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Abstract: The article provides a proof of the Strong (binary) Goldbach conjecture based on the 

regularities of the interval between successive primes. 
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1 Introduction 

Goldbach's conjecture is the statement that any even number, starting from 4, can be represented 

as the sum of two prime numbers.  

Christian Goldbach, in 1742, sent a letter to Leonhard Euler [1], in which he made the following 

assumption: every odd number greater than 5 can be represented as the sum of three prime numbers. 

Euler became interested in the problem and put forward a stronger conjecture: every even number 

greater than two can be represented as the sum of two prime numbers. The first statement is called 

the Weak (sometimes ternary) Goldbach conjecture, the second is called the Strong (sometimes 

binary) Goldbach conjecture. 

The Goldbach conjecture is one of the most famous open mathematical problems, included in the 

legendary list of Hilbert's problems [2] and is one of the few Hilbert problems still unsolved. This 

conjecture is also included in the list of four important mathematical problems of Landau [3]. 

2 Matrix of even numbers 

First, we will investigate the sums of two odd numbers, for this we will compose a matrix of even 

numbers obtained by summing two numbers of the form 𝑘 = 6n ∓ 1, n ∈ ℕ, which is shown in Table 

1 (see Appendix 1). Note that all prime numbers greater than 3 have the form 𝑘 = 6n ∓ 1, so the 

above matrix contains all even numbers that can be represented as the sum of two prime numbers, 

except for even numbers, in which one of the terms is 3. The even number is also not used in the 

matrix The prime number is 2, because if you add 2 to a prime number greater than 2, then you get 

an odd number.  

Note that the set of numbers, each element of which is the sum of two numbers of the form 𝑘 =

6n ∓ 1, includes the complete set of even numbers starting from the number 10. It can also be noted 

that if for each member of the sequence of odd numbers of the form 𝑘 = 6n ∓ 1, n ∈ ℕ, add any pair 
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of odd numbers 𝑝 = 6𝑛 − 1 and 𝑝 = 6𝑛 + 1, then the resulting set of numbers certainly includes the 

complete set of even numbers starting from a certain number. 

For example, if for each member of a sequence of odd numbers of the form 𝑘 = 6n ∓ 1, n ∈ ℕ, we 

add a pair of odd numbers 11 and 13, which are numbers of the form 𝑘 = 6n ∓ 1, then the resulting 

set of numbers will include the complete set of even numbers starting from the number 16. Therefore, 

the above matrix of even numbers, obtained by summing two numbers of the form 𝑘 = 6n ∓ 1, 

contains many copies of each even number, and the larger the even number, the more copies it will 

have in the matrix. 

As can be seen from the matrix, all identical even numbers obtained as a result of summing two odd 

numbers of the form 𝑘 = 6n ∓ 1 are located on the cells of the matrix, which form secondary 

diagonals. 

The main diagonal of the matrix divides all even numbers into two identical parts, so we will 

consider even numbers located on the cells of the secondary diagonals, starting from the cell of the 

first column of the matrix (corresponding to the number 5) to the main diagonal, including the cell of 

the main diagonal. In other words, we will be interested in even numbers located on the main diagonal 

and below it. Even numbers located on the main diagonal of the matrix are expressed by two 

arithmetic progressions 10 + 12𝑡  and 14 + 12𝑡 ,  𝑡 = 0,1,2, … . Table 1 shows that some secondary 

diagonals contain even numbers of only one type, while others contain paired even numbers, and 

these diagonals certainly alternate. 

In the matrix (Table 1), rows and columns corresponding to composite odd numbers are 

highlighted in gray, so the matrix represents alternations of light and dark bands. If several dark bands 

are located side by side, which corresponds to a large interval between prime numbers, then dark 

zones are formed in the matrix. Even numbers located in light zones have a representation as the sum 

of two prime numbers, while other even numbers located in dark zones do not have such a 

representation. 

3 Interval between two consecutive primes 

It is not difficult to see that if the interval between two consecutive prime numbers is very large, 

then the probability that there will be an even number that cannot be represented as the sum of two 

prime numbers will be high. Obviously, if half of the diagonal with even numbers is completely in 

the dark strip, then the even numbers located on this diagonal will not be represented as the sum of 

two prime numbers. It is impossible to find a dark zone that completely covers half of at least one 
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secondary diagonal with even numbers, since even anomalously long intervals exceeding the average 

intervals between two consecutive prime numbers by several tens of times can cover only a tiny part 

of the secondary diagonal. For example, for 2022, the most anomalous interval between prime 

numbers of length 8350, which differs from the average interval by almost 42 times, is behind the 87-

digit prime number [4], i.e., the prime number is larger than the interval by about 1083 times. This 

means that any even number greater than 4 can be represented as the sum of two prime numbers. 

