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Abstract

Many applications in signal processing and machine learning require the study of probability
density functions (pdfs) that can only be accessed through noisy evaluations. In this work, we
analyze the noisy importance sampling (IS), i.e., IS working with noisy evaluations of the target
density. We present the general framework and derive optimal proposal densities for noisy IS
estimators. The optimal proposals incorporate the information of the variance of the noisy
realizations, proposing points in regions where the noise power is higher. We also compare
the use of the optimal proposals with previous optimality approaches considered in a noisy IS
framework.
Keywords: Bayesian Inference; Noisy Monte Carlo; Pseudo-marginal Metropolis-Hastings;
Noisy IS.

1 Introduction

A wide range of modern applications, specially in Bayesian inference framework, require the study
of probability density functions (pdfs) which can be evaluated stochastically, i.e., only noisy evalu-
ations can be obtained [1, 2, 3, 4]. For instance, this is the case of the pseudo-marginal approaches
and doubly intractable posteriors [5, 6], approximate Bayesian computation (ABC) and likelihood-
free schemes [7, 8], where the target density cannot be computed in closed-form.
The noisy scenario also appears naturally when mini-batches of data are employed instead of con-
sidering the complete likelihood of huge amounts of data [9, 10]. More recently, the analysis of noisy
functions of densities is required in reinforcement learning (RL), specially in direct policy search
which is an important branch of RL, with applications in robotics [11, 12]. The topic of inference in
noisy settings (or where a function is known with a certain degree of uncertainty) is also of interest
in the inverse problem literature, such as in the calibration of expensive computer codes [13, 14].
This is also the case when the construction of an emulator is considered, as a surrogate model
[3, 15, 16].

In this work, we study the importance sampling (IS) scheme under noisy evaluations of the
target pdf. The noisy IS scenario has been already analyzed in the literature [1, 2]. In the context
of optimization, some theoretical results can found [17]. In the sequential framework, IS schemes
with random weights can be found and have been studied in di�erent works [1, 18, 19, 20]. We
discuss the convergence and variance of the estimators in a general setting. Moreover, we provide
the optimal proposal densities for di�erent IS estimators. We consider a di�erent approach with
respect to other studies in the literature [2, 21]. In those works, the authors analyzed the trade-o�
between decreasing the noise power (by increasing the number of auxiliary samples) and increasing
the total number of samples in the IS estimators. Here, this information is encompassed within the
optimal proposal density, which plays a similar role to an acquisition function in active learning
[16, 15]. This is information is relevant, specially if the noisy evaluations are also costly to obtain.

1



2 Background

2.1 Bayesian inference

In many applications, we aim at inferring a variable of interest given a set of observations or
measurements. Let us denote the variable of interest by x ∈ D ⊆ Rdx , and let y ∈ Rdy be the
observed data. The posterior pdf is then

p̄(x|y) = ℓ(y|x)g(x)
Z(y)

, (1)

where ℓ(y|x) is the likelihood function, g(x) is the prior pdf, and Z(y) is the model evidence (a.k.a.
marginal likelihood) which is a useful quantity in model selection problems [22]. For simplicity,
in the following, we skip the dependence on y in p̄(x) = p̄(x|y) and Z = Z(y). Generally, Z is
unknown, so we are able to evaluate the unnormalized target function,

p(x) = ℓ(y|x)g(x). (2)

The analytical study of the posterior density p̄(x) ∝ p(x) is unfeasible, so that numerical approxi-
mations are required.

2.2 Noisy framework

Generally, we desire to approximate the unnormalized density p(x), x ∈ X ⊂ Rd, and the corre-
sponding normalizing constant Z, using Monte Carlo methods. The unnormalized density p(x) can
represent a posterior density in a Bayesian inference problem, as described above. We assume that,
for any x, we cannot evaluate p(x) exactly, but we only have access to a related noisy realization.
Moreover, in many applications, obtaining such a noisy realization may be expensive. Hence, ana-
lyzing in which x we require a noisy realization of p(x) is an important problem, which is related
to the concept of optimality that we consider below.
More speci�cally, we have access to a noisy realization related to p(x), i.e.,

m̃(x) = H(p(x), ϵ), (3)

where H is a non-linear transformation involving p(x) and ϵ, that is some noise perturbation. Thus,
for a �xed value x, m̃(x) is a random variable with

m(x) = E[m̃(x)], s(x)2 = Var[m̃(x)], (4)

for some mean function, m(x), and variance function, s(x)2. The assumption that m̃(x) must be
strictly positive is important in practice [1, 21].

