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Exploring the patterns in the Dirichlet Eta Function 

(And the Theoretical Proof of the Riemann Hypothesis) 

By 

Jayesh Mewada 

(email: Research@Consect.com.au) 

 

ABSTRACT: 
 

A hidden beautiful pattern in Dirichlet Eta Series (and hence in Riemann Zeta Function) is discovered. A new 

'Mewada' function is defined which forms a part of the Dirichlet Eta series, and helps to reduce the series to a 

new series in which the behaviour and the limits of the behaviour of the sum of the individual terms can be 

studied and compared with crystal clear clarity. It is shown that the Dirichlet Eta function 𝜂(𝑥−𝑖𝑦) (where x,y ∈ ℝ) 

allows for 'Zero' at only one value of 'x' for '0<x<1', for any given value of 'y', and hence it can be shown that non-

trivial 'Zeros' of Dirichlet Eta can only exist at x=0.5 if they fall within the critical strip 0<x<1. Consequently it can 

be concluded that non-trivial 'Zeros' of Riemann Zeta function can only be at x=0.5, thereby proving Riemann 

Hypothesis with absolute certainty. It is also shown that all the non-trivial 'Zeros' of the Riemann Zeta are simple 

'Zeros'. It is then shown that the same method of proof can be generalised to the other Dirichlet L-Functions with 

suitable modifications, thereby proving the Generalised Riemann Hypothesis also to be true. 
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Chapter: 1 

OUTLINE OF THE PROOF IN BRIEF: 

Background: 

The Dirichlet Eta function 𝜂(s) where s=x−iy (for 0<x<1, 0<y<±∞), being sum of non-geometric infinite 

convergent series,  does not obey any meaningful equation to be able to predict it's behaviour, unlike say a 

polynomial equation or trigonometric equations or exponential equations, which can be studies using standard 

mathematical tools. To study the behaviour of 𝜂(s) through the range of 'x' from 0 to 1, for any given value of 

'y', one needs to actually compute the value of 𝜂(s) for the range. Knowing how the 𝜂(s) behaves for some or 

even a lot of values of 'y' does not help much in predicating behaviour of the function at other values of 'y' in 

any meaningful way. Even if one studies the behaviour of 𝜂(s) for 'y' up to 10x1012 or even up to 10400 or so if 

future computer technology permits, does not guarantee that it may not behave differently at some much 

higher value. Which implies that even if all the non-trivial 'Zeros' of Riemann Zeta up to 10400 are found to be 

on x=0.5 line, it does not guarantee that there won't be any Zero off the critical line at some higher value of 'y'. 

Also, none of the standard tools can be applied to these functions to calculate its maxima, minima, 'Zeros' etc., 

which generally tend to work with standard mathematical equations.  

Also, the 'Zeros' of these functions behave like prime number, i.e. despite being unpredictable and having 

random-like nature, they are not purely random-functions either, so none of the randomness-based or 

statistics-based theorems can be used in deriving the proofs for the Zeros of Dirichlet Eta or Riemann Zeta.  

This difficulty explains why the Riemann Hypothesis had so far remained unproven despite some of the most 

brilliant minds working on it for over a century. 

 

However, if there is some underlying theoretical and logical reason why there just can't be more than 1 Zero of 

𝜂(s) for 'x' in the range 0<x<1, for any given 'y', then Riemann Hypothesis can be proven. 

 

A new approach: 

A new approach, and still a pretty elementary approach, has been made as discussed in this paper to study 

some behaviour of Dirichlet Eta function, to ultimately prove the Riemann Hypothesis theoretically.  

(The author does not claim sole credit for the proof presented, and thank all the people who provided useful 

insights to the author.) 

 

This paper does not rely on any functional equation of zeta, except to the extent of inferring that if there is a 

non-trivial 'Zero' for a given value of 'y' at only one value of 'x' in the range 0<x<1 then that 'Zero' can only be at 

x=0.5 and not anywhere else, to satisfy the Riemann Zeta functional equation. 

This paper mostly relies on the actual behaviour of the Dirichlet Eta Series and the behaviour of the vectors of 

the individual terms of the series, and their behaviour in a group. 

 

The author has derived a new operator  ′𝐴𝑎𝑖𝑘𝑦(𝑀)[ ] ', which when applied to the convergent Dirichlet Eta 

Series 𝜂(x−iy), at 'Zeros' of the function, reduces it to a new convergent series, which can be represented as a 

sum of two new functions (convergent serieses)  ′𝑀𝑒𝑤𝑎𝑑𝑎(𝑀) function'  &  ′𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛'. The author 

shows that the  ′𝑀𝑒𝑤𝑎𝑑𝑎(𝑀)′ function is extremely well behaved and predictable for any 'y' and 0<x<1. The 

author then shows that the  ′𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)′ function becomes more and more predictable and of the 

exponential nature as we increase the value of 'M' in the  ′𝐴𝑎𝑖𝑘𝑦(𝑀)[ ]'  operator. Then, by comparing the 

graphs of the values of the two functions, we can see that they can intersect at maximum one point only, 

proving that there can only be maximum one Zero for 0<x<1 for any value of 'y'. 

In the process of coming to the proof of Riemann Hypothesis, some very interesting patterns hidden inside the 

Dirichlet Eta Series are also observed, which will also be presented in this paper. 
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Consider Dirichlet Eta Function (a convergent series) to be made up of 2 separate converging serieses. 

 

 

 

In the diagram above, for the baseline/main series of 𝜂(s) = 0 =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)Function + 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,2) Function, 

no mathematical proof can derived for the conjecture that zero will be only at x=0.5 

 

However, after applying  𝐴𝑎𝑖𝑘𝑦(𝑀) operator to the series at 𝜂(s) = 0, we get a reduced series : 

 

 0 =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) + 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) 

 

At each 'Zero' of 𝜂(s), for any given 'y', the new equation must hold for each and every chosen value of 'M' i.e. 

the graphs of 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) 'a fixed function' and  −𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) 'a changing function' must intersect at all 

'Zeros' at each and every value of chosen 'M'. This is obviously possible at only 1 point, like a curve 

rotating about a pivot. When we consider very high 'M' or as M→∞, we can mathematically prove that 

−𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,∞) would be a vertical line, which can intersect  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) at maximum 1 point only, 

thereby proving the hypothesis with absolute certainty. 
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Chapter: 2 

THE R-FUNCTION AND THE MEWADA FUNCTION: 

 

I define the 'R-function' 𝑅(𝑥−𝑖𝑦) as a 'Geometric Progression Series' as follows: 

 

R-Function 𝑅(𝑥−𝑖𝑦) as sum of all the R-Terms, which are the terms where n=2,4,8,16,32,64,… 

  𝑅(𝑥−𝑖𝑦) =  
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 + 
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 + 
1

8𝑥  ∠𝑦. 𝑙𝑜𝑔8 +  
1

16𝑥  ∠𝑦. 𝑙𝑜𝑔16 +
1

32𝑥  ∠𝑦. 𝑙𝑜𝑔32 + ⋯ 𝑡𝑜 ∞ 

- Where 0 < x < 1   and  0 ≤ y < ±∞ 

i.e.  

  𝑅(𝑥−𝑖𝑦) =    ∑     
1

(2𝑛)𝑥  ∠𝑦. 𝑙𝑜𝑔(2𝑛)
∞

𝑛=1
 

 

… this is sum of the infinite number of polar vectors with values reducing at a fixed rate, where each vector is 

separated from previous vector by the same angle, exactly equal to ∠𝑦. 𝑙𝑜𝑔2 

 

𝑅(𝑥−𝑖𝑦) =  
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2     .     ( 1 +  
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 + 
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 + 
1

8𝑥  ∠𝑦. 𝑙𝑜𝑔8 +  
1

16𝑥  ∠𝑦. 𝑙𝑜𝑔16 + ⋯ ) 

 

𝑅(𝑥−𝑖𝑦) =  
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2    .    ( 1 +  𝑅(𝑥−𝑖𝑦) )     =    
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 +  
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 ∗  𝑅(𝑥−𝑖𝑦)       

 

𝑅(𝑥−𝑖𝑦)    .    ( 1 −
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 )   =    
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2  

 

𝑅(𝑥−𝑖𝑦) =   
1

2𝑥 ∠−𝑦.𝑙𝑜𝑔2    − 1 
 

 

Now I define 'Mewada Function'  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)  as  (1 −  𝑅(𝑥−𝑖𝑦)): 

 

𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) =   1   −   
1

2𝑥 ∠−𝑦.𝑙𝑜𝑔2    − 1  
 = 

2𝑥 ∠−𝑦.𝑙𝑜𝑔2    − 1 − 1 

2𝑥 ∠−𝑦.𝑙𝑜𝑔2    − 1 
  =  

2𝑥 ∠−𝑦.𝑙𝑜𝑔2    − 2 

2𝑥 ∠−𝑦.𝑙𝑜𝑔2    − 1 
 

 

At x = 1 – x = 0.5, this magically reduces to : 

𝑀𝑒𝑤𝑎𝑑𝑎(0.5−𝑖𝑦) =   √𝟐   ∠(2. Arctan [
Sin(𝑦.𝑙𝑜𝑔2)

√2 − 𝐶𝑜𝑠(y.log2)
] − π + y. log2) 

 

…which is very beautiful in the sense that no matter what the value of 'y' you chose, at x=0.5, the   

𝑀𝑒𝑤𝑎𝑑𝑎(0.5−𝑖𝑦)     is always equal to √2 , in value, with only the vector argument dependent on 'y'.  

 

The 'value' of the Mewada Function generally depends on both  'x' and  'y', but when x = 0.5 , the 'value' magically 

becomes independent of 'y', and is fixed at √2. 
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Also note the following: 

𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) =  0    if and only if     x=1    and   y.log2 = '0' or integer multiple of 2π 

𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) = ∞   if and only if     x=0    and   y.log2 = 0 or integer multiple of 2π 

 

We know that x=0 falls in the  zero-free regions of Riemann Zeta, so we do not need to worry about the poles of 

Mewada function at   x=0  & y.log2=integer multiples of 2π. 

For anywhere within critical strip such that 0 < x < 1  (i.e. importantly at x ≠ 0, and x≠1) , the Mewada function is 

well-behaved, i.e. has no pole and no zero.  

Mewada function has no maxima or minima for 0<x<1, so it does not reverse it's value fall …i.e. if 'x' increase 

from 0 to 1, value of Mewada function will only decrease in terms of absolute value of the polar vector, no matter 

what 'y' you choose.   

 

Also, since 'Mewada' function is a function of 'x' and polar vector argument 'y.log2', it's cyclic at interval of 2π.   

So to study the behaviour of 'Mewada' function we only need to study it over 1 cycle of 2π,  which covers the 

behaviour of the function for all the values of 'y' from –∞ to +∞ , unlike the zeta function or for eta function 

𝜂(𝑥−𝑖𝑦) for which one can't practically study the behaviour for all the values of 'y' up to 'infinity' within the critical 

strip 0<x<1. 