Further, to confirm what has been said, we will prove that any interval between consecutive 

prime numbers cannot completely cover half of the secondary diagonal of the matrix of even numbers, 

on which copies of any even number are located. 

4 Bertrand interval 

Since there is no proven size of the interval between primes, we will first rely on Bertrand's 

postulate. According to Bertrand's postulate, for any natural number 𝑛 ≥ 2 there is a prime number p 

in the interval 𝑛 < 𝑝 < 2𝑛. This postulate, formulated by Bertrand in 1845 [5], was proved in 1852 

by Chebyshev [6]. For convenience, the interval between natural numbers of size [𝑛, 2𝑛] is called the 

Bertrand interval. 

We consider numbers of the form 𝑘 = 6n ∓ 1, so taking into account Bertrand's postulate, we can 

study the intervals [𝑘, 2𝑘]. Note that according to Bertrand's postulate, the boundary numbers 𝑘 and 

2𝑘 are not included in the length of the interval. Note that if the numerical segment is assigned in the 

form [𝑘, 2𝑘], then the second boundary number will not have the form 𝑘 = 6n ∓ 1, so the number 

equal to 2𝑘 is not visible in Table 1. 

Find intervals between two natural numbers where there is only one prime number, i.e., 

corresponding to Bertrand's postulate is impossible, since there are a lot of prime numbers between 

the natural numbers 𝑛 and 2𝑛, which has been proved by many scientists, for example, one can refer 

to the works [7, 8, 9, 10]. Therefore, as an example, we take the Bertrand interval equal to [47, 94], 

which corresponds to the fragment of the matrix shown in Figure 1. Note that the number 94 is not a 

number of the form 𝑘 = 6n ∓ 1, therefore it is not visible in Table 1, therefore instead, the boundary 

number in the fragment of Table 1 shows the number 95, which is closest to 94. 

First, we will assume that there is not a single prime number between the numbers 𝑘 and 2𝑘  and call 

it the “dark zone”, i.e., for our example, we will assume that between the numbers 47 and 94 there is 

not a single prime number. 
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As can be seen from Figure 1, if we assume that there are no prime numbers between the boundary 

numbers 47 and 94, then only 3 even numbers (92, 96 and 98) will not be represented as the sum of 

two prime numbers. This is because all copies of these even numbers are in the dark zone or above 

the main diagonal when other even numbers in the dark zone have at least one instance in the light 

zone. The above 3 even numbers, all copies of which are completely in the dark zone, will be called 

disputed even numbers. 

 

Figure 1. Fragment of Table 1 

Note that the number of disputed even numbers does not depend on the size of the Bertrand interval. 

For example, if we consider the interval between the numbers 55 and 110 (55∙2=110), then the 

disputed even numbers will be 112, 114, 116, and for the intervals 65 and 130 (65∙2=130) and 79 and 

158 (79 ∙2=158) disputed even numbers will be 128, 132, 134 and 160, 162, 164 respectively. 

Since, according to Bertrand's Postulate, there must be at least one prime number between the 

numbers 47 and 94, then we will further consider the cases when one prime number appears in the 

dark zone. Of course, between the numbers 47 and 94 there are actually 9 prime numbers (53, 59, 61, 

67, 71, 73, 79, 83, 89), but we will consider them conditionally composite numbers. 

As can be seen from Table 1 and Figure 1, if in the middle part of the Bertrand interval there are two 

prime numbers of different types (𝑝 = 6𝑛 − 1 and  𝑝 = 6𝑛 + 1), then all even numbers included in 

the Bertrand interval will be represented as the sum of two prime numbers. If these two prime numbers 
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correspond to the extreme numbers of the Bertrand interval, or both prime numbers are of the same 

type, then in some cases one number out of three may remain in the dark zone. 

Thus, even if based on Bertrand's postulate, it can be argued that all even numbers can be represented 

as the sum of two prime numbers, except in special cases. We repeat that the dark zone corresponding 

to the Bertrand interval cannot exist, since there will be not one or two, but a lot of prime numbers 

on the Bertrand interval, and the larger the interval, the more prime numbers there will be on the 

Bertrand interval, this has been proven by many scientists. 