Noise power. In some applications, it is also possible to control the noise power s(x)2, for instance
by adding/removing data to the mini-batches (e.g., in he context of Big Data) [9], increasing the
number of auxiliary samples in latent variables models [5], or interacting with an environment over
longer/shorter periods of time (e.g., in reinforcement learning) [11].
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Unbiased scenario and related cases. The scenario where m(x) = p(x) appears naturally
in some applications, or it is often assumed as a pre-established condition by the authors [2, 1]. In
some other scenarios, the noisy realizations are known to be unbiased estimates of some transfor-
mation of p(x), e.g., of log p(x) [23, 24]. This situation can be encompassed by the following special
case. If we consider an additive perturbation,

m̃(x) = G (p(x)) + ϵ, with E[ϵ] = 0, (5)

we have m(x) = G (p(x)), where G(·) : R → R. If G is known and invertible, we have p(x) =
G−1 (m(x)).
Generally, we can state that m(x) always contains statistical information related to p(x). The
subsequent use of m(x) depends on the speci�c application. Thus, we study the mean function
m(x). Hence, our goal is to approximate e�ciently integrals involving m(x), i.e.,

I =
1

Z̄

∫
X
f(x)m(x)dx, Z̄ =

∫
X
m(x)dx, (6)

where f(x) : X → Rdf . Note that, in the unbiased case m(x) = p(x), we have Z̄ = Z. An
integral involving m(x) can be approximated employing a cloud of random samples using the noisy
realizations m̃(x) via Monte Carlo methods.

3 Noisy Importance Sampling

In a non-noisy IS scheme, a set of samples is drawn from a proposal density q(x). Then each sample

is weighted according to the ratio p(x)
q(x)

. A noisy version of importance sampling can be obtained

when we substitute the evaluations of p(x) with noisy realizations of m̃(x). See Table 1 and note
that the importance weights wn in Eq. (9) are computed using the noisy realizations. Below, we
show that

Ẑ =
1

N

N∑
n=1

wn, (7)

is an unbiased estimator of Z̄, and

Îstd =
1

NZ̄

N∑
n=1

wnf(xn), Îself =
1

NẐ

N∑
n=1

wnf(xn), (8)

are consistent estimators of I. The estimator Îstd requires the knowledge of Z̄, that is not needed
in the so-called self-normalized estimator, Îself.

Theorem. The estimators above constructed from the output of noisy IS converge to expectations
under m(x). More speci�cally, we have Ẑ and Îstd are unbiased estimators of Z̄ and I respectively,

and Îself is a consistent estimator of I. Moreover, these estimator have higher variance than their
non-noisy counterparts.
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Table 1: Noisy importance sampling algorithm

1. Inputs: Proposal distribution q(x).

2. For n = 1, . . . , N :

(a) Sample xn ∼ q(x) and obtain one realization m̃(xn).

(b) Compute

wn =
m̃(xn)

q(xn)
(9)

4 Outputs: the weighted samples {xn, wn}Nn=1.

Proof. Here, we provide a simple proof of convergence by applying iterated conditional expectations.
Equivalently, the correctness of the approach can be proved by using an extended space view (see,
e.g., [25, 2]).
Let x1:N = [x1, . . . ,xN ] denote the N samples from q. By the law of total expectation, we have

that E[Ẑ] = E
[
E[Ẑ|x1:N ]

]
. In the inner expectation, we use the fact the wi's are i.i.d., hence

E[Ẑ|x1:N ] =
1

N

N∑
i=1

E[wi|xi] =
1

N

N∑
i=1

1

q(xi)
E[m̃(xi)|xi] =

1

N

N∑
i=1

m(xi)

q(xi)
= Z̃,

where Z̃ is the non-noisy IS estimator of Z̄, which is also unbiased, i.e.,

E[Ẑ] = E
[
E[Ẑ|x1:N ]

]
= E[Z̃] = Z̄.

