Proof of the Riemann Hypothesis

Guilherme Rocha de Rezende ${ }^{1}$
${ }^{1}$ Instituto Federal de Brasília

September 23, 2021

Abstract

In this article we will prove the problem equivalent to the Riemann Hypothesis developed by Luis-Báez in the article "A sequential

Riesz-like criterion for the Riemann hypothesis".

1 Introduction

The Riemann Hypothesis is a famous conjecture made by Bernhard Riemann in his article on prime numbers. Riemann, as indicated by the title of his article [1], wanted to know the number of prime numbers in a given interval of the real line, so he extended a Euler observation and defined a function called Zeta. Riemann obtained an explicit formula, which depends on the non-trivial zeros of the Zeta function, for the quantity he was looking for. Along the way, Riemann mentions that probably all non-trivial zeros of the Zeta function are, in the now called critical line, that is, when the complex argument $s=\sigma+I T$ of the Zeta function has a real part equal to one-half. $-\sigma=\frac{1}{2}$. We will prove, using the equivalent problem developed by Luis Báez-Duarte [2], the conjecture.

2 Proof

$$
\begin{equation*}
q_{k}:=\sum_{n=1}^{\infty} \frac{\left(1-\frac{1}{n^{2}}\right)^{k}}{n^{2}}=\sum_{n=1}^{k} \frac{\left(1-\frac{1}{n^{2}}\right)^{k}}{n^{2}}+\sum_{n=k+1}^{\infty} \frac{\left(1-\frac{1}{n^{2}}\right)^{k}}{n^{2}} \tag{1}
\end{equation*}
$$

We need to prove that: $q_{k}=O\left(k^{-\frac{3}{4}}\right)$, i.e., $q_{k} \leq M \cdot k^{-\frac{3}{4}}$ for all $k \geq k_{0}$ and M is a definite positive constant. This is equivalent to the Riemann's hypothesis.

2.1 Treating the first sum

2.1.1 Using Hölder inequality we get

$$
\begin{equation*}
\sum_{n=1}^{k} \frac{\left(1-\frac{1}{n^{2}}\right)^{k}}{n^{2}} \leq\left(\sum_{n=2}^{k} \frac{1}{n^{\left(\frac{1}{p}+\Delta\right) \cdot p}}\right)^{1 / p} \cdot\left(\sum_{n=2}^{k} \frac{\left(1-\frac{1}{n^{2}}\right)^{k \cdot q}}{n^{\left(2-\frac{1}{p}-\Delta\right) \cdot q}}\right)^{1 / q} \tag{2}
\end{equation*}
$$

and we must determine, conveniently, p, q and Δ.

2.1.2 Finding an upper bound and changing expoent 2 of n

$$
\begin{equation*}
\sum_{n=2}^{k} \frac{\left(1-\frac{1}{n^{2}}\right)^{k \cdot q}}{n^{\left(2-\frac{1}{p}-\Delta\right) \cdot q}}<\sum_{n=2}^{k} \frac{e^{-\frac{k q}{n^{2}}}}{n^{\left(2-\frac{1}{p}-\Delta\right) \cdot q}}<\sum_{n=2}^{k} \frac{e^{-\frac{k q}{n\left(2-\frac{1}{p}-\Delta\right) \cdot q}}}{n^{\left(2-\frac{1}{p}-\Delta\right) \cdot q}}+\delta\left(\left(2-\frac{1}{p}-\Delta\right) \cdot q\right) \tag{3}
\end{equation*}
$$

where $\delta\left(\left(2-\frac{1}{p}-\Delta\right) \cdot q\right)$ is an error associated with expoent change, and the error is zero if $\left(2-\frac{1}{p}-\Delta\right) \cdot q>2$. This error will be analized later.

2.1.3 Finding an integral that is an upper bound of the sum

Let $C=\left(2-\frac{1}{p}-\Delta\right) \cdot q$, where we assume for now $C>1$, we have

$$
\begin{equation*}
\sum_{n=2}^{k} \frac{e^{-\frac{k q}{n C}}}{n^{C}}<\int_{1}^{k} \frac{e^{-\frac{k q}{x^{C}}}}{x^{C}} d x \tag{4}
\end{equation*}
$$

Change of variable:

$$
\begin{array}{r}
y=\frac{k q}{x^{C}} \\
x=(k q)^{\frac{1}{C}} \cdot y^{-\frac{1}{C}} \\
d x=(k q)^{\frac{1}{C}} \cdot-\frac{1}{C} \cdot y^{-\frac{1}{C}-1} d y \\
\int_{1}^{k} \frac{e^{-\frac{k q}{x^{C}}}}{x^{C}} d x=\int_{1}^{k} \frac{e^{-y}}{k q} \cdot y \cdot(k q)^{\frac{1}{C}} \cdot-\frac{1}{C} \cdot y^{-\frac{1}{C}-1} d y \\
\frac{(k q)^{\frac{1}{C}-1}}{C} \int_{\frac{k q}{k}}^{k q} e^{-y} \cdot y^{-\frac{1}{C}} d y<\frac{(k q)^{\frac{1}{C}-1}}{C} \int_{y=0}^{\infty} e^{-y} \cdot y^{-\frac{1}{C}} d y \\
\frac{(k q)^{\frac{1}{C}-1}}{C} \int_{\frac{k q}{k}}^{k q} e^{-y} \cdot y^{-\frac{1}{C}} d y<\frac{(k q)^{\frac{1}{C}-1}}{C} \Gamma\left(1-\frac{1}{C}\right) \tag{10}
\end{array}
$$