5 Proof of the strong Goldbach conjecture 

It is known that in 1952 Jitsuro Nagura proved that for 𝑛 ≥ 25 there is always a prime number 

between natural numbers 𝑛 and (1 +
1

5
)𝑛 [7]. It follows from the works of Jitsuro Nagura that the 

Bertrand interval contains at least 4 primes, since the Bertrand interval is equal to almost four Nagura 

intervals. Note that we called 𝑛 and (1 +
1

5
)𝑛 the Nagura interval.  In subsequent years, the result of 

Jitsuro Nagura was improved by various scientists [8, 9, 10], in particular, Pierre Dusart in 2016 

proved that for 𝑥 ≥ 468 991 632, there is at least one prime in the interval 𝑥 < 𝑝 ≤ (1 +
1

5000ln2𝑥
)𝑥 

[9]. This equation for 𝑥 = 468 991 632 is approximately 468 991 632 < 𝑝 ≤ (1 +

1

100 000 
)468 991 632 . This means that if 𝑛 ≥ 468 991 632, then, according to the Pierre Dusart 

formula, the Bertrand interval contains approximately 100,000 primes. Note that if we count the 

number of primes in the interval between the numbers 468 991 632 and 937 983 264 using the formula 

𝜋(𝑥) =
𝑥

ln (𝑥)
, then there are approximately 23 779 818 primes in this interval. 

It should be noted, as mentioned earlier, that the prime numbers present on the Bertrand interval 

must be of different types 𝑝 = 6𝑛 − 1 and  𝑝 = 6𝑛 + 1, otherwise, there is a possibility that at least 

one even number will not have a representation as the sum of two prime numbers. Therefore, the 

question may arise: can prime numbers of only one type (𝑝 = 6𝑛 − 1 or 𝑝 = 6𝑛 + 1) exist on the 

Bertrand interval? 

It is known that the number of primes of the form 𝑝 = 4𝑛 + 3 is greater than the number of 

primes of the form 𝑝 = 4𝑛 + 1, i.e., there are more prime numbers with remainder 3 modulo 4 than 

there are prime numbers with remainder 1, this phenomenon is called the Chebyshev deviation [11]. 

Information about the deviation of prime numbers of the types 𝑝 = 6𝑛 − 1 and и 𝑝 = 6𝑛 + 1 was 

not found, which means that there will be an equal number of prime numbers of the types 𝑝 = 6𝑛 −

1 and и 𝑝 = 6𝑛 + 1 on the Bertrand interval. Note that the Chebyshev deviation is not significant, so 
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it cannot affect the distribution of primes of the form 𝑝 = 6𝑛 − 1 and и 𝑝 = 6𝑛 + 1 on the Bertrand 

interval, moreover, each of these two types of primes 𝑝 = 4𝑛 + 3  and 𝑝 = 4𝑛 + 1, depending on the 

value of n, they will correspond to 𝑝 = 6𝑛 − 1 and и 𝑝 = 6𝑛 + 1. Thus, it can be argued that the 

number of prime numbers of two types 6𝑛 − 1 and и 𝑝 = 6𝑛 + 1, on the Bertrand interval will be 

approximately equal. 

From the above it follows that on the Bertrand interval there is a very large number of primes of both 

types 𝑝 = 6𝑛 − 1 and и 𝑝 = 6𝑛 + 1compared compared to the minimum required number of prime 

numbers equal to approximately 2, and the larger the interval, the greater the number of primes. This 

means that the Strong Goldbach Conjecture is true and it proven. 
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Annex 1. 

Table 1. Representation of even numbers as two odd numbers of the form 𝑘 = 6n ∓ 1 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