Therefore, Ẑ is an unbiased estimator of Z̄ =
∫
X m(x)dx, i.e., E[Ẑ] = Z̄. Moreover, we show below

that Var[Ẑ] decreases to zero as N → ∞. Hence, Ẑ is a consistent estimator of Z̄. Now, with

the same arguments, we can prove that the estimator Ê = 1
N

∑N
i=1

m̃(x)f(x)
q(x)

is also unbiased and

converges to E =
∫
X f(x)m(x)dx. Thus, both the estimator Îstd, and the ratio

Î =
1

Ẑ
Ê =

1∑N
j=1wj

N∑
i=1

wif(xi),

which is the noisy self-normalized IS estimator Îself in Eq. (8), are consistent estimators of

I =

∫
X f(x)m(x)dx∫

X m(x)dx
=

1

Z̄

∫
X
f(x)m(x)dx,

given in Eq. (6).
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Variance of Ẑ. By the law of total variance, we have that

Var[Ẑ] = E
[
Var[Ẑ|x1:N ]

]
+ Var

[
E[Ẑ|x1:N ]

]
.

In a non-noisy scenario, i.e., in a non-noisy IS setting, the �rst term is null. Using the fact that Ẑ
is unbiased, we have that the second term is

Var
[
E[Ẑ|x1:N ]

]
= Var[Z̃] = O (1/N) .

Regarding the �rst term, we have

Var[Ẑ|x1:N ] =
1

N2

N∑
i=1

Var[wi|xi] =
1

N2

N∑
i=1

1

q(xi)2
Var[m̃(xi)|xi] =

1

N2

N∑
i=1

s(xi)
2

q(xi)2
.

Assuming that s(x)2

q(x)2
< ∞ for all x, we have that

E
[
Var[Ẑ|x1:N ]

]
=

1

N2

N∑
i=1

E
[
s(xi)

2

q(xi)2

]
=

1

N
E
[
s(x)2

q(x)2

]
, where x ∼ q(x).

Hence, we �nally have that

Var[Ẑ] =
1

N
E
[
s(x)2

q(x)2

]
+ Var[Z̃] ≥ Var[Z̃]. (10)

Therefore, Ẑ has a greater variance than Z̃, but the same convergence speed, i.e., its variance de-
creases at 1

N
rate. Proving that Ê has greater variance than its non-noisy version is straightforward.

4 Optimal Proposal Density in Noisy IS

In this section, we derive the optimal proposals for the noisy IS estimators Ẑ, Îstd and Îself.

4.1 Optimal proposal for Ẑ

We can rewrite the variance of Ẑ in Eq. (10) as

Var[Ẑ] =
1

N
E
[
m(x)2 + s(x)2

q(x)2

]
− 1

N
Z̄2.

By Jensen's inequality, the �rst term is bounded below by

E
[
m(x)2 + s(x)2

q(x)2

]
≥

(
E

[√
m(x)2 + s(x)2

q(x)

])2

.

The minimum variance Vmin = minq Var[Ẑ] is thus attained at

qopt(x) ∝
√

m(x)2 + s(x)2, (11)
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Note that, for �nite N , Vmin is always greater than 0, speci�cally,

Vmin =
1

N

[∫
X

√
m(x)2 + s(x)2dx

]2
− 1

N
Z̄2. (12)

Hence, di�erently from the non-noisy setting, in noisy IS the optimal proposal does not provide an
estimator with null variance. If s(x) = 0 for all x, then we come back to the non-noisy scenario

and Vmin = 1
N

[∫
X m(x)dx

]2 − 1
N
Z̄2 = 0. Note that the variance of using q(x) = 1

Z̄
m(x) is

Vsub-opt =
Z̄

N

∫
X

m(x)2 + s(x)2

m(x)
dx− 1

N
Z̄2 =

Z̄

N

∫
X

s(x)2

m(x)
dx. (13)

In the following, we show several examples of noise models and their corresponding optimal proposal
densities.
Example 1. Let us consider a Bernoulli-type noise where m̃(x) = pmaxϵ, where ϵ ∼ Bernoulli

(
p(x)
pmax

)
,

and pmax = max p(x). Then, we have

m(x) = p(x), s(x)2 = p(x)[pmax − p(x)].

