_{2}, \text { from above, respectively, to }
\end{aligned}
$$

obtain
$-\varepsilon-\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}+A+B-C<A+B-C<\varepsilon-\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}+A+B-C$ (hyp)
Break up inequality (9) into two simple inequalities and solve each one for $-\varepsilon$ and ε, respectively.
$-\varepsilon-\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}+A+B-C<A+B-C$. solving, $-\varepsilon<\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}$

$$
A+B-C<\varepsilon-\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}+A+B-C ; \text { solving, } \frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}<\varepsilon
$$

The combination, $-\varepsilon<\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}$ and $\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}<\varepsilon$, is

$$
\text { equivalent to }\left|\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}\right|<\varepsilon
$$

Step 4: As was noted in Step 1, one will remove the absolute value symbol (see analogy on next page) to obtain $\frac{\log C-\log K_{\varepsilon}-\log (\operatorname{rad}(d))}{\log (\operatorname{rad}(d))}<\varepsilon \quad$ (equivalent conclusion)
Therefore, if $|A+B-C|<\delta(\delta>0)$ or $A+B=C, C<\left\{K_{\varepsilon} \operatorname{rad}(d)\right\}^{(\varepsilon+1)}$, and the proof of the equivalent conjecture is complete.

Back to Options

Option 3

Discussion

In Step 1, (inequality (3)) the absolute value symbol was applied, and in Step 4, the symbol was removed. For analogy in elementary math, consider:

Factoring quadratic trinomials by the substitution method;

Example : Factor $6 x^{2}+11 x-10$
Step 1: Multiply the expression by the coefficient of the x^{2}-term. $6\left(6 x^{2}\right)+6(11 x)-6(10)$ $(6 x)^{2}+11(6 x)-60$
Step 2: Let $6 x=s$
Then, we obtain $s^{2}+11 s-60$

$$
\begin{equation*}
(s-4)(s+15) \tag{B}
\end{equation*}
$$

Step 3: Replace s by $6 x$, and then, expression (B) becomes $(6 x-4)(6 x+15) \ldots .$. (C)

Since one multiplied the original trinomial by 6 , one must divide expression (C) by 6 (that is ,one must undo the " 6 " introduced in Step 1).

Step 4: In order to divide (C) by 6, perform common monomial factoring on the two binomial factors (in some cases, this
factoring is performed only on one of the binomial factors).

$$
\begin{aligned}
& (6 x-4)(6 x+15) \\
& 2(3 x-2) 3(2 x+5) \\
& 2(3)(3 x-2)(2 x+5) \\
& 6(3 x-2)(2 x+5)
\end{aligned}
$$

Now, divide by 6: $\frac{6(3 x-2)(2 x+5)}{6}$ and then the complete factorization of

$$
6 x^{2}+11 x-10 \text { is }(3 x-2)(2 x+5)
$$

Conclusion

By applying basic mathematical principles, the author proved an equivalent ABC conjecture, The equivalent ABC conjecture proved states that for every positive real number ε, there exists only finitely many triples (A, B, C) of coprime positive integers, with $A+B=C$, such that $C<K_{\varepsilon} \operatorname{rad}(d)^{(1+\varepsilon)}$, where d is the product of distinct prime factors of A, B, and C, and K_{ε} is a constant. From the hypothesis, $A+B=C$, it was proved that $C<K_{\varepsilon} \operatorname{rad}(d)^{(1+\varepsilon)}$, the conclusion. The continued inequality method (condensed method) was used in handling the inequalities involved in the proof.
PS: 1. A proof of the original ABC conjecture by the author is at viXra:2107.0094
2. For more on epsilon-delta proofs, see Lesson 5C, Calculus $1 \& 2$ by A. A. Frempong at Apple iBookstore.

Adonten