  

Table M.1 : The values of 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) for different values of  'y.log2' over a half cycle  (it's symmetrical for the 

other half of the cycle) 

y.Log 2 → 
 

0 0.1 π∕4 1.5 π∕2 1.7 3∕4 π 3 π 

x = 0 ∞ 10 
∠-1.42 

1.92 
∠-.678 

1.59 
∠-0.34 

1.58 
∠-.321 

1.56 
∠-0.28 

1.51 
∠-.137 

1.5 
∠-0.023 

1.5 
∠0 

x = 0.1 12.9 
∠π 

7.5 
∠-2.01 

1.82 
∠-0.714 

1.56 
∠-0.35 

1.54 
∠-0.33 

1.53 
∠-0.29 

1.49 
∠-0.139 

1.48 
∠-0..24 

1.48 
∠0 

x = 0.25 4.29 
∠π 

3.8 
∠-2.42 

1.67 
∠-0.76 

1.5 
∠-0.36 

1.5 
∠-0.335 

1.49 
∠-0.295 

1.46 
∠-0.14 

1.46 
∠-0.024 

1.46 
∠0 

x = 0.4 2.1 
∠π 

2.06 
∠-2.55 

1.514 
∠-0.77 

1.45 
∠-0.364 

1.45 
∠-0.33 

1.44 
∠-0.3 

1.44 
∠-0.14 

1.43 
∠-0.024 

1.44 
∠0 

x = 0.5  √𝟐 
 ∠π 

√𝟐  
∠-2.57 

√𝟐  
∠-0.785 

√𝟐  
∠-0.364 

√𝟐  
∠-0.34 

√𝟐  
∠-0.3 

√𝟐  
∠-0.142 

√𝟐  
∠-0.024 

√𝟐  
∠0 

x = 0.6 0.94 
∠π 

0.97 
∠-2.56 

1.32 
∠-0.78 

1.38 
∠-0.363 

1.38 
∠-0.34 

1.38 
∠-0.3 

1.4 
∠-0.141 

1.4 
∠-0.024 

1.4 
∠0 

x = 0.75 0.47 
∠π 

.53 
∠-2.42 

1.145 
∠-0.76 

1.33  
∠-0.36 

1.33 
∠-0.335 

1.34 
∠-0.295 

1.37 
∠-0.141 

1.37 
∠-0.024 

1.37 
∠0 

x = 0.9 0.15 
∠π 

.27 
∠-2.01 

1.09 
∠-0.714 

1.28 
∠-0.35 

1.29 
∠-0.33 

1.3 
∠-0.29 

1.34 
∠-0.14 

1.35 
∠-0.029 

1.35 
∠0 

x = 1.0 0 
∠π 

.198 
∠-1.42 

1.04 
∠-0.68 

1.26 
∠-0.34 

1.27 
∠-0.32 

1.28 
∠-0.28 

1.32 
∠-0.137 

1.33 
∠-0.02 

1.33 
∠0 
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Diagram M.1 : Plot of the values of Mewada function for 0<x<1 and various 'y' over a half cycle 

 

 

 

 

We will prove later in the paper that this 'Mewada' function is the beautiful function hidden in the "Zeros" of 

Dirichlet Eta series and hence in the "Zeros" of Riemann Zeta function. 

0

2

4

6

8

10

12

14

x=0.1 x=0.25 x=0.5 x=0.75 x=1.0

Value of  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥-𝑖𝑦) 

y.log2=π y.log2=π/2 y.log2=π/6 y.log2=π/4π y.log2=π/10π y.log2=0 or 2π

√2

To ∞ at x=0 & y.log2=0 or 2π 
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Chapter: 3 

THE DIRICHLET ETA FUNCTION/SERIES: 

 

The Dirichlet Eta Function (aka Alternating Zeta Function) is defined by the following Dirichlet series, which 
converges for any complex number having real part > 0: 

 
…where s = (x - i y)… where x is 'real' part (>0) and 'iy' is imaginary part. 

…where 'n' denotes the term number of the series. 

This Dirichlet series is the alternating sum corresponding to the Dirichlet series expansion of the Riemann zeta 
function, ζ(s) — and for this reason the Dirichlet eta function is also known as the 'alternating zeta function', also 
denoted ζ*(s). The following relation holds: 

 
…where s = x−i y     …where both 'x' & 'y' are real and 'i' is the imaginary operator 

Zeros of Dirichlet Eta in critical strip (0<x<1) coincide with zeros of Riemann Zeta 

 

𝜂(s) = 
1

1𝑥−𝑖𝑦 − 
1

2𝑥−𝑖𝑦  +  
1

3𝑥−𝑖𝑦 −  
1

4𝑥−𝑖𝑦  +
1

5𝑥−𝑖𝑦 −
1

6𝑥−𝑖𝑦  +  … 

 

This can be re-written to the following equivalent representation: 

𝜂(s) =  
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 − 
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 + 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 −  
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 +
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5 −
1

6𝑥  ∠𝑦. 𝑙𝑜𝑔6 + ⋯ 𝑡𝑜 ∞ 

 

…all these individual terms of the series are equivalent to individual polar vectors with 'value' =  
1

𝑛𝑥  , and the 

vector-argument =y.log(n).   Also, the –ve sign of a term would indicate that the vector is rotated by angle 'π'. 

The value of 𝜂(s) will be equal to the value of the resultant vector of sum of all the vectors of the series. 
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Chapter: 4 

THE SUB-SERIESES OF DIRICHLET ETA SERIES AT 'ZEROS' 

Consider the terms where n = 3, 6, 9, 12 , … (i.e. where 'n' is positive integer multiple of 3, or simply   3|n ) 

We got a mini series => 

  
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 − 
1

6𝑥  ∠𝑦. 𝑙𝑜𝑔6 + 
1

9𝑥  ∠𝑦. 𝑙𝑜𝑔9 − 
1

12𝑥  ∠𝑦. 𝑙𝑜𝑔12 +
1

15𝑥  ∠𝑦. 𝑙𝑜𝑔15 − ⋯ 

=      
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3   .    ( 
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 − 
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 + 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 −  
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 +
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5 − ⋯ ) 

=      
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3  .   𝜂(s) 

If the original series 𝜂(s)  is 'convergent', then the mini-series/sub-series is also convergent, and shares the same 

progression pattern and same alternating signs as the original series. 

 

So if 𝜂(s) = 0, i.e. at any root of Eta in critical strip, the sum of mini-series/sub-series of the terms where 'n' is 

integer multiple of 3, is also '0'. 

 

Similarly we can observe that if 𝜂(s) = 0, sum of mini-series of the terms where 'n' is integer multiple of 5, is also 

'0'. 

 

Similarly we can observe that if 𝜂(s) = 0, sum of mini-series of the terms where 'n' is integer multiple of any 

chosen odd prime number, is also '0'. 

 

Similarly we can observe that if 𝜂(s) = 0, sum of mini-series of terms where 'n' is integer multiple of product of 

any 2 chosen odd prime numbers is also '0'.  

For e.g.:   Choose 3 & 5, (3 x 5 = 15) then the sum of series with only terms numbered 15, 30, 

45, 60, 75, …∞   is also '0' 

 Choose 17 & 7, (17 x 7=11) then the sum of series  with only terms numbered 119, 

238, 357, 476, …∞   is also '0' 

Similarly we can observe that if 𝜂(s) = 0, the sum of series of the terms where 'n' is integer multiple of product of 

any 3 chosen odd prime numbers, is also '0'.  

For e.g.:   Choose 3 & 5 & 11, (3 x 5 x 11=165) then the sum of series with only terms numbered 

165, 330, 495, 660, …∞   is also '0' 

Similarly we can observe that if 𝜂(s) = 0, the sum of series of the terms where 'n' is integer multiple of product of 

any number of chosen odd prime numbers, is also '0'.  

For e.g.:   Choose 5 & 7 & 13 & 23, (5x7x13x23=10465) then the sum of series with only terms 

numbered 10465, 20930, 31395, 41860…∞  is also '0' 

i.e.  

1

10465𝑥  ∠𝑦. 𝑙𝑜𝑔10465 − 
1

20930𝑥  ∠𝑦. 𝑙𝑜𝑔20930 + 
1

31395𝑥  ∠𝑦. 𝑙𝑜𝑔31395 −  
1

41860𝑥  ∠𝑦. 𝑙𝑜𝑔41860 + …∞  = '0' 

 

… and so on … 

 

[NOTE: While these theorems are very simple, and simple theoretical proof is given above, these have been 

computationally verified by the author, and any reader/scrutinizer may independently verify the same and/or 

request the details from the author on how these may be computationally verified]  
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Chapter: 5 

THE 'AAIKY OPERATOR'  &  THE 'LEEP FUNCTION'  

𝑨𝒂𝒊𝒌𝒚(𝑴)[ ]   &   𝑳𝒆𝒆𝒑(𝐱−𝐢𝐲,𝑴) 

 

We can now introduce a new reduction operator  𝐴𝑎𝑖𝑘𝑦(𝑀)[ ]  as follows: 

The 𝐴𝑎𝑖𝑘𝑦(𝑀)[ ] operator, when applied to Dirichlet Eta series, gets rid of all the terms  up to n = M (M=any chosen 

+ve even integer) in the Dirichlet Eta series, and leaves only the following terms– 

 'Term n=1' i.e. 1/1𝑠 

 'R-Terms with n=2,4,8,16,32,…'   i.e. 1/2𝑠, 1/4𝑠, 1/8𝑠, 1/16𝑠,… 

 Those terms which are either  'n=prime numbers > M', or 'n=(composite made of '2' and/or any 

prime-numbers > N)', all the way up to the ∞ , but excluding R-Terms as they are already listed 

above. 

[There will be no terms where n=any integer multiple of 'any odd prime number up to M'] 

' 𝐴𝑎𝑖𝑘𝑦(𝑀)[ ]'  operator does not alter the 'zero value' of the equation if  𝜂(s) = 0 , i.e. as long as Aaiky operator is 

applied at 𝜂(s)  = 0, i.e. at 'Zeros' of the Dirichlet Eta at any values of 'x' and 'y' that causes a 'Zero'.  

 

The proof is derived below: 

 

Let's consider M=10, so we are going to apply  ′𝐴𝑎𝑖𝑘𝑦(10)[ ]′ operator to the 𝜂(s) at a 'zero', i.e. at  (s) =0. 

 

𝜂(s) = 0 =  
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 − 
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 +  
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 − 
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 +
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5 −
1

6𝑥  ∠𝑦. 𝑙𝑜𝑔6 + ⋯ 

 

For simplicity we rename/re-assign the terms as follows: 

T1 = 
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 

T2 = 
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 

T3 = 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3  … and so on… 

 

So now, at 'zero' we have, 

𝜂(s) = 0 = T1 – T2 + T3 – T4 + T5 – T6 + T7 – T8 + T9 – T10 + T11 – T12 + T13 – T14 + … 

Now we know that if 𝜂(s) = 0, then the mini-series  T3 – T6 + T9 – T12 + T15 – T18 +…  = 0  (refer to chapter 4) 

So let's get rid of all terms multiple of 3. Resultant value of the resultant series will also be zero. 

[Addition/Subtraction of 2 Convergent Series each with value '0' results in a Convergent Series with value '0'] 

[Note for general readers: We are adding a convergent series converging to '0' to another convergent series 

converging to '0', so we get a convergent series converging to '0'. This has no connection by any means to re-

arranging a conditionally convergent series in any way that affects the progression rate of the series which may 

alter the value of the series. Not to be confused with rearrangement where we take out non-converging set of 

terms and reuse them in altered progression rate, which changes the value of the series. On the other hand, here, 

we are only adding 2 converging serieses without changing the value. Subtracting is same as adding, just with                 

a  –ve sign] 

We now get  

 0 = T1 – T2    – T4 + T5   + T7 – T8  – T10 + T11   + T13 – T14   – T16 + T17   + T19 – T20 + … 

…equation E0.3… 
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[NOTE: While these theorems are very simple, and simple theoretical proof is given above, these have been 

computationally verified by the author, and any reader/scrutinizer may independently verify the same and/or request 

the details from the author on how these may be computationally verified] 

 

Now we also know that if 𝜂(s) = 0, then  T5 – T10 + T15 – T20 + T25 – T30 +…  = 0   (refer to chapter 4) 

But we know that in the equation E0.3 above, we don't have terms +T15, -T30, +T45, -T60… because they got 

wiped out already while getting rid of all terms that were multiple of 3. 

However we also know that if 𝜂(s) = 0, then  T15 – T30 + T45 – T60 + T75 – T90 +… also = 0  (refer to chapter 4) 

So, if we re-added the terms that are multiples of 15, back into equation E0.3, and then took out all terms that 

are multiple of 5, the resultant value = 0 will not change. 

Now we get: 

0 = T1 – T2  – T4  + T7 – T8  + T11  + T13 – T14 – T16  + T17   + T19 – T22 + T23 – T26  … 

…Equation E0.5… 

[NOTE: While the above equation is also very simple and simple theoretical proof is given above, this has been 

computationally verified by the author for various values of 'y', and any reader/scrutinizer may independently verify 

the same and/or request the details from the author on how these may be computationally verified] 

 

Now we also know that if 𝜂(s) = 7, then  T7 – T14 + T21 – T28 + T35 – T42 +… also = 0 

But, we do not have terms that are multiples of 21 (i.e.3x7) or multiples of 35 (i.e.5x7) in the equation E0.5 

because they already got wiped out earlier.  

However the terms that are multiples of 21 total to '0' if 𝜂(s) = 0  (refer to chapter 4) 

Also the terms that are multiples of 35 also total to '0' if 𝜂(s) = 0   (refer to chapter 4) 

If we re-add terms that are multiples of 21 and also the terms that multiples of 35, back into the equation E.05, 

then it will not change the value of the equation = 0.    

