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Abstract

In this article we will prove the problem equivalent to the Riemann
Hypothesis developed by Luis-Báez in the article “A sequential

Riesz-like criterion for the Riemann hypothesis”.

1 Introduction

The Riemann Hypothesis is a famous conjecture made by Bernhard Riemann in
his article on prime numbers. Riemann, as indicated by the title of his article
[1], wanted to know the number of prime numbers in a given interval of the
real line, so he extended a Euler observation and defined a function called Zeta.
Riemann obtained an explicit formula, which depends on the non-trivial zeros of
the Zeta function, for the quantity he was looking for. Along the way, Riemann
mentions that probably all non-trivial zeros of the Zeta function are, in the now
called critical line, that is, when the complex argument s = σ + IT of the Zeta
function has a real part equal to one-half. - σ = 1

2 . We will prove, using the
equivalent problem developed by Luis Báez-Duarte [2], the conjecture.
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2 Proof

qk :=

∞∑
n=1

(
1 − 1

n2

)k
n2

=

k∑
n=1

(
1 − 1

n2

)k
n2

+

∞∑
n=k+1

(
1 − 1

n2

)k
n2

(1)

We need to prove that: qk = O
(
k−

3
4

)
, i.e., qk ≤M · k− 3

4 for all k ≥ k0 and M

is a definite positive constant. This is equivalent to the Riemann’s hypothesis.

2.1 Treating the first sum

2.1.1 Using Hölder inequality we get

k∑
n=1

(
1 − 1

n2

)k
n2

≤

(
k∑

n=2

1

n( 1
p +∆)·p

)1/p

·

(
k∑

n=2

(
1 − 1

n2

)k·q
n(2− 1

p−∆)·q

)1/q

(2)

and we must determine, conveniently, p,q and ∆.

2.1.2 Finding an upper bound and changing expoent 2 of n

k∑
n=2

(
1 − 1

n2

)k·q
n(2− 1

p−∆)·q
<

k∑
n=2

e−
kq

n2

n(2− 1
p−∆)·q

<

k∑
n=2

e
− kq

n
(2− 1

p
−∆)·q

n(2− 1
p−∆)·q

+ δ

((
2 − 1

p
− ∆

)
· q
)

(3)

where δ
((

2 − 1
p − ∆

)
· q
)

is an error associated with expoent change, and the

error is zero if
(

2 − 1
p − ∆

)
· q > 2. This error will be analized later.

2.1.3 Finding an integral that is an upper bound of the sum

Let C =
(

2 − 1
p − ∆

)
· q, where we assume for now C > 1, we have

k∑
n=2

e−
kq

nC

nC
<

∫ k

1

e−
kq

xC

xC
dx (4)
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Change of variable:

y =
kq

xC
(5)

x = (kq)
1
C · y− 1

C (6)

dx = (kq)
1
C · − 1

C
· y− 1

C−1dy (7)∫ k

1

e−
kq

xC

xC
dx =

∫ k

1

e−y

kq
· y · (kq)

1
C · − 1

C
· y− 1

C−1dy (8)

(kq)
1
C−1

C

∫ kq

kq

kC

e−y · y− 1
C dy <

(kq)
1
C−1

C

∫ ∞
y=0

e−y · y− 1
C dy (9)

(kq)
1
C−1

C

∫ kq

kq

kC

e−y · y− 1
C dy <

(kq)
1
C−1

C
Γ

(
1 − 1

C

)
(10)

Therefore

k∑
n=2

e−
kq

nC

nC
<

(kq)
1
C−1

C
Γ

(
1 − 1

C

)
(11)

k∑
n=2

(
1 − 1

n2

)kq
nCq

<
(kq)

1
C−1

C
Γ

(
1 − 1

C

)
+ δ(C) (12)

2.1.4 Replacing sum by integral in Hölder inequality

k∑
n=2
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n2

)kq
nCq
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(
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C
Γ

(
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C
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(13)

or

k∑
n=2

(
1 − 1

n2

)kq
nCq

<

(
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n=2

1
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q

1
C−1

C
Γ

(
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C

)
+
δ(C)

k
1
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)1/q

· k
1

qC−
1
q

(14)

i.e., using Hölder’s inequality,

k∑
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)kq
nCq

<
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1

n( 1
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)1/p

·
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q

1
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C
Γ

(
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C

)
+
δ(C)

k
1
C−1

)1/q

· k
1
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(15)

or

k∑
n=2

(
1 − 1
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<
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+
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k
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(16)
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and finally, using the fact that arithmetic mean is greater than harmonic mean,
we get

k∑
n=2

(
1 − 1

n2

)kq
nCq

<

(∑k
n=2 n

( 1
p +∆)·p

k

)1/p

·

(
q

1
C−1

C
Γ

(
1 − 1

C

)
+
δ(C)

k
1
C−1

)1/q

· k
1

qC−1

(17)

2.1.5 Choosing q to obtain − 3
4 power

Therefore we need to solve

1

qC
− 1

q
= −3

4
(18)

and solving the equations we arrive at

q :=
4

C
(19)

and because of Hölder condition 1
q + 1

p = 1 we get

p =
4

4 − C
. (20)

We can choose C =
(

2 − 1
p − ∆

)
· q = 3 which implies ∆ = 8p−3Cp−4

4p =
8·4−3·3·4−4

16 = − 1
2 therefore 1 + ∆ · p = 1 − 1

2 · 4 = −1

2.1.6 Final Hölder inequality

k∑
n=2
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n2

)kq
nCq
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(∑k
n=2

1
n

k
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·
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4
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4

3
Γ
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2

3

)3/4
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2.2 Treating the second sum

We must find an upper bound to the sum

∞∑
n=k+1

(
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n2

)k
n2

. (22)

We can write

k
3
4
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n2
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∞∑
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4
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3
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(23)
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but

∞∑
n=k+1

k
3
4

n
3
4

(
1 − 1

n2

)k
n

5
4

<

∞∑
n=k+1

(
1 − 1

n2

)k
n

5
4

< ζ

(
5

4

)
(24)

where ζ is the Riemann Zeta function. Therefore

∞∑
n=k+1

(
1 − 1

n2

)k
n2

< ζ

(
5

4

)
· k− 3

4 . (25)

2.3 Putting the two results together

qk <

(∑k
n=2

1
n

k

)1/4

·

( 3
4

) 3
4

3
Γ

(
2

3

)3/4

+ ζ

(
5

4

) · k− 3
4 (26)

or

qk <


( 3

4

) 3
4

3
Γ

(
2

3

)3/4

+ ζ

(
5

4

) · k− 3
4 (27)

where δ(c) = 0 for C = 3. Consequently qk = O(k−
3
4 ) or in alternative notation

qk << k−
3
4 . By Báez theorem RH is true and the zeroes are simple.

3 Conclusion

After the efforts of several mathematicians and scientific disseminators [3], the
problem has reached maturity and can be solved.
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I also thank my father Rodolpho Antônio de Rezende who always encouraged
me in my personal life and in the habit of reading.

Finally, I thank my dear brother Gustavo Rocha de Rezende and my dear
sister Gisella Rocha de Rezende

5



References

[1] B. Riemann. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.
Monatsberichte der Berliner Akademie, 1859. Translation: R. Wilkins,
David. On the Number of Prime Numbers less than a Given Quantitiy,
1998.
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