Replacing in Eq. (11), the optimal proposal density in this case is

qopt(x) ∝ p(x)
√
1 + [pmax − p(x)]2. (14)

Example 2. Let us consider m̃(x) = |p(x) + ϵ|, with ϵ ∼ N (0, σ2). In this scenario, the random
variable m̃(x) corresponds to a folded Gaussian random variable. We have

m(x) = σ

√
2

π
exp

(
−p2(x)/2σ2

)
+ p(x)[1− 2Φ(−p(x)/σ)],

s(x)2 = p(x)2 + σ2 −m(x)2,

where Φ(x) is the cumulative function of the standard Gaussian distribution. Then,

qopt(x) ∝
√

p(x)2 + σ2. (15)

Example 3. Let us consider a multiplicative noise m̃(x) = eϵp(x) with E[ϵ] = 0, hence

m(x) = p(x)E[eϵ] ∝ p(x), s(x)2 = p(x)2Var[eϵ].

If we denote A = E[eϵ] and σ2 = Var[eϵ], then m(x) = Ap(x) and s(x)2 = σ2p2(x). In this case, the
optimal proposal coincides with the optimal one in the non-noisy setting, since

qopt(x) ∝
√

A2p2(x) + σ2p2(x) = p(x)
√
A2 + σ2 ∝ p(x). (16)

Example 4. In latent variable models, the noisy realization corresponds to the product of dy inde-
pendent IS estimators, each built from R auxiliary samples. With dy large enough, the distribution
of this realization is approximately lognormal, i.e.,

m̃(x) ∼ logN (µ(x), σ2(x)),
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where µ(x) = log p(x)− γ2(x)
2R

and σ2(x) = γ2(x)
R

, for some function γ2(x) [2, 21]. Equivalently, they
write m̃(x) = p(x)eϵ, where ϵ ∼ N (µ(x), σ2(x)). Hence,

m(x) = p(x), s(x)2 = (eγ
2(x)/R − 1)p(x)2,

and the optimal proposal is

qopt(x) ∝ p(x)e
γ2(x)
2R . (17)

This example is related with the cases studied in [2, 21].

4.2 Optimal proposal for Îstd

We have already seen that the optimal proposal that minimizes the variance of Ẑ is qopt(x) ∝√
m(x)2 + s(x)2. Let us consider now the estimator Îstd. Note that this estimator assumes we can

evaluate Z̄ =
∫
X m(x)dx. Since we are considering a vector-valued function, the estimator has df

components Îstd = [Îstd,1 . . . Îstd,df ]
⊤, and Var[̂Istd] corresponds to a df × df covariance matrix. We

aim to �nd the proposal that minimizes the sum of diagonal variances. From the results of the
previous section, it is straightforward to show that the variance of the p-th component is

Var[Îstd,p] = Var[Ĩstd,p] +
1

NZ̄2
E
[
fp(x)

2s(x)2

q(x)2

]
=

1

NZ̄2
E
[
fp(x)

2(m(x)2 + s(x)2)

q(x)2

]
− 1

NZ̄2
I2p ,

where fp(x) and Ip are respectively the p-th components of f(x) and I, and Ĩstd,p denotes the
non-noisy estimator (i.e. using m(x) instead of m̃(x)). Thus,

df∑
p=1

Var[Îstd,p] =
1

NZ̄2
E

[∑df

p=1 fp(x)
2(m(x)2 + s(x)2)

q(x)2

]
− 1

NZ̄2

df∑
p=1

I2p .

By Jensen's inequality, we have

E

[∑df

p=1 fp(x)
2(m(x)2 + s(x)2)

q(x)2

]
≥

(
E

[√
m(x)2 + s(x)2 ∥f(x)∥2

q(x)

])2

,

where ∥f(x)∥2 denotes the euclidean norm. The equality holds if and only if

√
m(x)2+s(x)2∥f(x)∥2

q(x)
is

constant. Hence, the optimal proposal is

qopt(x) ∝ ∥f(x)∥2
√
m(x)2 + s(x)2. (18)

4.3 Optimal proposal for Îself

Let us consider the case of the self-normalized estimator Îself. Recall that Îself =
Ê