But, in this case we will have 2-copies of terms that are multiples of 105 (i.e. 3x5x7) added back to equation E0.5. 

However that is also not a problem because all the terms that are multiples of 105 are also totalling to '0' at 𝜂(s) 

= 0.   So we can get rid of these extra copies of those terms without altering the value of the equation = 0. 

So we can get rid of all terms that are multiples of 7, from the equation E0.5, without altering 𝜂(s) = 0 

Now we get: 

𝜂(s) = 0 = T1 – T2  – T4  – T8  + T11  + T13  – T16  + T17   + T19 – T22 + T23 – T26  … 

…Equation E0.7… 

[NOTE: While the above equation is very simple and simple theoretical proof is given above, this has been 

computationally verified by the author for various values of 'y', and any reader/scrutinizer may independently verify 

the same and/or request the details from the author on how these may be computationally verified] 

 

In the same fashion, it can be shown that we can continue this operation up to any chosen value of 'M' without 

changing '0' value of the equation. This is only possible because of the beautiful relationships between sub-

serieses of the Dirichlet Eta with the original series of the Dirichlet Eta. The link between the original series and 

any sub-serieses is the corresponding odd prime number. 

…Interestingly such relationships within the series are not observed in various other Zeta functions (e.g. 

Epstein Zeta, Hurwitz Zeta except 2 cases, etc.) which may or may not have non-critical 'Zeros'  off the 

critical line inside the critical strip, despite having similar 'functional equation'. So the proof derived in 

this paper is applicable to the Dirichlet Eta (Riemann Zeta), and to some other Dirichlet L-functions, but 

may not generally apply to all the other L-functions or to some other Zeta functions even if they may 

satisfy the functional equations… these will be discussed in later chapters. 

mailto:Research@Consect.com.au


 
 

 
Copyright 2018. This paper and its contents may be downloaded or printed by anyone for personal use and education only, but not for any commercial purpose. 
The concepts and the ideas from this paper may be re-used or the contents modified, only after obtaining the author's consent, and a reference to the Author's 
paper must be cited.  Author: Jayesh Mewada, Australia. Email:  Research@Consect.com.au    Research of 2018 released in 2021.  
 

Page 12 of 36 

 

Thus we see that now we only got following terms left in the equation, at 𝜂(s) = 0 

(A) T1  i.e.  'n=1' 

(B) T2, T4,T8,T16,T32,T64,…and so on… (I.e. all 'R-terms': n=2,4,8,16,32,…) 

(C) All other terms that are numbered 'n'=prime number greater than 10 (for M=10)    

(D) All other terms where n= composites of '2' and/or 'any prime numbers > 10'...except the 'R-Terms' 

already listed above. 

(There will be no left-over terms where 'n' is an integer multiple of any 'odd prime <10') 

(The + or – signs are maintained as per the original series, i.e.  '+' for 'n=odd',  '−'  for 'n=even') 

 

The Terms (A) and (B) above are collectively same as 'Mewada' function  =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)  (refer to chapter 2) 

 

The Terms (C) and (D) above are now to be collectively called as a new  'Leep function' = 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀), for M=10, 

it's = 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,10) 

 

So now, we define the 'Leep Function'   𝑳𝒆𝒆𝒑(𝒙−𝒊𝒚,𝑴)  as  sum of the terms leftover in the Dirichlet Eta series 

for 𝜼(𝒔) 𝒐𝒓 𝜼(𝒙 − 𝒊𝒚) ,  after applying  ′𝑨𝒂𝒊𝒌𝒚(𝑴)[ ]′ operator, such that 'n' is either any prime number > M, 

or 'n' is = (a composite number divisible by 'any prime numbers>M' and/or '2'), except the 'R-Terms' which 

are n=composite numbers made of only  prime number '2'. 

 

Thus, by applying operator ' 𝐴𝑎𝑖𝑘𝑦(10)[ ] ' to Dirichlet Eta series at 𝜂(s) = 0, 

We get:- 

 𝐴𝑎𝑖𝑘𝑦(10) [𝜂(s)] = 0 =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,10) 

 

Thus, similarly if we apply operator  𝐴𝑎𝑖𝑘𝑦(20)[ ], i.e.  𝐴𝑎𝑖𝑘𝑦(𝑀)[ ] with M=20,  we get 

 𝐴𝑎𝑖𝑘𝑦(20) [𝜂(s)] = 0 = 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,20)   

 

Similar we can show that if we apply operator  𝐴𝑎𝑖𝑘𝑦(25)[ ]  for example, to Dirichlet Eta series at 𝜂(s) = 0, 

We get  

 𝐴𝑎𝑖𝑘𝑦(25) [𝜂(s)] = 0 =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,25) 

 

While numerically it is a tedious task, it can be shown that we can apply  ′𝐴𝑎𝑖𝑘𝑦(𝑀)[ ]' operator at any value of 

'M', without any upper limit, all the way up to the infinity. 

 

Thus for any chosen value of M, any positive even integer from M=2  up to  M→∞, 

We get 

 𝐴𝑎𝑖𝑘𝑦(𝑀) [𝜂(s)] = 0 =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)  +   𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)    

  ...(The equation that will be used heavily in this paper) 
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Now let's look at how the Dirichlet Eta series look like after applying  𝐴𝑎𝑖𝑘𝑦(𝑀)[ ] operator in normal terms… 

 

If     𝜂(s) = 0, i.e. 𝜂(x-iy) = 0 for a given value of x and iy, 

Applying  𝐴𝑎𝑖𝑘𝑦(1000)[ ] to Dirichlet Eta series, we get: 

 𝐴𝑎𝑖𝑘𝑦(1000) [𝜂(x-iy)] = 0 =   𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)  +   𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,1000) 

 

 𝐴𝑎𝑖𝑘𝑦(1000) [𝜂(x-iy)] = 0 =   𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)  +   
1

1009𝑥  ∠𝑦. 𝑙𝑜𝑔1009 + 
1

1013𝑥  ∠𝑦. 𝑙𝑜𝑔1013 +  
1

1019𝑥  ∠𝑦. 𝑙𝑜𝑔1019 +

 
1

1021𝑥  ∠𝑦. 𝑙𝑜𝑔1021 +
1

1031𝑥  ∠𝑦. 𝑙𝑜𝑔1031 +
1

1033𝑥  ∠𝑦. 𝑙𝑜𝑔1033 + ⋯ − 
1

2018𝑥  ∠𝑦. 𝑙𝑜𝑔2018 − 
1

2026𝑥  ∠𝑦. 𝑙𝑜𝑔2026      

+ 
1

2027𝑥  ∠𝑦. 𝑙𝑜𝑔2027 + …  

 

Where… 

𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,1000) =  
1

1009𝑥  ∠𝑦. 𝑙𝑜𝑔1009 + 
1

1013𝑥  ∠𝑦. 𝑙𝑜𝑔1013 +  
1

1019𝑥  ∠𝑦. 𝑙𝑜𝑔1019 + 
1

1021𝑥  ∠𝑦. 𝑙𝑜𝑔1021 +
1

1031𝑥  ∠𝑦. 𝑙𝑜𝑔1031 +
1

1033𝑥  ∠𝑦. 𝑙𝑜𝑔1033 + ⋯−
1

2018𝑥  ∠𝑦. 𝑙𝑜𝑔2018 − 
1

2026𝑥  ∠𝑦. 𝑙𝑜𝑔2026      + 
1

2027𝑥  ∠𝑦. 𝑙𝑜𝑔2027 

+ … 

 

Note1:  The  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,1000)  does not contain any term with 'n' < 1000  (As we chose M=1000) 

Note2:  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)  is  constant w.r.t. 'M' for any given value of x & iy, i.e. it does not change with a change 

of 'M' in the operator 𝐴𝑎𝑖𝑘𝑦(𝑀)[ ]. 

 

IMPORTANT NOTE:  The value of  function   𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)    generally change when we change 'M', however, at 

any 'Zero' of Dirichlet Eta, the function 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)  does not change with 'M', and has to be always equal to - 

 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦). Otherwise it can't be a 'Zero' of Eta. 

At 'Zero', 

0 =   𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)  +   𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)   ..for each and every value of 'M' 

 

So, at 'Zero' of Dirichlet Eta function, 

𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) =   −𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)    ...for each & every value of 'M' … Even if we consider M → ∞ 

 

[NOTE: While the above derivations  are very simple and simple theoretical proof is given above, this has been 

computationally verified by the author for various values of 'y', for M=4, M=10, M=20, and any reader/scrutinizer 

may independently verify the same and/or request the author for details on how such computations may be done.  

If a reader/scrutinizer wants to independently verify the above by numerical computations method, for various 

values of 'y' for known non-trivial 'Zeros' of Eta/Zeta functions, and at  reader's own chosen values of 'M',  the 

author recommends to compute up to ′106 x M'  number of terms for medium accuracy of convergence, or, up to 

′109 x M' or higher number of terms for high accuracy of convergence, as obviously we can't compute up to infinite 

number terms with computers.] 
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ALTERNATIVE REPRESENTATION: 

 

𝜂(s) = ∑   
(−1)𝑛+1

n𝑥  ∠𝑦. 𝑙𝑜𝑔(n)
∞

𝑛=1
    =        ∑   (−1)𝑛+1.  𝑇𝑛

∞

𝑛=1
               …where  𝑇𝑛 =

1

n𝑥  ∠𝑦. 𝑙𝑜𝑔(n) 

 

At 'Zero', 

𝜂(s)  = ∑   (−1)𝑛+1.  𝑇𝑛
∞

𝑛=1
    =   0   =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,2)      …i.e. baseline series, no terms eliminated 

…Equation E0.0 

 

Add following '0' value series to E0.0 

− ∑   (−1)𝑛+1.  𝑇𝑛
∞

3|𝑛
     =   0         …. (i. e. all terms where ′3′  𝑑𝑖𝑣𝑖𝑑𝑒𝑠 ′𝑛′) 

we get    𝐴𝑎𝑖𝑘𝑦(4) [𝜂(s)]   =  0   =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,4) 

…Equation E0.3 

 

Add following '0' value series to E0.3 

− ∑   (−1)𝑛+1.  𝑇𝑛
∞

5|𝑛
    + ∑   (−1)𝑛+1.  𝑇𝑛

∞

15|𝑛
     =   0  

we get    𝐴𝑎𝑖𝑘𝑦(6) [𝜂(s)]   =  0   =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,6) 

…Equation E0.5 

 

Add following '0' value series to E0.5 

− ∑   (−1)𝑛+1.  𝑇𝑛
∞

7|𝑛
  + ∑   (−1)𝑛+1.  𝑇𝑛

∞

21|𝑛
+ ∑   (−1)𝑛+1.  𝑇𝑛 

∞

35|𝑛
 − ∑   (−1)𝑛+1.  𝑇𝑛

∞

105|𝑛
  =   0  

we get    𝐴𝑎𝑖𝑘𝑦(8) [𝜂(s)]   =  0   =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,8) 

…Equation E0.7 

 

Add following '0' value series to E0.7 

− ∑   (−1)𝑛+1.  𝑇𝑛
∞

11|𝑛
           + ∑   (−1)𝑛+1.  𝑇𝑛

∞

33|𝑛
+ ∑   (−1)𝑛+1.  𝑇𝑛

∞

55|𝑛
+ ∑   (−1)𝑛+1.  𝑇𝑛

∞

77|𝑛
 

− ∑   (−1)𝑛+1.  𝑇𝑛
∞

165|𝑛
 − ∑   (−1)𝑛+1.  𝑇𝑛

∞

231|𝑛
 −  ∑   (−1)𝑛+1.  𝑇𝑛

∞

385|𝑛
   +   ∑   (−1)𝑛+1.  𝑇𝑛

∞

1155|𝑛
    =   0  

we get    𝐴𝑎𝑖𝑘𝑦(12) [𝜂(s)]   =  0   =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,12) 

…Equation E0.11 

 

…And so on. 

 

We get the general equation at 𝜂(s)=0, for any value of 'M': 

 𝐴𝑎𝑖𝑘𝑦(𝑀) [𝜂(s)]  =   0   =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) 
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Interesting note/explanation for non-mathematician readers: 

 

Question: What if someone hypothetically applies  𝐴𝑎𝑖𝑘𝑦(∞) operator to the series at a 'Zero' of the 𝜂(s) ? Will it 

not get rid of all the terms from the Leep function/series because they are all multiples of odd prime numbers 

up to infinity ?   

