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Abstract.   Fermat’s Last Theorem is proved using elementary arithmetic.  

 

1.  Introduction 

Fermat’s Last Theorem was formulated in 1637 and not proved until Andrew 

Wiles [1] did so in 1995. Over the years, enthusiasts have been encouraged by the 

simplicity of the theorem to prove it using elementary arithmetic [2].  

Theorem 

No three positive integers a, b, c, can satisfy the equation: 

   cp = ap + bp       (1) 

if (p) is an integer greater than two. 

 

2.  Proof for (p = 3)  

Given the equation 

c3 = a3 + b3,       (2.0) 

let (e) be a positive integer, and set up two expressions 

        [F(a, e) = c3 − a3 − e3]     =     [b3 − e3 = F(b, e)].    (2.1) 

For the F(a,e) term, substitute 

 c = (a + e),  and  h = (3e),     (2.1a) 

then reduce to 

             F(a, e) = a(ha + 3e2) .     (2.1b) 

For the F(b,e) term, let (q) and (m) be real numbers such that 

        b = (q + e) ,       (2.2) 

  m = (q + 3e) = (b + 2e),     (2.3a)  
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 then reduce to 

  F(b, e) = q(mq + 3e2).     (2.3b) 

Now, equate 4xF(a,e) to 4xF(b,e), and expand 

          (1/h) × {(2ha)(2ha + 6e2)} = (1/m) × {(2mq)(2mq + 6e2)} . (2.4a)    

Make this expression more symmetrical by substituting 

   X = (2ha + 3e2),      (2.4b) 

   Y = (2mq + 3e2),      (2.4c) 

then substitute (E = 3e2), and reduce to 

 (1/h) × {(X − E)(X + E)} = (1/m) × {(Y − E)(Y + E)}.  (2.4d) 

This equation is equivalent to Eq.(2.1), so for an integer (a) the left side will evaluate to 

an integer; and for an integer (b) the right side will evaluate to a different  integer.  

However, a balanced all-integer equation can be invented by changing the definitions   in 

Eq.(2.4b,c). Auspiciously, a worked example of this trick will reveal why the proper 

definitions always produce non-integers (Y,b) when (X,a) are made integers. For 

example, start with an arbitrary expression comprising integers such as 

  {12 × 108} = {18 × 72} ,     (2.5a)   

then calculate arithmetic means and expand thus 

  {(60 − 48) × (60 + 48)} = {(45 − 27) × (45 + 27)} .  (2.5b) 

Express this in the same format as Eq.(2.4d) 

      (1/272) × {(60 − 48)(60 + 48)} = (1/482) × {(80 − 48)(80 + 48)} . (2.5c) 

Here, every factor is an integer traceable back to Eq.(2.5a), and the ones analogous to  

Eq.(2.4d)  are  (X̃ = 60),  (Ẽ = 48),  (Ỹ = 80).  However,  [h̃]  employs [27 = (72 - 18)/2] 

from the right side of Eq.(2.5b) and [m̃] employs [48 = (108 - 12)/2] from the left side, in 

stark contrast to Eq.(2.4d) employing Eq.(2.1a) and Eq.(2.3a). Therefore, these (h̃, m̃) 

cannot be related to (X̃, Ỹ) in the way given by Eq.(2.4b,c). Accordingly, Eq.(2.5a) is the 

only way to invent an all-integer equation like (2.5c) which contains an integer (Ỹ) with 

an integer (X̃), but it is totally incompatible with the derivation of Eq.(2.4d). That is,  

Eq.(2.4d) is not able to revert to the form Eq.(2.5a) containing only integers. 

 Consequently, Eq.(2.4d) cannot contain an integer (Y) with an integer (X), so  (b) 

is not an integer if (a) is an integer; which means that Eq.(1) is proved for (p = 3).  
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3.  Proof for (p = 4)  

Given the equation 

c4 = a4 + b4,      (3.0) 

let (e) be a positive integer, then set up two equal expressions 

      [F(a, e) = c4 − a4 − e4] =   [b4 − e4 = F(b, e)].     (3.1) 

For F(a,e), substitute 

 c = (a + e),  and     H = (4ae + 6e2) ,   (3.1a)  

then reduce to 

F(a, e) = a{Ha + 4e3} .     (3.1b) 

For F(b,e), substitute 

b = (q +e),       (3.2)   

M = (q2 + 4eq + 6e2),      (3.3a) 

then reduce to 

   F(b, e) = q{Mq + 4e3} .     (3.3b) 

Now, equate 4xF(a,e) to 4xF(b,e) and expand 

 (1/H) × { 2Ha(2Ha + 8e3) }   =   (1/M) × { 2Mq(2Mq + 8e3) } . (3.4a) 

Make this more symmetrical by substituting 

   X = (2Ha + 4e3),      (3.4b) 

   Y = (2Mq + 4e3),      (3.4c) 

then substitute (E = 4e3) and reduce to 

      (1/H) × {(X − E)(X + E)}   =    (1/M) × {(Y − E)(Y + E)}. (3.4d) 

This equation is identical in format to Eq.(2.4d) although factors are defined differently.  