Therefore

$$
\begin{array}{r}
\sum_{n=2}^{k} \frac{e^{-\frac{k q}{n C}}}{n^{C}}<\frac{(k q)^{\frac{1}{C}-1}}{C} \Gamma\left(1-\frac{1}{C}\right) \\
\sum_{n=2}^{k} \frac{\left(1-\frac{1}{n^{2}}\right)^{k q}}{n^{C q}}<\frac{(k q)^{\frac{1}{C}-1}}{C} \Gamma\left(1-\frac{1}{C}\right)+\delta(C) \tag{12}
\end{array}
$$

2.1.4 Replacing sum by integral in Hölder inequality

$$
\begin{equation*}
\sum_{n=2}^{k} \frac{\left(1-\frac{1}{n^{2}}\right)^{k q}}{n^{C q}}<\left(\sum_{n=2}^{k} \frac{1}{n^{\left(\frac{1}{p}+\Delta\right) \cdot p}}\right)^{1 / p} \cdot\left(\frac{(k q)^{\frac{1}{C}-1}}{C} \Gamma\left(1-\frac{1}{C}\right)+\delta(C)\right)^{1 / q} \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{n=2}^{k} \frac{\left(1-\frac{1}{n^{2}}\right)^{k q}}{n^{C q}}<\left(\sum_{n=2}^{k} \frac{1}{n^{\left(\frac{1}{p}+\Delta\right) \cdot p}}\right)^{1 / p} \cdot\left(\frac{q^{\frac{1}{C}-1}}{C} \Gamma\left(1-\frac{1}{C}\right)+\frac{\delta(C)}{k^{\frac{1}{C}-1}}\right)^{1 / q} \cdot k^{\frac{1}{q C}-\frac{1}{q}} \tag{14}
\end{equation*}
$$

i.e., using Hölder's inequality,

$$
\begin{equation*}
\sum_{n=2}^{k} \frac{\left(1-\frac{1}{n^{2}}\right)^{k q}}{n^{C q}}<\left(\sum_{n=2}^{k} \frac{1}{n^{\left(\frac{1}{p}+\Delta\right) \cdot p}}\right)^{1 / p} \cdot\left(\frac{q^{\frac{1}{C}-1}}{C} \Gamma\left(1-\frac{1}{C}\right)+\frac{\delta(C)}{k^{\frac{1}{C}-1}}\right)^{1 / q} \cdot k^{\frac{1}{q C}+\frac{1}{p}-1} \tag{15}
\end{equation*}
$$

or
$\sum_{n=2}^{k} \frac{\left(1-\frac{1}{n^{2}}\right)^{k q}}{n^{C q}}<\left(\sum_{n=2}^{k} \frac{k}{n^{\left(\frac{1}{p}+\Delta\right) \cdot p}}\right)^{1 / p} \cdot\left(\frac{q^{\frac{1}{C}-1}}{C} \Gamma\left(1-\frac{1}{C}\right)+\frac{\delta(C)}{k^{\frac{1}{C}-1}}\right)^{1 / q} \cdot k^{\frac{1}{q C}-1}$
and finally, using the fact that arithmetic mean is greater than harmonic mean, we get

$$
\begin{equation*}
\sum_{n=2}^{k} \frac{\left(1-\frac{1}{n^{2}}\right)^{k q}}{n^{C q}}<\left(\frac{\sum_{n=2}^{k} n^{\left(\frac{1}{p}+\Delta\right) \cdot p}}{k}\right)^{1 / p} \cdot\left(\frac{q^{\frac{1}{C}-1}}{C} \Gamma\left(1-\frac{1}{C}\right)+\frac{\delta(C)}{k^{\frac{1}{C}-1}}\right)^{1 / q} \cdot k^{\frac{1}{q C}-1} \tag{17}
\end{equation*}
$$