Answer: No, because no matter how high a number 'M' you chose, even if 'M→∞' the value of  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) at a 

'Zero' will always remain same as  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦). While not mathematically accurate description of infinity, if 

you got rid of terms up to infinity, the terms beyond infinity will converge to the same value as  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦). 

In other words if you keep pushing the remainder to the right hand side of the series all the way to the infinity, 

the remainder will still have same value even at infinity.  

 

In an attempt to give an intuitive illustration for the non-mathematician readers, consider the following 

illustrative picture. Imagine there is a tube that is infinitely long, i.e. with no end. If the tube contains a Red-liquid 

representing Mewada Function value, and a Blue-liquid representing Leep Function value, and the rest is just air 

representing other terms which converge to '0' value at Zero of 𝜂(s). If you separate Blue Liquid from Red liquid 

by squeezing the air out of the pipe and simultaneously moving the squeezer to the right, the Blue-liquid will 

keep moving in the tube towards the right, while the air is squeezed out of the tube though micro pores that 

filters out the air but not the liquid. Now, no matter how far you move the squeezer and the Blue-liquid to the 

right hand side, the amount of Blue-liquid in the tube will always remain same as the amount of Red-liquid in the 

pipe. Even if you move the squeezer toward infinity, the Blue-liquid will keep moving in the tube to the infinity 

but will still remain the same in volume. i.e. you just cannot get rid of the Blue-liquid by simply attempting to 

move the squeezer towards the infinity.   

 

Similarly, at 'Zero' of 𝜂(s) the equation   𝐴𝑎𝑖𝑘𝑦(𝑀) [𝜂(s)]  =   0   =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) will hold even 

if you consider  M→∞ in the Aaiky operator. The value of Leep function will remain same as the value of 

Mewada function, no matter what 'M' one choses, at 'Zeros' of 𝜂(s), else there can't be a 'Zero' of 𝜂(s). 
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Chapter: 6 

BUILDING THE THEORY FOR THE PROOF: 

[This chapter is intended only to help with understanding how and why the proof works, and it's not the proof in itself] 

The Dirichlet Eta Function being the limit/sum of a convergent series of infinite number of reducing value vectors, 

not following any polynomial or exponential or trigonometric equations, can't be summarily studied in terms of 

any predictable or standard mathematical equations. We actually need to compute the value of the function for 

each different value of the variables. Despite having a degree of unpredictable behaviour, for sake of 

understanding, we can consider the function to be like a sum of 3 types of components: Constants, Exponentials, 

and Unpredictable wave-type. 

 

Applying the Aaiky operator, increases the effect of the exponential components and reduces the effect of the 

unpredictable components. Higher the value of the 'M' of the Aaiky operator, lesser the effect of the 

unpredictable components w.r.t. the exponential components. 

 

 

 

 

In order to understand how this works, we need to study how the individual vectors representing the terms of 

the Dirichlet Eta series behave individually and in the group. 

 

  

mailto:Research@Consect.com.au


 
 

 
Copyright 2018. This paper and its contents may be downloaded or printed by anyone for personal use and education only, but not for any commercial purpose. 
The concepts and the ideas from this paper may be re-used or the contents modified, only after obtaining the author's consent, and a reference to the Author's 
paper must be cited.  Author: Jayesh Mewada, Australia. Email:  Research@Consect.com.au    Research of 2018 released in 2021.  
 

Page 17 of 36 

The following diagram (not accurate to the scale) shows how the 'value' of the individual vectors fall from value=1 

to a lower value, for different 'n' , as we move from x=0 to x=1. 

 

 

 

Except for n=1, they all fall towards value=0, at different rates depending on the value of 'n'. Vectors with higher 

number 'n' fall in value at higher rate. 

The rate of fall = derivative of the vector: 

For vector  𝑇n  =  
1

𝑛𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑛),  the rate of fall =  
𝑙𝑜𝑔(𝑛)

𝑛𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑛)    ∵   
𝑑

𝑑𝑥
  

1

𝑛𝑥 ∠𝑦. 𝑙𝑜𝑔(𝑛) = −
𝑙𝑜𝑔(𝑛)

𝑛𝑥 ∠𝑦. 𝑙𝑜𝑔(𝑛) 

 

Also, the rate of fall at any point in proportion to the value of the vector = ( −
𝑑

𝑑𝑥
 𝑇n ) / 𝑇n = log(n) 

(The author refers to this as per-unit-value fall-rate, in later parts of this paper) 
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Consider a group of some vectors, to intuitively study their behaviour, at 2 different values of 'x': 

 

The illustrative (not to the scale) diagram above for group of vectors with low value of 'n' , say n=2, 3, 4, 5, 10, 

12, 18,19 etc.. 

The resultant vector despite having general tendency to fall with increase in 'x', can behave in unpredictable 

wave-like fashion, because the per-unit-value fall-rate of individual vectors in the group is quite different from 

one another; log2 for n=2, log5 for n=5, log18 for n=18 etc., i.e. all different from one another.  

 

 

The illustrative diagram above (not to the scale) for group of vectors with high value of 'n', say n=1000009, 

1000013, 1000031 etc.. 

The resultant vector still share the same general tendency to fall with increase in 'x',  and the behaviour is much 

more predictable (not meaning predictable in value but meaning predictable in terms of the shape of the graph 

of the function) because of negligible effect of unpredictable wave-like behaviour, because the per unit-value 

fall-rate of individual vectors in the group is more or less equal with respect to one another (except when 'x' is 

close to '0'). The per-unit-value fall-rate of individual vectors will be ≈ log1000009 for all the vectors in the group. 
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Consider 𝜂( x + i 77777) : If we plot the graph for 𝜂(s) for 'x' ranging from '0' to '1', we can notice some wave-like 

behaviour with both the maxima and the minima present in the graph. Then, one can always think of possibility 

of such a function passing through 'Zero' at more than one location for some other value of 'y' (even if none 

observed yet).  

Let's study 𝜂( x + i 77777) in two components:   𝑀𝑒𝑤𝑎𝑑𝑎(𝑥+𝑖77777)   &   𝐿𝑒𝑒𝑝(𝑥+𝑖77777,2) 

As discussed in a previous chapter, the Mewada function is always well behaved and is like a gentle sloping line. 

Let's look at 𝐿𝑒𝑒𝑝(𝑥+𝑖77777,2) for 0<x<1. The graph is plotted below. We can see some wave-like nature, despite 

the general tendency of the function to lose value with increase in 'x'. 

Now apply    𝐴𝑎𝑖𝑘𝑦(10)[ ] operator to η(x + i77777), and get 𝐿𝑒𝑒𝑝(𝑥+𝑖77777,10). The graph for 𝐿𝑒𝑒𝑝(𝑥+𝑖77777,10) 

is plotted below (not to scale). We can see that even for 'M' as low as just '10', we get rid of all wave-like 

components from the graph, and it becomes more or less like of an exponential and constant components. Such 

wave-free graph can't intersect the graph of Mewada function at 2 separate locations. If we consider higher and 

higher 'M', the Leep function becomes more and more wave-free. 

 

 

Wave-like unpredictable components 

Exponential-like components 

Leep Function in baseline series 

(Similar to group of vectors with 

low 'n' numbers) 

After applying Aaiky operator 

(Similar to group of vectors with 

extremely high 'n' numbers) 
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We can look at any value of 'y' where there is any unpredictable wave-like nature in 𝜂(x-iy), and when we start 

applying Aaiky operator, the wave-like components disappear and the Leep functions becomes more and more 

wave-free and of exponential nature.  

The author has numerically checked/verified this for several inputs. The readers can also check and verify numerically 

for whatever inputs they like. The author obviously doesn't rely on mountain of empirical evidence as any proof 

whatsoever, but this gives the readers an intuitive insight as to why the theory actually works.   

 

While the function  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) changes with change of chosen value of 'M', the function ′𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)′ is 

independent of 'M'. 

For any chosen real value of 'y' , if there is/(are) 'Zero'/('Zeros') of Eta function for 0<x<1, then at each 'Zero',   

    ′ 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)′ must be equal to     '− 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)', for any and all values of chosen 'M', right from M=2 up 

to extremely high 'M', and even if we consider M→∞ 

 

While the above conditions are possible to be met and that is indeed always the case if there is only 1 'Zero' 

(i. e. at   x = 0.5) for any given value of 'y', we will prove that the above conditions are absolutely-impossible to 

be met if there were 'hypothetically' 2 or more 'Zeros' of Eta at any given value of 'y' within 0<x<1. 

 

If you chose any value of 'y' for which there is a single non-critical 'Zero', i.e. at x=0.5, then 

 

𝐿𝑒𝑒𝑝(0.5−𝑖𝑦,𝑀) =  − 𝑀𝑒𝑤𝑎𝑑𝑎(0.5−𝑖𝑦)  =  √2  in value   and  'polar vector argument' dependent on 'y'    ....for any, 

each, and every value of 'M' … Even if M → ∞ 

 

[NOTE: While the above observations are very simple, this has been computationally verified by the author for various values of 

'y', for M=4, M=10, M=20, and any reader/scrutinizer may independently verify the same and/or request the author for details 

on how such computations may be done.  If a reader/scrutinizer wants to independently verify the above by numerical 

computations method, for various values of 'y' for known non-trivial 'Zeros' of Eta/Zeta functions, and at the reader's own chosen 

values of 'M',  the author recommends to compute up to ′106 x M'  number of terms for medium accuracy of convergence, or, up 

to ′109 x M' or higher number of terms for high accuracy of convergence, as obviously we can't compute upto infinite number 

terms with computers.] 
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Graphs of some typical 'y' randomly chosen by the Author, one without a 'Zero', another with a 'Zero'. 

 

The diagram above represents the empirical observations for some typical know 'Zero' of Dirichlet Eta, just to 

give the readers an intuitive explanation of how the author's theory actually works. Leep and –Mewada function 

intersect at 'Zero' of the Eta, for each and every value of 'M'.  Similar graphs for Leep Function up to M=20 for 

several known 'Zeros' and for non-zeros are computationally verified by the author, however for high 'M' and for 

M→∞ the graphs are only theoretical due to unavailability of necessary computational resources. The interested 

readers are welcome to verify up to higher values of 'M' if they like and if they have resources, although there is 

no real need for computational verification up to '∞' as the theory is well founded. (The plots in the diagram 

above are for 'vector values' only and not the 'vector angle', because they are 2D plots) 

 

If in a hypothetical scenario there were more than 1 'Zero' for a real value of 'y' and 0<x<1, then it is even 

theoretically absolutely-impossible for conditions to be met at more than 1 location of 'x', when we change value 

of 'M', each and every time, all the way to 'M → ∞'. 

 

Let's say that in a hypothetical scenario there are 2 'Zeros' of Eta for a given value of 'y', at x=X1 and at x=X2, such 

that X1=1-X2. 

 

𝐿𝑒𝑒𝑝(𝑋1−𝑖𝑦,𝑀) =  −  𝑀𝑒𝑤𝑎𝑑𝑎(𝑋1−𝑖𝑦)    ..for each and every value of 'M' … Even if M → ∞ 

& 

𝐿𝑒𝑒𝑝(𝑋2−𝑖𝑦,𝑀) =  −  𝑀𝑒𝑤𝑎𝑑𝑎(𝑋2−𝑖𝑦)    ..for each and every value of 'M' … Even if M → ∞ 

 

The author will prove in later sections that these conditions are absolutely impossible to me met at more than 1 

location, unless of-course if X1=X2=0.5 

 

𝐿𝑒𝑒𝑝(𝑋1−𝑖𝑦,𝑀)  and  𝐿𝑒𝑒𝑝(𝑋2−𝑖𝑦,𝑀)  would be incomparable in value/size if very high 'M' is chosen. At extremely 

high value of 'M' the Leep function drops its value exponentially at astonishingly high rate as 'x' goes from X1 to 

X2. This makes intersection of Mewada & −Leep functions at 2 different points impossible. (This is proven 

mathematically in the next chapter.) 
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At low 'M', i.e. M=2, we have original equation, where it's difficult to deduce any conclusion about change of      

'𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)′     when x changes from X1 to X2. 