All the logical argument which followed Eq.(2.4d) will lead to the same conclusion. That 

is, genuine values of (Y) calculated from Eq.(3.4c) do not occur in expressions of the 

form Eq.(2.5c) which is the unique all-integer format required for getting an integer (Y) 

with integer (X). 

 Thus, Eq.(3.4d) cannot contain an integer (Y) with an integer (X), so (b) cannot 

be an  integer if  (a) is  an  integer; which means that  Eq.(1) is  proved for (p = 4).  
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4.  Proof for (p = 5)  

Given the equation: 

c5 = a5 + b5,       (4.0) 

let (e) be a positive integer then set up two equal expressions 

        [F(a, e) = c5 − a5 − e5 ] =   [ b5 − e5 = F(b, e)] .    (4.1) 

For F(a,e) substitute  

 c = (a + e),  and    H = (5a2e + 10ae2 + 10e3) ,   (4.1a) 

then reduce to 

F(a, e) = a{Ha + 5e4}.     (4.1b) 

For F(b,e), substitute  

b = (q +e),         (4.2) 

M = (q3 + 5eq2 + 10e2q + 10e3),     (4.3a) 

then reduce to 

   F(b, e) = q{Mq + 5e4} .     (4.3b) 

Now, equate 4xF(a,e) to 4xF(b,e), and expand 

       (1/H) × { 2Ha(2Ha + 10e4) } =   (1/M) × { 2Mq(2Mq + 10e4) } . (4.4a) 

Make this more symmetrical by substituting 

   X = (2Ha + 5e4),      (4.4b) 

   Y = (2Mq + 5e4),      (4.4c) 

then substitute (E = 5e4) and reduce Eq.(4.4a) to 

      (1/H) × {(X − E)(X + E)}   =    (1/M) × {(Y − E)(Y + E)}. (4.4d) 

This equation is identical in form to Eq.(2.4d) although factors are defined differently. 

All the logical argument following Eq.(2.4d) will lead to the same conclusion.  

Thus, Eq.(4.4d) cannot contain an integer (Y) with an integer (X), so (b) cannot 

be an  integer if  (a) is  an integer;  which  means that Eq.(1) is  proved  for (p = 5).  
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5.  Proof for ( p  > 2 )  

Proofs for (p = 7, 11, 13) have been performed successfully, so a general proof 

for (p > 2) will be proposed as follows. Given the equation 

cp = ap + bp,       (5.0) 

let (e) be a positive integer, then set up two equal expressions 

        [ F(a, e) = cp − ap − ep ] =   [ bp − ep = F(b, e)].    (5.1) 

For F(a,e), substitute 

c = (a + e),  and   H = [{(a + e)p − ap − ep} − apep−1 ]/a2, (5.1a) 

then reduce to 

F(a, e) = a{Ha + pep−1}.     (5.1b) 

For F(b,e), substitute  

    b= (q +e),        (5.2) 

     M = [{(q + e)p − ep} − qpep−1 ]/q2 ,    (5.3a) 

then reduce to 

 F(b, e) = q{Mq + pep−1}.     (5.3b) 

Now, equate 4xF(a,e) to 4xF(b,e), and expand 

       (1/H) × {2Ha(2Ha + 2pep−1)}   =   (1/M) × {2Mq(2Mq + 2pep−1)}. (5.4a) 

Make this more symmetrical by substituting 

   X = (2Ha + pep−1),      (5.4b) 

   Y = (2Mq + pep−1),      (5.4c) 

then substitute (E = pep-1) and reduce to 

      (1/H) × {(X − E)(X + E)}   =    (1/M) × {(Y − E)(Y + E)}. (5.4d) 

This equation is identical in form to Eq.(2.4d) although factors are defined differently. 

All the logical argument following Eq.(2.4d) will lead to the same conclusion.  

Thus, Eq.(5.4d) cannot contain an integer (Y) with an integer (X), so (b) cannot 

be an  integer if (a) is an integer; which  means  that  Eq.(1)  is proved for (p >2). 
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6. Conclusion 

 The simplicity of Fermat’s Last Theorem stimulated a search for a simple proof. 

First, the cubic equation was transformed into an equation with new variables (X,a), (Y,b) 

in a balanced symmetrical format. As expected, (X) and (Y) could not both be integers, 

so to explain why, an independent but similar all-integer equation was invented. By 

comparing  analogous factors of the two equations, it could be seen that the cubic equation 

would never be compatible with the unique all-integer equation. That is, the Theorem 

was proved for (p = 3). 

The quartic and quintic equations were also transformed into symmetrical 

expressions which could not satisfy the analogous all-integer expression. Finally, the 

analysis was performed for the general (p > 2) case, with the same result, thereby 

completing the proof of Fermat’s Last Theorem. 
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