2.1.5 Choosing q to obtain $-\frac{3}{4}$ power

Therefore we need to solve

$$
\begin{equation*}
\frac{1}{q C}-\frac{1}{q}=-\frac{3}{4} \tag{18}
\end{equation*}
$$

and solving the equations we arrive at

$$
\begin{equation*}
q:=\frac{4}{C} \tag{19}
\end{equation*}
$$

and because of Hölder condition $\frac{1}{q}+\frac{1}{p}=1$ we get

$$
\begin{equation*}
p=\frac{4}{4-C} \tag{20}
\end{equation*}
$$

We can choose $C=\left(2-\frac{1}{p}-\Delta\right) \cdot q=3$ which implies $\Delta=\frac{8 p-3 C p-4}{4 p}=$ $\frac{8 \cdot 4-3 \cdot 3 \cdot 4-4}{16}=-\frac{1}{2}$ therefore $1+\Delta \cdot p=1-\frac{1}{2} \cdot 4=-1$

2.1.6 Final Hölder inequality

$$
\begin{equation*}
\sum_{n=2}^{k} \frac{\left(1-\frac{1}{n^{2}}\right)^{k q}}{n^{C q}}<\left(\frac{\sum_{n=2}^{k} \frac{1}{n}}{k}\right)^{1 / 4} \cdot\left(\frac{\left(\frac{3}{4}\right)^{\frac{3}{4}}}{3} \Gamma\left(\frac{2}{3}\right)\right)^{3 / 4} \cdot k^{-\frac{3}{4}} \tag{21}
\end{equation*}
$$

2.2 Treating the second sum

We must find an upper bound to the sum

$$
\begin{equation*}
\sum_{n=k+1}^{\infty} \frac{\left(1-\frac{1}{n^{2}}\right)^{k}}{n^{2}} \tag{22}
\end{equation*}
$$

We can write

$$
\begin{equation*}
k^{\frac{3}{4}} \sum_{n=k+1}^{\infty} \frac{\left(1-\frac{1}{n^{2}}\right)^{k}}{n^{2}}=\sum_{n=k+1}^{\infty} \frac{k^{\frac{3}{4}}}{n^{\frac{3}{4}}} \frac{\left(1-\frac{1}{n^{2}}\right)^{k}}{n^{\frac{5}{4}}} \tag{23}
\end{equation*}
$$

but

$$
\begin{equation*}
\sum_{n=k+1}^{\infty} \frac{k^{\frac{3}{4}}}{n^{\frac{3}{4}}} \frac{\left(1-\frac{1}{n^{2}}\right)^{k}}{n^{\frac{5}{4}}}<\sum_{n=k+1}^{\infty} \frac{\left(1-\frac{1}{n^{2}}\right)^{k}}{n^{\frac{5}{4}}}<\zeta\left(\frac{5}{4}\right) \tag{24}
\end{equation*}
$$

where ζ is the Riemann Zeta function. Therefore

$$
\begin{equation*}
\sum_{n=k+1}^{\infty} \frac{\left(1-\frac{1}{n^{2}}\right)^{k}}{n^{2}}<\zeta\left(\frac{5}{4}\right) \cdot k^{-\frac{3}{4}} \tag{25}
\end{equation*}
$$

2.3 Putting the two results together

$$
\begin{equation*}
q_{k}<\left[\left(\frac{\sum_{n=2}^{k} \frac{1}{n}}{k}\right)^{1 / 4} \cdot\left(\frac{\left(\frac{3}{4}\right)^{\frac{3}{4}}}{3} \Gamma\left(\frac{2}{3}\right)\right)^{3 / 4}+\zeta\left(\frac{5}{4}\right)\right] \cdot k^{-\frac{3}{4}} \tag{26}
\end{equation*}
$$

or

$$
\begin{equation*}
q_{k}<\left[\left(\frac{\left(\frac{3}{4}\right)^{\frac{3}{4}}}{3} \Gamma\left(\frac{2}{3}\right)\right)^{3 / 4}+\zeta\left(\frac{5}{4}\right)\right] \cdot k^{-\frac{3}{4}} \tag{27}
\end{equation*}
$$

where $\delta(c)=0$ for $C=3$. Consequently $q_{k}=O\left(k^{-\frac{3}{4}}\right)$ or in alternative notation $q_{k} \ll k^{-\frac{3}{4}}$. By Báez theorem RH is true and the zeroes are simple.

3 Conclusion

After the efforts of several mathematicians and scientific disseminators [3], the problem has reached maturity and can be solved.

4 Acknowledgement

Posthumously, I thank my dear mother Edna Vieira Rocha de Rezende who always motivated me in life.
I also thank my father Rodolpho Antônio de Rezende who always encouraged me in my personal life and in the habit of reading.
Finally, I thank my dear brother Gustavo Rocha de Rezende and my dear sister Gisella Rocha de Rezende

References

[1] B. Riemann. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsberichte der Berliner Akademie, 1859. Translation: R. Wilkins, David. On the Number of Prime Numbers less than a Given Quantitiy, 1998.
[2] Luiz Báez-Duarte. A sequential Riesz-like criterion for the Riemann hypothesis, International Journal of Mathematics and Mathematical Sciences 2005:21 (2005) 3527-3537.
[3] John Derbishire. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics, Joseph Henry Press (1 april 2003).