Ẑ
, where Ê denotes

the noisy estimator of E =
∫
X f(x)m(x)dx, so that we are considering ratios of estimators. Again,
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we aim to �nd the proposal that minimizes the variance of the vector-valued estimator Îself. When
N is large enough, the variance of p-th ratio is approximated as [26],

Var[Îself,p] = Var

[
Êp

Ẑ

]
≈ 1

Z̄2
Var[Êp]− 2

Ep

Z
Cov[Êp, Ẑ] +

E2
p

Z̄4
Var[Ẑ],

where Ep is the p-th component of E, and

Var[Êp] =
1

N
E
[
fp(x)

2(m(x)2 + s(x)2)

q(x)2

]
− 1

N
E2

p ,

Var[Ẑ] =
1

N
E
[
m(x)2 + s(x)2

q(x)2

]
− 1

N
Z̄2,

Cov[Êp, Ẑ] =
1

N
E
[
fp(x)(m(x)2 + s(x)2)

q(x)2

]
− 1

N
EpZ̄.

The �rst two results have been already obtained in the previous sections. The third result is given
in Appendix A. The sum of the variances is thus

df∑
p=1

Var[Îself,p] ≈
1

N
E

[
(m(x)2 + s(x)2)

∑df
p=1(fp(x)− Ip)

2

q(x)2

]
.

By Jensen's inequality, we can derive that the optimal proposal is

qopt(x) ∝ ∥f(x)− I∥2
√
m(x)2 + s(x)2. (19)

Relationship with active learning. The optimal density qopt(x) can be interpreted as an acqui-
sition density, suggesting the regions of the space which require more number of acquisitions of the
realizations m̃(x). Namely, qopt(x) plays a role similar to an acquisition function in active learning.
This is information is relevant, specially if the noisy evaluations are also costly to obtain.

4.4 Connection with other types of optimality

Here, we discuss another approach for optimality in noisy IS and connect it with our work. Other
related works, in Monte Carlo and noisy optimization literature, focus on the trade-o� between
accuracy/noisiness and computational cost [2, 21, 27]. In those settings, it is assumed that one
can control the variance s(x)2 of the noisy realizations m̃(x). Clearly, taking samples with higher

accuracy, i.e. small variance s(x)2, is bene�cial since it decrease the magnitude of the terms E
[

s(x)2

m(x)2

]
and E

[
fp(x)2s(x)2

m(x)2

]
, which are responsible for the e�ciency loss in the estimators, due to the presence

of noise. However, taking accurate estimates implies increased computational cost, hence one must
reduce the number of samples N , which a�ect the overall Monte Carlo variance. This trade-o� have
been investigated in both MCMC and IS frameworks [2, 21].

Let R denote the number of auxiliary samples employed to reduce the variance of the noisy
realizations. Namely, greater R implies greater accuracy but also greater cost. Moreover, this
number could depend on x, i.e., R(x) : X → N+\{0}. Then, the goal is to obtain the optimal

8



function R(x) by balancing the decrease in variance with the extra computational cost (see, e.g.,
Sections 3.3, 3.4 and 5 of [2]). Namely, in this di�erent approach, they try to reduce s(x)2 at certain
x increasing the value of R(x), instead of using an optimal proposal pdf for the noisy scenario. On
the contrary, in this work we have considered the use of optimal proposal pdfs and that s(x)2 is not
tuned by the user, which means that R is arbitrary and set constant for all x.

5 Numerical experiment

In this section, we consider a one-dimensional example where we illustrate the performance of the
optimal proposal pdf in the noisy IS setting (showing the variance gains in estimation, with respect
to the use the optimal proposal density from the non-noisy setting). Let p(x) = 1

b−a
for x ∈ [a, b], i.e.,

a uniform density in [a, b] with a = 0.1 and b = 10. We set m̃(x) = p(x)eϵ with ϵ ∼ N (−σ2/2, σ2)
so that E[eϵ] = 1, so that we have m(x) = E[m̃(x)] = p(x).
We consider the estimation of Z̄ = 1 using the optimal proposal pdf qopt(x) in Eq. (11), and the
optimal proposal pdf in the non-noisy setting, i.e., qsub-opt(x) = p(x). More speci�cally, we consider

σ(x) = A| log(x)|, A > 0.