Because we don't have direct solution for Eta or Zeta, and values are different for different 'x' and different 'y', 

it's extremely difficult to prove that we can't have more than one zero at any given value of 'y' 

 

However, the 𝐴𝑎𝑖𝑘𝑦(𝑀)[ ] operator helps in making the comparison lot easier, and crystal clear, at higher value 

of M, without changing the value of the equation  𝜂(x+iy) = 0, by getting rid of the most of the terms where 'n'<M 

 

 

In a nut-shell: 

The 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) function changes with every change in 'M', and gets exponentially steeper as 'M' increases. 

The 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) function is gentle sloping in 0<x<1 range and is a fixed function that doesn't change with 

change in 'M' 

The 'Zeros' of 𝜂(s) act like pivot joints where 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) & −𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) must intersect for each and every 

'M'.  

The reasons why there can't be more than one 'Zero' are multiple, and any one of these is a sufficient reason: 

1. It is impossible for there to be more than 1 pivot joints for 2 graphs where one graph is constant and 

the other graph keep changing its slope with each change of 'M'.   

(This is the "Logical" reason.  And, the author doesn't know how to prove this mathematically. If some 

reader has useful suggestion to offer to the author for a better theory, they are most welcome) 

2. It is absolutely impossible for there to be more than 1 point of intersection, if one graph is a gentle 

sloping line and the other graph is a pure vertical line as we consider M→∞ 

(This is the "Mathematical" reason…  And, the author knows how to prove this, and it's done in the next 

chapter) 
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Chapter: 7 

THE BEHAVIOUR OF THE 'LEEP FUNCTION' FOR HIGH VALUE OF 'M' AND AS M→∞ 

AND THE PROOF OF THE RIEMANN HYPOTHESIS 

 

This chapter has the proof that : 

1) The function 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)   become almost-exponentially-value-dropping function with negligible wave-

like behaviour at high values of 'M' , for  𝑋0<x<1 at any value of 'y'. ( 𝑋0: a small +ve number close to '0') 

& 

2) The function 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) becomes pure exponentially-value-dropping function, dropping like a pure 

vertical line as we consider M→∞, for  𝑋0<x<1  at any value of 'y'. 

 

Because at x=0  the Mewada Function may have a pole for some values of 'y', the Leep function may also have a 

pole at x=0, so the author does not study the behaviour of Leep Function at 'x' equal to exactly '0'. Also it is well 

known that Riemann Zeta function has a 'Zero free region' and there are no 'Riemann Zeta Zeros' on x=0 line, we 

do not need to worry about the behaviour of Leep Function at x=0. We study the behaviour for   𝑋0<x<1  only. 

 

To study the behaviour for x>0, we choose an arbitrary value x = 𝑋0 such that  𝑋0 is very a small positive real 

number very close to '0' but not exactly '0'. Let's say we chose  𝑋0 = 10−3 , so we will be studying the behaviour 

of Leep Function between 0.001 to 1, which is sufficient to demonstrate how the proof works (although there is 

no theoretical limit on how small  𝑋0 one may choose, as theoretically the proof remains valid as long as  𝑋0 > 0, 

and  𝑋0 ≠ 0. Theoretically, if one wants to (though there in no need to) one can always chose  𝑋0 to even fall in 

'Zero-free-region' close to '0' , no matter how narrow the region may be. 
 

No matter how small, or infinitesimally small, a number one may chose for  𝑋0 close to '0', there can always be 

a high number 'F' such that   
1

(𝐹 .  𝑀) 𝑋0
 𝑖. 𝑒.

1

𝐹 𝑋0  .  𝑀 𝑋0
 is  infinitesimely smaller  compared to  

1

𝑀 𝑋0
 , such that partial 

series up to 'n'=F.M  term  accurately represents value of the full series with negligible error. (The negligible error 

will actually become '0' as we consider limits later on) 

Let's say we want to include the terms in the series, with vector magnitude ranging all the way from 
1

(𝑀) 𝑋0
  up to  

1

1010 .  (𝑀) 𝑋0
 . 

Then, for our example we would need to choose F  =  (1010)103
 = 10104

 = 1010000 

[If we take Lim F→∞, we will actually cover whole series up to n=∞, and up to the term with value equal to '0'. 

I.e. with no error.  But, in order to study the limits we first need to start with a high but a finite value] 

 

 

1/(𝑀𝐹)𝑥  will be extremely smaller and negligible 

in value compared to 1/𝑀𝑥, if 'F' is extremely large 

or F→∞ 
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We got the 'Leep Function': 

 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) =   
1

(𝑀+𝑃1)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃1) + 
1

(𝑀+𝑃2)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃2) +
1

(𝑀+𝑃3)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃3) + …  

- … + … ±
1

(𝐹.𝑀)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝐹. 𝑀)     +/- discarded tiny terms (zero error if we consider Lim F→∞) 

(Signs to be retained as per the original series, + for odd numbered terms, and – for even numbered terms) 

….Where 'n'=M+P1 is the 1st term of  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀),  n=M+P2 is the 2nd term, …and so on up to n=F.M being the 

term at which 
1

𝐹 𝑋0
.

1

𝑀 𝑋0
 becomes infinitesimly smaller/negligible in comparison with  

1

𝑀 𝑋0
   .   

The value of this series from ('n'=M)𝑡ℎ  term up to (n=F.M)𝑡ℎ term, will be almost equal to the value of series all 

the way up to (n=∞)𝑡ℎ term, with extremely tiny error if we are choosing F=1010000.  To get perspective, if we 

were to examine the Leep function at x=0.5, the term 
1

(𝐹.𝑀)𝑥 and terms discarded after that would be 
1

105000 times 

smaller than the initial terms  included in the  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) function.  

 There will be no error or say the error=0, if we take Limit F→∞. 

 

Now, no matter how high a number 'F' one choses, there can always be a higher number 'M' such that :   𝐹𝐹=M 

For our example, we are choosing M = 𝐹𝐹= [1010000]1010000
  = 101010004

  

If 'F' is very high   F . 𝐹𝐹  is  'F'  times bigger than  𝐹𝐹  .  For our example F. 𝐹𝐹 is 10104
 times bigger than 𝐹𝐹 . 

If we consider   Lim F→∞,  F . 𝐹𝐹  will still be be infinite-times bigger than  𝐹𝐹, even if 𝐹𝐹is infinite itself. 

To study the behaviour of the Leep function for  𝑋0<x<1, we take its derivative w.r.t. 'x' 

𝑑

𝑑𝑥
   𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) =  

𝑑

𝑑𝑥
 

1

(𝑀+𝑃1)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃1) + 
𝑑

𝑑𝑥

1

(𝑀+𝑃2)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃2) + 
𝑑

𝑑𝑥
 

1

(𝑀+𝑃3)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃3)  

  + … −
𝑑

𝑑𝑥
 

1

(𝐹.𝑀)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝐹. 𝑀)   

= 
−𝑙𝑜𝑔(𝑀+𝑃1)

(𝑀+𝑃1)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃1) + 
−𝑙𝑜𝑔(𝑀+𝑃2)

(𝑀+𝑃2)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃2) +
−𝑙𝑜𝑔(𝑀+𝑃3)

(𝑀+𝑃3)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃3) +   

… − …  +  … − … −  
− log(𝐹∗𝑀)

(𝐹.𝑀)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝐹. 𝑀)   

=  −logM . [
𝑙𝑜𝑔(𝑀+𝑃1)/𝑙𝑜𝑔𝑀

(𝑀+𝑃1)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃1) + 
𝑙𝑜𝑔(𝑀+𝑃2)/𝑙𝑜𝑔𝑀

(𝑀+𝑃2)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃2) + 

𝑙𝑜𝑔(𝑀+𝑃3)/𝑙𝑜𝑔𝑀

(𝑀+𝑃3)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃3) +    … −  …   − 
𝑙𝑜𝑔(𝐹.𝑀)/𝑙𝑜𝑔𝑀

(𝐹.𝑀)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝐹. 𝑀)  ] 

For very high 'F': 

  
𝑙𝑜𝑔(𝐹.𝐹𝐹)

𝑙𝑜𝑔𝐹𝐹   =  
𝑙𝑜𝑔(𝐹𝐹+1)

𝑙𝑜𝑔𝐹𝐹    =  
(𝐹+1) 𝑙𝑜𝑔𝐹

𝐹 .  𝑙𝑜𝑔𝐹
    ⋍ 1    (because (F+1)/F ⋍ 1 for very high 'F')   

 for our example it would be      
1+ 1010000

1010000  ⋍ 1 

  𝑠𝑜,
𝑙𝑜𝑔(𝐹𝐹+𝑃1)

𝑙𝑜𝑔(𝐹𝐹)
 ⋍ 1    (because 𝐹𝐹 + 𝑃1 ≪ 𝐹. 𝐹𝐹)   ..and so on…  

… because all the 𝑙𝑜𝑔(𝐹𝐹 +  𝑃k) are smaller than 𝑙𝑜𝑔(𝐹. 𝐹𝐹), all 𝑙𝑜𝑔(𝐹𝐹 +  𝑃k)/ 𝑙𝑜𝑔(𝐹𝐹) ⋍ 1 
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  … for our example it would be      
(𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔<1)+ 1010000

1010000  ⋍ 1 

And,         Lim F→∞      
𝑙𝑜𝑔(𝐹.𝐹𝐹)

𝑙𝑜𝑔𝐹𝐹  = 1 

Lim F→ ∞    
𝑙𝑜𝑔(𝐹𝐹+𝑃1)

𝑙𝑜𝑔(𝐹𝐹)
 = 1    (because 𝐹𝐹 + 𝑃1 ≪ 𝐹. 𝐹𝐹) ..and so on… 

And since M=𝐹𝐹,  𝑙𝑜𝑔(𝐹𝐹) = logM, and so: 

𝑑

𝑑𝑥
   𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)   ⋍   −logM . [

1

(𝑀+𝑃1)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃1) + 
1

(𝑀+𝑃2)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃2) + 

1

(𝑀+𝑃3)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑀 + 𝑃3) + … − etc. Up To  
1

(𝐹.𝑀)𝑥  ∠𝑦. 𝑙𝑜𝑔(𝐹. 𝑀)  ] 

So, 

𝑑

𝑑𝑥
   𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)   ⋍   −logM .  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)    …For Vey high 'M'  and    𝑋0<x<1 

…what this means is that if one choses extremely high value of 'M', all the individual terms of the 

 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) function fall at almost same per-unit-fall-rate with respect to each other as we observe 

from x= 𝑋0 to x=1. (in our example from x=0.001 to x=1)  

And,  as we consider  M→∞     
𝑑

𝑑𝑥
   𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)   =   −logM .  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) 

…what this means is that if we consider M→∞, all the terms of the  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) function simultaneously 

fall at exactly the same per-unit-fall-rate (i.e. derivative of a function per unit-value of the function) with 

respect to each other as we observe from x= 𝑋0 to x=1 (in our example from x=0.001 to x=1).  

Since     Z = V. 𝑏𝑥  is the general solution  for  
𝑑

𝑑𝑥
𝑍 =  𝑍. 𝑙𝑜𝑔(𝑏)  

 …where 'V' is some constant or a function independent of 'x' 

We get :   𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)   ⋍   V . 1/𝑀𝑥  for extremely high 'M'   … for    𝑋0<x<1 

And, we also get: 

As  M→∞  ,     𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)   =   V . 1/𝑀𝑥    …for    𝑋0<x<1  

(we don't need to worry about evaluating the value of 'V' as we are only interested in the shape of the graph of 

the 'Leep Function' at extremely high value of 'M', and as M→∞) 

We observe that for "high" 'M', the function  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)  is almost exponentially-value-dropping function at 

extremely high rate as 'x' goes from 𝑋0 to 1, irrespective of how small positive value of 𝑋0 you chose close to '0' 

And, as  M→∞,  the function  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)  is  a vertical line, falling from almost ∞ to '0'. 

Now, a 'vertical' line for − 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) function at high value of 'M' (or as M→∞) can only intersect  the graph 

of  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) function (a gentle sloping graph which doesn't depend on 'M') at maximum of only 1 point! 

[because  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) +  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) = 0, for each and every value of 'M', at 'Zeros' of Dirichlet Eta function.] 
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Thus,  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) +  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) = 0  is possible only at 1 point, and not at more than 1 point.  