   5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65 67 71 

1 5 10 12 16 18 22 24 28 30 34 36 40 42 46 48 52 54 58 60 64 66 70 72 76 

2 7 12 14 18 20 24 26 30 32 36 38 42 44 48 50 54 56 60 62 66 68 72 74 78 

3 11 16 18 22 24 28 30 34 36 40 42 46 48 52 54 58 60 64 66 70 72 76 78 82 

4 13 18 20 24 26 30 32 36 38 42 44 48 50 54 56 60 62 66 68 72 74 78 80 84 

5 17 22 24 28 30 34 36 40 42 46 48 52 54 58 60 64 66 70 72 76 78 82 84 88 

6 19 24 26 30 32 36 38 42 44 48 50 54 56 60 62 66 68 72 74 78 80 84 86 90 

7 23 28 30 34 36 40 42 46 48 52 54 58 60 64 66 70 72 76 78 82 84 88 90 94 

8 25 30 32 36 38 42 44 48 50 54 56 60 62 66 68 72 74 78 80 84 86 90 92 96 

9 29 34 36 40 42 46 48 52 54 58 60 64 66 70 72 76 78 82 84 88 90 94 96 100 

10 31 36 38 42 44 48 50 54 56 60 62 66 68 72 74 78 80 84 86 90 92 96 98 102 

11 35 40 42 46 48 52 54 58 60 64 66 70 72 76 78 82 84 88 90 94 96 100 102 106 

12 37 42 44 48 50 54 56 60 62 66 68 72 74 78 80 84 86 90 92 96 98 102 104 108 

13 41 46 48 52 54 58 60 64 66 70 72 76 78 82 84 88 90 94 96 100 102 106 108 112 

14 43 48 50 54 56 60 62 66 68 72 74 78 80 84 86 90 92 96 98 102 104 108 110 114 

15 47 52 54 58 60 64 66 70 72 76 78 82 84 88 90 94 96 100 102 106 108 112 114 118 

16 49 54 56 60 62 66 68 72 74 78 80 84 86 90 92 96 98 102 104 108 110 114 116 120 

17 53 58 60 64 66 70 72 76 78 82 84 88 90 94 96 100 102 106 108 112 114 118 120 124 

18 55 60 62 66 68 72 74 78 80 84 86 90 92 96 98 102 104 108 110 114 116 120 122 126 

19 59 64 66 70 72 76 78 82 84 88 90 94 96 100 102 106 108 112 114 118 120 124 126 130 

20 61 66 68 72 74 78 80 84 86 90 92 96 98 102 104 108 110 114 116 120 122 126 128 132 

21 65 70 72 76 78 82 84 88 90 94 96 100 102 106 108 112 114 118 120 124 126 130 132 136 

22 67 72 74 78 80 84 86 90 92 96 98 102 104 108 110 114 116 120 122 126 128 132 134 138 

23 71 76 78 82 84 88 90 94 96 100 102 106 108 112 114 118 120 124 126 130 132 136 138 142 
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Continuation of Table 1 

24 73 78 80 84 86 90 92 96 98 102 104 108 110 114 116 120 122 126 128 132 134 138 140 144 

25 77 82 84 88 90 94 96 100 102 106 108 112 114 118 120 124 126 130 132 136 138 142 144 148 

26 79 84 86 90 92 96 98 102 104 108 110 114 116 120 122 126 128 132 134 138 140 144 146 150 

27 83 88 90 94 96 100 102 106 108 112 114 118 120 124 126 130 132 136 138 142 144 148 150 154 

28 85 90 92 96 98 102 104 108 110 114 116 120 122 126 128 132 134 138 140 144 146 150 152 156 

29 89 94 96 100 102 106 108 112 114 118 120 124 126 130 132 136 138 142 144 148 150 154 156 160 

30 91 96 98 102 104 108 110 114 116 120 122 126 128 132 134 138 140 144 146 150 152 156 158 162 

31 95 100 102 106 108 112 114 118 120 124 126 130 132 136 138 142 144 148 150 154 156 160 162 166 

32 97 102 104 108 110 114 116 120 122 126 128 132 134 138 140 144 146 150 152 156 158 162 164 168 

33 101 106 108 112 114 118 120 124 126 130 132 136 138 142 144 148 150 154 156 160 162 166 168 172 

34 103 108 110 114 116 120 122 126 128 132 134 138 140 144 146 150 152 156 158 162 164 168 170 174 

35 107 112 114 118 120 124 126 130 132 136 138 142 144 148 150 154 156 160 162 166 168 172 174 178 

36 109 114 116 120 122 126 128 132 134 138 140 144 146 150 152 156 158 162 164 168 170 174 176 180 

37 113 118 120 124 126 130 132 136 138 142 144 148 150 154 156 160 162 166 168 172 174 178 180 184 

38 115 120 122 126 128 132 134 138 140 144 146 150 152 156 158 162 164 168 170 174 176 180 182 186 

39 119 124 126 130 132 136 138 142 144 148 150 154 156 160 162 166 168 172 174 178 180 184 186 190 

40 121 126 128 132 134 138 140 144 146 150 152 156 158 162 164 168 170 174 176 180 182 186 188 192 

41 125 130 132 136 138 142 144 148 150 154 156 160 162 166 168 172 174 178 180 184 186 190 192 196 

42 127 132 134 138 140 144 146 150 152 156 158 162 164 168 170 174 176 180 182 186 188 192 194 198 

43 131 136 138 142 144 148 150 154 156 160 162 166 168 172 174 178 180 184 186 190 192 196 198 202 

 

 

 