Hence,

s(x)2 =
eσ(x)

2 − 1

(b− a)2
, and qopt(x) ∝

1

b− a
eσ(x)

2

.

Clearly, by changing A, we change the form of both s(x)2 and qopt(x). For instance, increasing
A also increases the magnitude of s(x)2 and hence the mismatch between qsub-opt(x) = p(x) and
qopt(x), as depicted in Figure 1. Indeed, for A = 0.2, qopt(x) is almost identical to p(x) since the
magnitude of s(x) is small w.r.t. the values of p(x). As A increases, qopt(x) deviates from p(x),
being in the middle between p(x) and s(x), and eventually would converge to s(x) for A ≫ 1. It is
also interesting to note that qopt(x) with A = 1 has very little probability mass around x = 1, where
the noise is zero, since it needs to concentrate probability mass in the extremes of the interval,
where the noise power is huge.

Let also denote as Vsub-opt the variance obtained using qsub-opt(x) = p(x) given in Eq. (12), and
Vopt = Vmin the variance obtained using qopt(x) given in Eq. (13). In Figure 2, we show the ratio of

variances
Vsub-opt
Vopt

both theoretically and empirically, as a function of A, where Vsub-opt and Vopt are

the variances of Ẑ when using p(x) and qopt(x) as proposals, respectively. We can observe the clear
advantage of using the optimal proposal density qopt(x) in Eq. (11).

6 Conclusions

Working with noisy evaluations of the target density is usual in Monte Carlo, specially in the last
years. In this work, we have analyzed the use of optimal proposal densities in a noisy IS framework.
Previous works have focused on the trade-o� between accuracy in the evaluation and computational
cost in order to form optimal estimators. In this work, we have considered a general setting and
derived the optimal proposals for the noisy IS estimators. These optimal proposals incorporate
the variance function of the noisy evaluation in order to propose samples in regions that are more
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(a) qopt(x) for di�erent values of A. (b)
√

s(x)2 for di�erent values of A in log-scale.

Figure 1: (a) Optimal proposals qopt(x) for di�erent values of A, and the qsub-opt(x) = p(x) in

dashed line; (b) The standard deviation
√

s(x)2 for di�erent values of A.

0.2 0.4 0.6 0.8 1 1.2
A

1

1.2

1.4

1.6

1.8

2

2.2

Figure 2: Ratio of variances
Vsub-opt
Vopt

.

a�ected by noise. In this sense, we can informally state that the optimal proposal densities play
the role of an acquisition function that also take into account the noise power.
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Appendices

A Covariance between Êp and Ẑ

We show that

Cov[Êp, Ẑ] =
1

N
E
[
fp(x)(m(x)2 + s(x)2)

q(x)2

]
− 1

N
EpZ̄.
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First, recall that Cov[Êp, Ẑ] = E[ÊpẐ]− EpZ̄. By the law of iterated expectations,

E[ÊpẐ] = E[E[ÊpẐ|x1:N ]].

The inner expectation is

E[ÊpẐ|x1:N ] = E

 1

N2

N∑
i=1

w2
i fp(xi) +

2

N2

N∑
i=1

N∑
j>i

wiwjfp(xi)

∣∣∣∣x1:N


=

1

N2

N∑
i=1

fp(xi)(s(xi)
2 +m(xi)

2)

q(xi)2
+

2

N2

N∑
i=1

N∑
j>i

m(xi)f(xi)

q(xi)

m(xj)

q(xj)
.

Hence, we obtain

E
[
E[ÊpẐ|x1:N ]

]
=

1

N
E
[
f(x)(s(x)2 +m(x)2)

q(x)2

]
+

2

N2

N∑
i=1

N∑
j>i

E
[
m(xi)f(xi)

q(xi)

]
E
[
m(xj)

q(xj)

]

=
1

N
E
[
f(x)(s(x)2 +m(x)2)

q(x)2

]
+

2

N2

N∑
i=1

N∑
j>i

EpZ̄

=
1

N
E
[
f(x)(s(x)2 +m(x)2)

q(x)2

]
+ EpZ̄

(
1− 1

N

)
.

Combining the results, we obtain the desired expression.
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