That point has to be at  x=0.5   if 0<x<1  (Because of the Riemann Zeta functional equation). * 

[* That doesn't have to be the case for Zeros at x=1 & y.log2=2π,4π,6π etc., i.e. at Zeros of Mewada function, 

because these are unimportant Zeros of Dirichlet Eta but they are not the Zeros of Riemann Zeta so those 

unimportant zeros of Dirichlet Eta don't need mirror-twins. If there is a Zero of Dirichlet Eta within the critical 

strip (0<x<1)  then there has to be another Zero of Dirichlet Eta at (1-x), i.e. mirror-twin, because of the Riemann 

Zeta functional equation. This does not apply for x=1 and y.log2=2π,4π,etc. where there are Zeros of Dirichlet 

Eta but not of the Riemann Zeta. (J.Sondow 2003) 

Note1: If in a hypothetical scenario, for some value of 'y' let's say 'V' hypothetically  turns out to be a small value or say 

'0' for a particular value of a high 'M', then  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) won't follow 'almost infinity' to 'almost zero' downhill path; 

however in such a hypothetical scenario there won't be any 'Zero' in the first place (neither at x=0.5 nor at x= 0.5+d & 

x=0.5-d) of the Eta function for that particular value of 'y', because  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) will then never be equal to 

−𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) at any value of 'x' when 'x' goes from ' 𝑋0′ to 1, as  𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) will be extremely tiny in value in 

comparison to the value of the 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) function. 

Note2: Even if a reader/scrutiniser comes up with an arbitrary hypothetical combination of polar vectors each having 

n>M,  which may have nothing to do with Dirichlet Eta function, such that their sum (i.e.  𝐿𝑒𝑒𝑝( 𝑋1−𝑖𝑦,𝑀)) is exactly equal 

to −𝑀𝑒𝑤𝑎𝑑𝑎( 𝑋1−𝑖𝑦) for x= 𝑋1, i.e. arbitrarily constructed a hypothetical 'Zero' at ' 𝑋1', then when you move to x= 𝑋2 

(i.e. x=1- 𝑋1) the value of  𝐿𝑒𝑒𝑝(x−𝑖𝑦,𝑀) will drop by a factor 1/𝑀 𝑋2− 𝑋1, which means  𝐿𝑒𝑒𝑝( 𝑋2−𝑖𝑦,𝑀) will be 'almost 

zero' in value, because of extremely high value of 'M' (or when M → ∞), so  |𝐿𝑒𝑒𝑝( 𝑋2−𝑖𝑦,𝑀)| <<  |𝑀𝑒𝑤𝑎𝑑𝑎( 𝑋2−𝑖𝑦)|, 

thus  𝐿𝑒𝑒𝑝( 𝑋2−𝑖𝑦,𝑀) +  𝑀𝑒𝑤𝑎𝑑𝑎( 𝑋2−𝑖𝑦) ≠ 0, thus there can't be a 'Zero' at 𝑥 =  𝑋2, even in that hypothetical scenario of 

arbitrarily chosen vectors, let alone in the systematically distributed patterns of vectors of Dirichlet Eta function. 

For practical purposes, or for computational verification, at 'M' value as low as 20 or so, the almost-exponentially 

dropping and almost-wave-free nature of   𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) function is very obvious. However to prove theoretically 

with absolute certainty the author has shown that there is no theoretical limit up to which Aaiky operator can be 

used to make Leep function more and more exponentially-value-dropping type and more and more wave-free, 

such that when you go for very high M, or consider M→∞, the Leep Function becomes a vertical line passing 

through a 'Zero', which obviously can only be at x=0.5 (if within 0<x<1 range), because a vertical line cannot pass 

through 2 'Zeros' at 2 different locations, unless of course if  𝑋1 =  𝑋2 = 0.5 

 

 

Note: The zeros of Dirichlet Eta (but not of Riemann Zeta) can occur at x=1 for y.log2=2π,4π,etc., because they are not the Zeros 

of Riemann Zeta and don't need mirror-twins for Riemann Functional Equation.  This was addressed by J.Sondow (2003) who 

proved that zeros at x=1 for y.log2=2π,4π,etc. are not the Zeros of Riemann Zeta. They plays no role in Riemann Hypothesis. In 

those special cases x=1 & y.log2=2π,4π,etc. i.e. at the Zeros of Mewada function, the Mewada and −Leep functions may 

intersect on real axis at x=1, and so not in 0<x<1 range, resulting in unimportant zeros of Dirichlet Eta but not of Riemann Zeta. 

Thus we can conclude that all the non-trivial zeros of Riemann Zeta in the critical strip 0<x<1 are indeed on the 

critical line x=0.5 as has always been observed.   
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Chapter: 8 

A STEP FURTHER – ALL NON-TRIVIAL ZEROS OF RIEMANN ZETA ARE SIMPLE 

Now that we have proven that non-trivial 'Zeros' are only possible at x=0.5, let's check if there can be any double 

'Zeros' at x=0.5 

Let's go back to how the operator   𝐴𝑎𝑖𝑘𝑦(𝑀)[ ]  actually operates on a Convergent Eta series  𝜂(s) "in general" 

for 0<x<1, i.e. this time we consider general 𝜂(s) and not just at 'Zero' of 𝜂(s). 

 

We got the Dirichlet Eta series: 

𝜂(s)  =  
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 − 
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 + 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 −  
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 +
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5 −
1

6𝑥  ∠𝑦. 𝑙𝑜𝑔6 + ⋯ 

….which is a 'Convergent Series' for x > 0 

 

When we apply the operator  𝐴𝑎𝑖𝑘𝑦(4)[ ], what we are actually doing is deducting a sub-series, which is also a 

convergent series : 

i.e.   
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 − 
1

6𝑥  ∠𝑦. 𝑙𝑜𝑔6 +  
1

9𝑥  ∠𝑦. 𝑙𝑜𝑔9 −  
1

12𝑥  ∠𝑦. 𝑙𝑜𝑔12 +
1

15𝑥  ∠𝑦. 𝑙𝑜𝑔15 −
1

18𝑥  ∠𝑦. 𝑙𝑜𝑔18 + ⋯ 

which is equal to          𝜂(s). 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 

 

The resultant series is also a convergent series if we are adding/subtracting 2 convergent series. 

So, 

 𝐴𝑎𝑖𝑘𝑦(4) [𝜂(s)]  =   𝜂(s)   −  (s) . 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3  

 =   𝜂(s)  .  ( 1 − 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3  ) 

 

Similarly if we were to apply the operator  𝐴𝑎𝑖𝑘𝑦(6)[ ] what we would get is a resultant converging series: 

 𝐴𝑎𝑖𝑘𝑦(4) [𝜂(s)]  = 𝜂(s)   −  (s) . 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 −  𝜂(s) . 
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5  + 𝜂(s) . 
1

15𝑥  ∠𝑦. 𝑙𝑜𝑔15   

=   𝜂(s)  .  ( 1 − 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 −  
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5  +  
1

15𝑥  ∠𝑦. 𝑙𝑜𝑔15        ) 

…refer to Chapter#5 if required to recall how  𝐴𝑎𝑖𝑘𝑦(𝑀) operator was 

originally used for each step 

..and so on.. 
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If we apply 𝐴𝑎𝑖𝑘𝑦(𝑀)[ ] to  (s)  , as long as 𝜂(s) is convergent, we get a convergent series with following value: 

 𝐴𝑎𝑖𝑘𝑦(𝑀) [𝜂(s)]  =  (s) . ( 1 – 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 −  
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5  −  
1

7𝑥  ∠𝑦. 𝑙𝑜𝑔7    − … + …+ 
1

15𝑥  ∠𝑦. 𝑙𝑜𝑔15 + ⋯ 

 −
1

105𝑥  ∠𝑦. 𝑙𝑜𝑔105  − … + … − … and so on )   

…how long the series goes depends on what value of 'M' you chose 

Thus 

 𝐴𝑎𝑖𝑘𝑦(𝑀) [𝜂(s)]  =   𝜂(s) . ( 1 – Some convergent series depending on chosen value of 'M') 

So 

 𝐴𝑎𝑖𝑘𝑦(𝑀) [𝜂(s)]  =   𝜂(s)  .  𝑀𝑦𝑠𝑡𝑒𝑟𝑦(x−iy,   𝑀) 

For the purposes of this paper we do not need to worry about the content of the  𝑀𝑦𝑠𝑡𝑒𝑟𝑦(x−iy,𝑀) as long as we 

know that it is convergent, which is indeed the case at x > 0. 

We know that 

 𝐴𝑎𝑖𝑘𝑦(𝑀) [𝜂(s)]  =  𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)  […which would be = '0'  if 𝜂(s) = 0] 

 

  𝜂(s)  .   𝑀𝑦𝑠𝑡𝑒𝑟𝑦(x−iy,   𝑀)     =      𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀)   

…as long as x>0, these are all convergent series 

Now we know that for non-critical 'Zeros' of Riemann Zeta,  x = 0.5   (refer to the proof in chapter 7) 

So 

(0.5-iy)  .  𝑀𝑦𝑠𝑡𝑒𝑟𝑦(0.5−iy,𝑀)     =      𝑀𝑒𝑤𝑎𝑑𝑎(0.5−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(0.5−𝑖𝑦,𝑀) 

…this equation has to be valid at each and every value of chosen 'M'. 

 

For there to be 'Double Zero' at x=0.5, for any given 'y', we know that it's first derivative w.r.t. 'x' has to be '0' 

𝑑

𝑑𝑥
 𝜂(x-iy)  = 0   at x=0.5  ..for  'Double Zero' 

So, for 'Double Zero': 

𝑑

𝑑𝑥
  ( 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) )   =  0 at x=0.5 

…which means  that the 2 functions   𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)  &   −𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) will have to be tangential at x=0.5  for 

each and every chosen value of  'M', that is even if M→∞ 

As discussed in a previous chapter, while it's hard determine/generalise the behaviour of 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) function 

in base line Dirichlet Eta series (i.e. at M=2, meaning that no 𝐴𝑎𝑖𝑘𝑦(𝑀) operator applied), we know that as we go 
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for high value of 'M', 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) function become an almost exponentially value dropping curve, which is 

almost a vertical line at very high value of 'M' or when M→∞, whereas, as studied before, the 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦) is 

gentle sloping (almost flat) line at x=0.5, with value =√2  regardless of what 'y' is chosen. 

At high value of 'M' or if required we consider as M→∞, we can see that the 2 functions   𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)  &   

−𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) just cannot intersect tangentially.  To determine the exact slope of the two graph at the point of 

intersection requires the value of 'y', however we are not interested in determining the value of the slopes. We 

are only interested in the fact that at the point of intersection (i.e. at x=0.5 if there are Zeros) the slope of 

Mewada function is very low in value compared to slope of Leep function (which is almost ∞ as M→∞), for any 

given 'y', thus the two slopes just cannot be equal at any 'Zero'. 

So the following condition cannot be satisfied : 

     
𝑑

𝑑𝑥
  ( 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) )   =  0 at x=0.5 , for each and every value of chosen 'M', and that's 

definitely impossible as M→∞. 

Thus, we know that there can not be any 'Double Zero', thereby proving that all Non-Trivial Zeros of Riemann 

Zeta Function are indeed 'Simple Zeros' as has always been computationally verified, though the computations 

are limited up to a finite height. The author just proved that even in theory, there can't be any 'Double Zero' even 

if one checks up to infinite height. 
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Chapter: 9 

GENERALIZATION OF THE PROOF TO SOME OTHER SIMILAR DIRICHLET L-FUNCTIONS WITH MODIFICATIONS 

The Mewada proof of Riemann-Hypothesis may be extended to some other similar functions like other Dirichlet 

L-Functions, though it cannot be extended to each and every type of Zeta functions.  

Let's first consider the method to extend the proof of Riemann-Hypothesis for Dirichlet L-Function for the 

nontrivial character of conductor 3  i.e.     L(s, 𝒙𝟑) 

Note: The author chose to extend the proof to this L-Function after reading Dr. J Brian Conrey's 

2003 AMS article where he mentioned that there are striking analogies between Riemann Zeta 

and some L-Functions though the connections were not fully understood.  

