THE INTRODUCTION OF THE RULE OF $3 \mathrm{x}+1$ PROBLEM

Li Ke
Institute of Chemical Industry of Forest Products
Chinese Academy of Forestry Sciences
Nanjing, China, MI 210042
E-mail address: liketaiping@163.com

Abstract

This article introduces a change rule of $3 x+1$ problem (Collatz conjecture), it's named LiKe's rule: For any positive integer, change by the Collatz conjecture, it will change to an odd number; the odd numbers will must change to a number of LiKe's second sequence $\left\{3^{n}-1 \mid n \in Z^{+}\right\}$; then this $3^{n}-1$ will change to a smaller $3^{\mathrm{n}}-1$ and gradually decrease to 8 (that is $3^{2}-1$) then back to 1 in the end.

Keywords: $3 \mathrm{x}+1$ problem; Collatz-Problem; Collatz conjecture; LiKe's rule; number theory
MSC2010: 11B83

0. Introduction

$3 \mathrm{x}+1$ problem(Collatz conjecture) ${ }^{[1]}$: If a positive integer x is odd then "multiply by 3 and add 1 ", while if it's even then "divide by 2 ", iterations of them, it will eventually reach the number 1 . The Collatz function, as follows.

$$
C(x)= \begin{cases}3 x+1 & \text { if } x \equiv 1(\bmod 2) \\ x / 2 & \text { if } x \equiv 0(\bmod 2)\end{cases}
$$

As soon as this problem appeared, it becames popular all over the world, and teachers and students in both primary and secondary schools and colleges were fascinated by it. For nearly a century, mathematicians, physicists, computer scientists and others have studied this. It covers a wide range of mathematical fields, such as Number Theory, Ergodic Theory, Dynamical Systems, Mathematical Logic and the Theory of Computation, Stochastic Processes and Probability Theory, and Computer Science. Although achieved certain results, such as: J. C. Lagarias ${ }^{[2]}$ or A.V. Kontorovich and J. C. Lagarias ${ }^{[3]}$ and so on.

Terence Tao achieved significant result in $2019{ }^{[4]}$. But in his paper his conclude is almost all, not all. And he admits the law is unsustainable.

The problem seems unsolvable, and no one can crack its secrets. Richard Guy said "Don't try to solve these problems!", Paul Erdos said "Hopeless. Absolutely hopeless." and "Mathematics is not yet ready for such problems." and so on.

But through my research, I discovered a special rule(LiKe's rule) ${ }^{[5]}$: For any positive integer, it must change to a number of $3^{\mathrm{n}}-1$ (LiKe's second sequence), and it will change to a smaller $3^{\mathrm{n}}-1$ then gradually decrease to 8 and back to 1 . It might be helpful to the study this problem, so I decided to give a brief explanation. See below:

1. Even to Odd

For all even Numbers, as long as it changes according to the Collatz conjecture, see the table below.

Table 1: Change rule of odd Numbers					
Even/E	$\mathrm{E} / 2$	$\mathrm{E} / 2$	$\mathrm{E} / 2$	$\mathrm{E} / 2$	$\mathrm{E} / 2^{\mathrm{n}}$
2	1				
2^{2}	2	1			
6	3		1		
2^{3}	4	2	1		
10	5				
12	6	3		1	
14	7		2		
2^{4}	8	4			
18	9				
20	10	5			
22	11		3		
24	12	6			
26	13				
28	14	7			
30	15				
2^{5}	16	8	4	2	\ldots
34	17			\ldots	\ldots
E_{x}	\ldots	\ldots		\ldots	

Obviously, all of the Even Numbers will change to an Odd Number corresponding.

2. Odd to $\mathrm{O}_{\mathrm{n} 1}\left(1,5,17,53, \cdots, \mathrm{O}_{\mathrm{n} 1}, 2 * 3^{\mathrm{n}}-1\right)$

2.1 The Collatz function

For all Odd numbers, multiply by 3 and add $1\left(3^{*} \mathrm{O}+1\right)$ must be an even, so $(3 * O+1) / 2$ is regarded as a one-step operation in this paper, so the Collatz function $\mathrm{C}(\mathrm{x})$ can be expressed as the following equation too.

$$
T(x)= \begin{cases}(3 x+1) / 2 & \text { if } x \equiv 1(\bmod 2) \\ x / 2 & \text { if } x \equiv 0(\bmod 2)\end{cases}
$$