L(s, 𝜒3)  = 
1

1𝑠  − 
1

2𝑠  +  
1

4𝑠  −  
1

5𝑠  +  
1

7𝑠  −
1

8𝑠  + ⋯ 

Assign s = x − i y     …where 'x' and 'y' are real, and x > 0, we get: 

L(s, 𝜒3)  = 
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 − 
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 + 
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 −  
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5 +
1

7𝑥  ∠𝑦. 𝑙𝑜𝑔7 −
1

8𝑥  ∠𝑦. 𝑙𝑜𝑔8 + ⋯ 

At "Zeros" , L(s, 𝜒3)  = 0 

0  =  
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 − 
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 + 
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 − 
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5 +
1

7𝑥  ∠𝑦. 𝑙𝑜𝑔7 −
1

8𝑥  ∠𝑦. 𝑙𝑜𝑔8 + ⋯ 

…Base Series LE.0 

 

0 . 
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5 = 
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5  .  ( 
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 − 
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 +  
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 − 
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5 +
1

7𝑥  ∠𝑦. 𝑙𝑜𝑔7 −
1

8𝑥  ∠𝑦. 𝑙𝑜𝑔8 + ⋯) 

 

0  =  
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5 − 
1

10𝑥  ∠𝑦. 𝑙𝑜𝑔10 + 
1

20𝑥  ∠𝑦. 𝑙𝑜𝑔20 −  
1

25𝑥  ∠𝑦. 𝑙𝑜𝑔25 +
1

35𝑥  ∠𝑦. 𝑙𝑜𝑔35 −
1

40𝑥  ∠𝑦. 𝑙𝑜𝑔40 + ⋯ 

…Series LE.5 

Add this convergent series LE.5 to the base series LE.0 , and we get rid of the terms where 'n' divisible by 5. We 

get new convergent series LE.0.5 

 

Similarly we can get: 

0  =  
1

7𝑥  ∠𝑦. 𝑙𝑜𝑔7 − 
1

14𝑥  ∠𝑦. 𝑙𝑜𝑔14 +  
1

28𝑥  ∠𝑦. 𝑙𝑜𝑔28 − 
1

35𝑥  ∠𝑦. 𝑙𝑜𝑔35 +  
1

49𝑥  ∠𝑦. 𝑙𝑜𝑔49 − ⋯ 

…Series LE.7 

Also  

0  =  
1

35𝑥  ∠𝑦. 𝑙𝑜𝑔35 − 
1

70𝑥  ∠𝑦. 𝑙𝑜𝑔70 + 
1

140𝑥  ∠𝑦. 𝑙𝑜𝑔140 − 
1

165𝑥  ∠𝑦. 𝑙𝑜𝑔165 +  
1

245𝑥  ∠𝑦. 𝑙𝑜𝑔245 − ⋯ 

…Series LE.35 …because 3x5=35 

 

Add convergent series LE.35 to LE.0.5 then subtract LE.7 from the result, we get resultant convergent series 

LE.0.7 

…This series will not have any terms where 'n' is divisible by either 5 and/or 7. 
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Basically we can continue the same operation i.e. apply Aaiky-Operator as discussed in earlier chapters. 

Refer to earlier chapters for details on how 'Aaiky' operator can be applied up to any value 'M' and result will be 

a convergent series with value converging to '0', at "Zeros" of the base line series. 

 

Here, after applying    𝐴𝑎𝑖𝑘𝑦(𝑀) [L(s, 𝜒3) ]   at "Zero" of  L(s, 𝜒3)   we get: 

0  =  𝑀𝑒𝑤𝑎𝑑𝑎𝐿(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝𝐿(𝑥−𝑖𝑦,𝑀) 

 

Where 𝑀𝑒𝑤𝑎𝑑𝑎𝐿(𝑥−𝑖𝑦)   is the 'Modified Mewada Function' for L(s, 𝜒3) and it will also be an absolutely 

convergent series for x>0, just like 'Mewada Function', but with a different value. 

 

𝑀𝑒𝑤𝑎𝑑𝑎𝐿(𝑥−𝑖𝑦)  = 1 −
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 +  
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 −  
1

8𝑥  ∠𝑦. 𝑙𝑜𝑔8 + 
1

16𝑥  ∠𝑦. 𝑙𝑜𝑔16 −
1

32𝑥  ∠𝑦. 𝑙𝑜𝑔32 + ⋯ 

 

Just like 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦), the new 𝑀𝑒𝑤𝑎𝑑𝑎𝐿(𝑥−𝑖𝑦) function will also have no poles as long as x>0, and  

𝑀𝑒𝑤𝑎𝑑𝑎𝐿(𝑥−𝑖𝑦) function will not change the value with change of 'M' in the Aaiky operator. 

 

Just like 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) function, the new 𝐿𝑒𝑒𝑝𝐿(𝑥−𝑖𝑦,𝑀) function will also be dependent on value of 'M' chosen in 

Aaiky operator, and 𝐿𝑒𝑒𝑝𝐿(𝑥−𝑖𝑦,𝑀) function will also be an 'Almost vertical line' for very high value of 'M' or if 

M→∞, and will intersect  −𝑀𝑒𝑤𝑎𝑑𝑎𝐿(𝑥−𝑖𝑦) at "Zeros" of L(s, 𝜒3)   . 

Similar to Dirichlet Eta, we can conclude that there can only be 1 'Zero' of L(s, 𝜒3)   for any given value of 'y' in 

s=x−iy, because the at high M or as M→∞, because the almost vertical line of  𝐿𝑒𝑒𝑝𝐿(𝑥−𝑖𝑦,𝑀) can only possibly 

intersect  −𝑀𝑒𝑤𝑎𝑑𝑎𝐿(𝑥−𝑖𝑦) at 1 point only. An because of 'Functional Equation' requiring 'Zero' at 2 points if 

x≠0.5, we can conclude that non-trivial 'Zeros' of L(s, 𝜒3)   can only lie on x=0.5 line. Also, just like Dirichlet Eta, 

we can also conclude that 'Zeros' of L(s, 𝜒3)   are also 'simple zeros'. 

 

Dirichlet L-Series  (3 mod 4) :   L(s, 𝒙𝟒,𝟑)  

The method to extend the proof of Riemann-Hypothesis for Dirichlet L-Function for the nontrivial character of 

conductor 4  i.e.     L(s, 𝑥4,3) 

L(s, 𝜒4,3)  = 
1

1𝑠  − 
1

3𝑠  +  
1

5𝑠  −  
1

7𝑠  +  
1

9𝑠  −
1

11𝑠  +  
1

13𝑠  −  
1

15𝑠 + 
1

17𝑠  −  
1

19𝑠  +  
1

21𝑠 … 

Assign s = x + i y     …where 'x' and 'y' are real, and x>0, we get: 

L(s, 𝜒4,3)  = 
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 − 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 + 
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5 −  
1

7𝑥  ∠𝑦. 𝑙𝑜𝑔7 +
1

9𝑥  ∠𝑦. 𝑙𝑜𝑔9 −
1

11𝑥  ∠𝑦. 𝑙𝑜𝑔11 + ⋯ 

At "Zeros" , L(s, 𝜒4,3)  = 0 

0  = 
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 – 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 + 
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5 −  
1

7𝑥  ∠𝑦. 𝑙𝑜𝑔7 +
1

9𝑥  ∠𝑦. 𝑙𝑜𝑔9 −
1

11𝑥  ∠𝑦. 𝑙𝑜𝑔11 + ⋯ 

…Base Series LE.0 

 

0 . 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 = 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3  .  ( 
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 – 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 +  
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5 −  
1

7𝑥  ∠𝑦. 𝑙𝑜𝑔7 + 
1

9𝑥  ∠𝑦. 𝑙𝑜𝑔9 − ⋯) 
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0  =    
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 − 
1

9𝑥  ∠𝑦. 𝑙𝑜𝑔9 + 
1

15𝑥  ∠𝑦. 𝑙𝑜𝑔15 −  
1

21𝑥  ∠𝑦. 𝑙𝑜𝑔7 +
1

27𝑥  ∠𝑦. 𝑙𝑜𝑔27 −  … 

…Series LE.3 

Add this convergent series LE.3 to the base series LE.0 , and we get rid of the terms where 'n' divisible by 3. We 

get new convergent series LE.0.3 

 

Similarly we get: 

0  =  
1

5𝑥  ∠𝑦. 𝑙𝑜𝑔5 − 
1

15𝑥  ∠𝑦. 𝑙𝑜𝑔15 + 
1

25𝑥  ∠𝑦. 𝑙𝑜𝑔25 −  
1

35𝑥  ∠𝑦. 𝑙𝑜𝑔35 +  
1

45𝑥  ∠𝑦. 𝑙𝑜𝑔45 − ⋯ 

…Series LE.5 

Also  

0  =  
1

15𝑥  ∠𝑦. 𝑙𝑜𝑔15 − 
1

45𝑥  ∠𝑦. 𝑙𝑜𝑔45 + 
1

75𝑥  ∠𝑦. 𝑙𝑜𝑔75 − 
1

105𝑥  ∠𝑦. 𝑙𝑜𝑔105 +  
1

135𝑥  ∠𝑦. 𝑙𝑜𝑔135 − ⋯ 

…Series LE.15 …because 3x5=15 

 

Add convergent series LE.15 to LE.0.3 then subtract LE.5 from the result, we get resultant convergent series 

LE.0.5 

…This series will not have any terms where 'n' is divisible by either 3 and/or 5. 

 

Basically we can continue the same operation, i.e. apply Aaiky-Operator as discussed in earlier chapters. 

Refer to earlier chapters for details on how 'Aaiky' operator can be applied to any value of 'M' and result will be 

a convergent series with value converging to '0', at "Zeros" of the base line series. 

 

Here, after applying    𝐴𝑎𝑖𝑘𝑦(𝑀) [L(s, 𝜒4,3) ]   at "Zero" of  L(s, 𝜒4,3)   we get: 

0  =  𝑀𝑒𝑤𝑎𝑑𝑎𝑀(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝𝑀(𝑥−𝑖𝑦,𝑀) 

 

Where 𝑀𝑒𝑤𝑎𝑑𝑎𝑀(𝑥−𝑖𝑦)   is the 'Modified Mewada Function' for L(s, 𝜒4,3) and it will also be an absolutely 

convergent series for x>0, just like 'Mewada Function', but with a different value. 

 

𝑀𝑒𝑤𝑎𝑑𝑎𝑀(𝑥−𝑖𝑦)  =   1  

 

Just like 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦), the new 𝑀𝑒𝑤𝑎𝑑𝑎𝑀(𝑥−𝑖𝑦) function will also have no poles for as x>0, and  

𝑀𝑒𝑤𝑎𝑑𝑎𝑀(𝑥−𝑖𝑦) function will not change the value with change of 'M' in the Aaiky operator. 

 

Just like 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) function, the new 𝐿𝑒𝑒𝑝𝑀(𝑥−𝑖𝑦,𝑀) function will also be dependent on value of 'M' chosen 

in Aaiky operator, and 𝐿𝑒𝑒𝑝𝑀(𝑥−𝑖𝑦,𝑀) function will also be an 'Almost vertical line' for very high value of 'M' or 

if M→∞, and will intersect  −𝑀𝑒𝑤𝑎𝑑𝑎𝑀(𝑥−𝑖𝑦) at "Zeros" of L(s, 𝜒4,3)   . 

Similar to Dirichlet Eta, we can conclude that there can only be 1 'Zero' of L(s, 𝜒4,3)   for any given value of 'y' in 

s=x-iy, because the at high M or as M→∞, because the almost vertical line of  𝐿𝑒𝑒𝑝𝑀(𝑥−𝑖𝑦,𝑀) can only possibly 

intersect  −𝑀𝑒𝑤𝑎𝑑𝑎𝑀(𝑥−𝑖𝑦) at 1 point only. And because of 'Functional Equation' requiring 'Zero' at 2 points if 

x≠0.5, we can conclude that non-trivial 'Zeros' of L(s, 𝜒4,3)   can only lie on x=0.5 line. Also, just like Dirichlet 

Eta, we can also conclude that 'Zeros' of L(s, 𝜒4,3)   are also 'simple zeros'. 
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Dirichlet L-Series  (4 mod 5) :   L(s, 𝒙𝟓,𝟒) 

The method to extend the proof of Riemann-Hypothesis for Dirichlet L-Function for the nontrivial character of 

conductor 5  i.e.     L(s, 𝑥5,4) 

 

L(s, 𝜒5,4)  =  
1

1𝑠  − 
1

2𝑠 − 
1

3𝑠 +  
1

4𝑠  +  
1

6𝑠 − 
1

7𝑠 −  
1

8𝑠 + 
1

9𝑠  +  
1

11𝑠  −
1

12𝑠  −  
1

13𝑠 +  
1

14𝑠  +  
1

16𝑠 − ⋯ 

Assign s = x − i y     …where 'x' and 'y' are real, and x>0, we get: 

L(s, 𝜒5,4)  = 
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 − 
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 − 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 +  
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 +
1

6𝑥  ∠𝑦. 𝑙𝑜𝑔6 −
1

7𝑥  ∠𝑦. 𝑙𝑜𝑔7 − ⋯ 

At "Zeros" , L(s, 𝜒5,4)  = 0 

0  =  
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 − 
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 −  
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 + 
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 +
1

6𝑥  ∠𝑦. 𝑙𝑜𝑔6 −
1

7𝑥  ∠𝑦. 𝑙𝑜𝑔7 − ⋯ 

…Base Series LE.0 

 

0 . 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 = 
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3  .  ( 
1

1𝑥  ∠𝑦. 𝑙𝑜𝑔1 – 
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 −  
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 +  
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 +  
1

6𝑥  ∠𝑦. 𝑙𝑜𝑔6 − ⋯) 

 

0  =    
1

3𝑥  ∠𝑦. 𝑙𝑜𝑔3 − 
1

6𝑥  ∠𝑦. 𝑙𝑜𝑔6 −  
1

9𝑥  ∠𝑦. 𝑙𝑜𝑔9 +  
1

12𝑥  ∠𝑦. 𝑙𝑜𝑔12 +
1

18𝑥  ∠𝑦. 𝑙𝑜𝑔18 − … 

…Series LE.3 

Add this convergent series LE.3 to the base series LE.0 , and we get rid of the terms where 'n' divisible by 3. We 

get new convergent series LE.0.3 which shall have no terms where 3|n 

 

Similarly we get: 

0  =  
1

7𝑥  ∠𝑦. 𝑙𝑜𝑔5 − 
1

14𝑥  ∠𝑦. 𝑙𝑜𝑔14 −  
1

21𝑥  ∠𝑦. 𝑙𝑜𝑔21 + 
1

28𝑥  ∠𝑦. 𝑙𝑜𝑔28 +  
1

42𝑥  ∠𝑦. 𝑙𝑜𝑔42 − ⋯ 

…Series LE.7 

Also  

0  =  
1

21𝑥  ∠𝑦. 𝑙𝑜𝑔21 − 
1

42𝑥  ∠𝑦. 𝑙𝑜𝑔42 −  
1

63𝑥  ∠𝑦. 𝑙𝑜𝑔63 + 
1

84𝑥  ∠𝑦. 𝑙𝑜𝑔84 + 
1

126𝑥  ∠𝑦. 𝑙𝑜𝑔126 − ⋯ 

…Series LE.21 …because 3x7=21 

 

Subtract convergent series LE.21 from LE.0.3 then add LE.7 to the result, we get resultant convergent series LE.0.7 

…This series will not have any terms where 'n' is divisible by either 3 and/or 7. 

 

Basically we can continue the same operation, i.e. apply Aaiky-Operator as discussed in earlier chapters. 

Refer to earlier chapters for details on how 'Aaiky' operator can be applied to any value of 'M' and result will be 

a convergent series with value converging to '0', at "Zeros" of the base line series. 

 

Here, after applying    𝐴𝑎𝑖𝑘𝑦(𝑀) [L(s, 𝜒5,4) ]   at "Zero" of  L(s, 𝜒5,4)   we get: 

0  =  𝑀𝑒𝑤𝑎𝑑𝑎𝑁(𝑥−𝑖𝑦)   +    𝐿𝑒𝑒𝑝𝑁(𝑥−𝑖𝑦,𝑀) 
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Where 𝑀𝑒𝑤𝑎𝑑𝑎𝑁(𝑥−𝑖𝑦)   is the 'Modified Mewada Function' for L(s, 𝜒5,4) and it will also be an absolutely 

convergent series for x>0, just like 'Mewada Function', but with a different value. 

 

𝑀𝑒𝑤𝑎𝑑𝑎𝑁(𝑥−𝑖𝑦)  =   1 −
1

2𝑥  ∠𝑦. 𝑙𝑜𝑔2 +  
1

4𝑥  ∠𝑦. 𝑙𝑜𝑔4 − 
1

8𝑥  ∠𝑦. 𝑙𝑜𝑔8 +  
1

16𝑥  ∠𝑦. 𝑙𝑜𝑔16 −
1

32𝑥  ∠𝑦. 𝑙𝑜𝑔32 + ⋯ 

 

Just like 𝑀𝑒𝑤𝑎𝑑𝑎(𝑥−𝑖𝑦), the new 𝑀𝑒𝑤𝑎𝑑𝑎𝑁(𝑥−𝑖𝑦) function will also have no poles for as x>0, and  

𝑀𝑒𝑤𝑎𝑑𝑎𝑁(𝑥−𝑖𝑦) function will not change the value with change of 'M' in the Aaiky operator. 

 

Just like 𝐿𝑒𝑒𝑝(𝑥−𝑖𝑦,𝑀) function, the new 𝐿𝑒𝑒𝑝𝑁(𝑥−𝑖𝑦,𝑀) function will also be dependent on value of 'M' chosen 

in Aaiky operator, and 𝐿𝑒𝑒𝑝𝑀(𝑥−𝑖𝑦,𝑀) function will also be an 'Almost vertical line' for very high value of 'M' or 

if M→∞, and will intersect  −𝑀𝑒𝑤𝑎𝑑𝑎𝑁(𝑥−𝑖𝑦) at "Zeros" of L(s, 𝜒5,4)   . 

Similar to Dirichlet Eta, we can conclude that there can only be 1 'Zero' of L(s, 𝜒5,4)   for any given value of 'y' in 

s=x−iy, because the at high M or as M→∞, because the almost vertical line of  𝐿𝑒𝑒𝑝𝑁(𝑥−𝑖𝑦,𝑀) can only possibly 

intersect  −𝑀𝑒𝑤𝑎𝑑𝑎𝑁(𝑥−𝑖𝑦) at 1 point only. And because of 'Functional Equation' requiring 'Zero' at 2 points if 

x≠0.5, we can conclude that non-trivial 'Zeros' of L(s, 𝜒5,4)   can only lie on x=0.5 line. Also, just like Dirichlet 

Eta, we can also conclude that 'Zeros' of L(s, 𝜒5,4)   are also 'simple zeros'. 

 

 

General Observation for Dirichlet L-Function family: 

Thus we can see that if we take any Dirichlet L-Function, at "Zero" we are able to derive pattern of sub-serieses, 

which are  parts of the original series but containing those terms where  p|n  where 'p' is an odd prime number 

such that if you multiply the sub-series by factor 
1

𝑝𝑥  ∠𝑦. 𝑙𝑜𝑔(𝑝) , it results in the original series, thus the sub-

series also has to converge to '0' at any "Zero" of the original series.  

In this paper the Author gave several examples of how the Mewada theory for Riemann Hypothesis can be 

extended in general to several Dirichlet L-Functions. There is no need to work it out for each individual Dirichlet 

L-Function as they are all of similar nature, and all those series are manipulable in similar fashion. 

Thus the operator  ′𝐴𝑎𝑖𝑘𝑦(𝑀) [ ] '   may be generally applied to any chosen Dirichlet L-Function at "Zeros", 

resulting in a convergent series of type:   0 = Mewada + Leep .  The exact Mewada Function and Leep Function 

depends on the type of Dirichlet L-Series chosen, however in any case the Mewada function doesn't not alter 

with change in value of 'M' of the Aaiky Operator, while as Leep Function change with change of 'M', and as 

proven earlier, at high 'M' or as M→∞, Leep Function is almost a vertical line which can intersect –Mewada 

Function at maximum 1 possible value of 'x', for any given 'y' in any Dirichlet L-Function of  s=x−iy.  

 

Thus we can conclude that a Generalized Riemann Hypothesis, applying to Riemann Zeta (Dirichlet Eta) and 

other Dirichlet L-Function, holds true. 

 

Note: The author's theory can be extended to only those functions where Aaiky Operator may be suitably 

applied (i.e. to all Dirichlet L-Functions for e.g.). So, the Author's theory cannot be extended to a complete set 

of all the Zeta-like functions even if they may have similar functional equations. 

 

  

mailto:Research@Consect.com.au


 
 

 
Copyright 2018. This paper and its contents may be downloaded or printed by anyone for personal use and education only, but not for any commercial purpose. 
The concepts and the ideas from this paper may be re-used or the contents modified, only after obtaining the author's consent, and a reference to the Author's 
paper must be cited.  Author: Jayesh Mewada, Australia. Email:  Research@Consect.com.au    Research of 2018 released in 2021.  
 

Page 35 of 36 

Chapter: 10 

INAPPLICABLITY OF AAIKY FUNCTION & MEWADA THEORY TO HURWITZ ZETA (EXCEPT 2 SPECIAL CASES) OR 

TO THE EPSTEIN ZETA FUNCTION 

 

Consider the Hurwitz Zeta function: 

 ζ(s,a) = ∑  
1

(𝑛+𝑎)𝑠
∞
𝑛=0     …for 0<a≤1 

In special cases of Hurwitz Zeta, i.e. if a=1 or if a=0.5, the Hurwitz Zeta reduce to Riemann Zeta Function (if a=1) 

or a simple function of 's' multiplied by Riemann Zeta Function(if a=0.5). So the Aaiky operator and the 

Mewada theory can be applied. We can actually observe there are mini-serieses within main series such that 

the mini-serieses converge to zero when main series converge to zero, so we may apply Aaiky operator for 

these 2 special cases of Hurwitz Zeta function. 

However, if 0<a<1 and a≠0.5, the terms of the series do not form a repeating patterns of mini-serieses that are 

versions of original series, unlike in case of Dirichlet Eta Function or other Dirichlet L-Functions. So the Aaiky 

operator cannot be applied, and so the Mewada theory cannot be applied. 

For e.g. let's consider a=.314 

ζ(s,.314) = ∑  
1

(𝑛+0.314)𝑠
∞
𝑛=0  = 

1

(0.314)𝑠 + 
1

(1.314)𝑠 + 
1

(2.314)𝑠 +  
1

(3.314)𝑠 +  
1

(4.314)𝑠 + … 

…we can't see any mini-series within the series, that are simple-function-multiples of the original series, unlike 

in cases of Dirichlet Eta or Dirichlet L-Functions. So, at 'Zeros' of ζ(s,.314) , we can't apply Aaiky operator to get 

rid of terms up to certain value of 'n' without changing the value of the series. Thus Mewada theory cannot be 

applied. 

So if any Hurwitz Zeta function has 'Zeros' off the critical line for Re(s)>0 (as proved by Davenport, Heilbronn 

and Cassels), then it does not conflict with Mewada theory, as Aaiky operator has no applicability to such 

series. 

 

Consider the Epstein zeta function: 

The Epstein zeta function ζQ(s) (Epstein 1903) for a positive definite integral quadratic form 

 Q(m, n) = cm2 + bmn +an2 is defined by 

 

Davenport and Heilbronn, and also Voronin, proved the existence of zeros of Epstein zeta functions off the 

critical line when the class number of the quadratic form is bigger than 1 

We can see that we cannot apply Aaiky operator to such series as there are no repeating patterns of mini-

serieses that are versions of the main series (contained within the main series) whose value converges to '0', 

when the value of the main series converges to '0'. Basically we can't apply Aaiky operator to reduce the series 

into a new series to get rid of terms up to a certain value of 'n' without changing the value of the series at 

'Zero'.  As such, Mewada theory cannot be applied to such series, and hence Mewada theory does not conflict 

with existence of any 'Zeros' off the critical line for these functions. 
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THE CONCLUSION: 

 

It has been proven with absolute certainty that Dirichlet Eta (and hence of Riemann Zeta) can only have maximum 

one 'zero' for any real value 'y' and 0<x<1. Riemann functional equation require that if there is a 'Zero' at 'x' in 

critical strip (0<x<1, and x≠0.5) then there has to be another "Zero" at '1-x', so if there is only one "Zero" within 

the critical strip 0<x<1 then it has to be at x=0.5. Thus the Riemann Hypothesis is confirmed with absolute 

certainty, and may be referred to as Riemann-Mewada Theorem in future. 

Also, it has been proven that all the non-trivial 'Zeros' of the Dirichlet Eta & Riemann Zeta are 'Simple Zeros'. 

The proof can be extended to other suitable functions like other Dirichlet L-Functions, meaning that the 

generalized Riemann Hypothesis is true. 
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