2.2 Definition
$\mathrm{L}_{0}(1,3,5,7, \cdots, \mathrm{O}, 2 \mathrm{n}-1)=\left\{2 \mathrm{n}-1 \mid \mathrm{n} \in \mathrm{Z}^{+}\right\} \subset \mathrm{Z}^{+}, \mathrm{O}_{01}=1$;
$\mathrm{L}_{1}\left(5,11,17, \cdots, \mathrm{O}_{1 \mathrm{~m}}, 6 \mathrm{n}-1\right)=\left\{6 \mathrm{n}-1 \mid \mathrm{n} \in \mathrm{Z}^{+}\right\} \subset \mathrm{Z}^{+}, \mathrm{O}_{11}=5$;
$\mathrm{L}_{2}\left(17,35,53, \cdots, \mathrm{O}_{2 \mathrm{~m}}, 18 \mathrm{n}-1\right)=\left\{18 \mathrm{n}-1 \mid \mathrm{n} \in \mathrm{Z}^{+}\right\} \subset \mathrm{Z}^{+}, \mathrm{O}_{21}=17$;
$\mathrm{L}_{3}\left(53,107,161, \cdots, \mathrm{O}_{3 \mathrm{~m}}, 54 \mathrm{n}-1\right)=\left\{54 \mathrm{n}-1 \mid \mathrm{n} \in \mathrm{Z}^{+}\right\} \subset \mathrm{Z}^{+}, \mathrm{O}_{31}=53$;
$\mathrm{L}_{\mathrm{n}}\left(2 * 3^{\mathrm{n}}-1,2 * 2 * 3^{\mathrm{n}}-1,3 * 2 * 3^{\mathrm{n}}-1, \ldots, \mathrm{O}_{\mathrm{nm}}\right)=\left\{2 * 3^{\mathrm{n}} \mathrm{i}-1 \mid \mathrm{n} \in \mathrm{Z}, \mathrm{i} \in \mathrm{Z}^{+}\right\}$ $\subset \mathrm{Z}^{+}, \quad \mathrm{O}_{\mathrm{n} 1}=2 * 3^{\mathrm{n}}-1$;
$\mathrm{O}_{\mathrm{n} 1}\left(1,5,17,53, \cdots, \mathrm{O}_{\mathrm{n} 1}, 2^{*} 3^{\mathrm{n}}-1\right)=\left\{2 * 3^{\mathrm{n}}-1 \mid \mathrm{n} \in \mathrm{Z}\right\} \subset \mathrm{Z}^{+} ;$
$\mathrm{LK}_{2}(2,8,26,80, \ldots)=\left\{3^{\mathrm{n}}-1 \mid \mathrm{n} \in \mathrm{Z}^{+}\right\} \subset \mathrm{Z}^{+} ;$
$\mathrm{LC}(1,4,13,40, \ldots)=\left\{\left(3^{\mathrm{n}}-1\right) / 2 \mid \mathrm{n} \in \mathrm{Z}^{+}\right\} \subset \mathrm{Z}^{+}$.
$2.3 \mathrm{~L}_{0}$ to L_{1}
Theorem 1: For all L_{0}, change by the Collatz conjecture, it will change to the sequence $L_{1}\left\{6 n-1 \mid n \in Z^{+}\right\}$.

Proof:
It's incredibly easy to see that all even Numbers will change to odd Numbers by table 1. Through the following figure, it's also easy to see the change about L_{0} to L_{1}.

Figure 1: The path of $\mathrm{L}_{0} \rightarrow \mathrm{~L}_{1}$
Obviously, L_{0} will must change to L_{1} (except 1).
2.4 L_{1} to L_{n}

Corollary 1.1: For all L_{1}, change by the Collatz conjecture, it will change to the sequence $L_{n}\left\{2 * 3^{n} \mathrm{i}-1 \mid \mathrm{n} \in \mathrm{Z}, \mathrm{i} \in \mathrm{Z}^{+}\right\}$.

Proof:
Use the same method, the following figure can be obtained:

Figure 2: The path of $L_{1} \rightarrow L_{2}$
Obviously, L_{1} will translate to L_{2} (except 5).
Similarly:
L_{2} will translate to L_{3} (except 17);
L_{3} will translate to L_{4} (except 53);
Obviously, all the except numbers are the first number of $\mathrm{L}_{0}(2 \mathrm{n}-1)$, $\mathrm{L}_{1}(6 \mathrm{n}-1), \cdots, \mathrm{L}_{\mathrm{n}}\left(2^{*} 3^{\mathrm{n}}-1\right)$. They are $\mathrm{O}_{\mathrm{n} 1}\left(1,5,17,53, \cdots, \mathrm{O}_{\mathrm{n} 1}, 2^{\left.* 3^{n}-1\right)}\right.$. $2.5 \mathrm{~L}_{\mathrm{n}}$ to $\mathrm{O}_{\mathrm{n} 1}$

Theorem 2: For all $\mathrm{O}_{\mathrm{n} 1}\left(2 * 3^{\mathrm{n}}-1\right)$, change by the Collatz conjecture, it will must change to a new $\mathrm{O}_{\mathrm{n} 1}\left(2 * 3^{\mathrm{n}}-1\right)$.

Proof:
All the except numbers $(1,5,17,53, \cdots)$ are the items of $\mathrm{O}_{\mathrm{n} 1}\left(2 * 3^{\mathrm{n}}-1\right)$ too. So all odd numbers must translate to $\mathrm{O}_{\mathrm{n} 1}$.

If you want to learn more, you can refer to the video in reference [6].

3. Smaller and smaller

$3.1 \mathrm{O}_{\mathrm{n} 1}$ to $\mathrm{O}_{\mathrm{n} 1}$
To sum up, it is easy to know: $\mathrm{O}_{\mathrm{n} 1}$ must translate to $\mathrm{O}_{\mathrm{n} 1}$.

3.2 Smaller and smaller

Corollary 2.1: If $\mathrm{O}_{\mathrm{n} 1}$ change to $\mathrm{O}_{\mathrm{m} 1}$, the must be less than n .
$\mathrm{O}_{\mathrm{n} 1}$ will not only must translate to $\mathrm{O}_{\mathrm{n} 1}$, it must change to a smaller one. For proof, see the table 2.

Table 2: Change rule of $\mathrm{O}_{\mathrm{n} 1}$

$\mathrm{O}_{\mathrm{n} 1}$	$\mathrm{~T}(\mathrm{x})$	$\mathrm{C}(\mathrm{x})$	$\mathrm{T}(\mathrm{x})$	$\mathrm{C}(\mathrm{x})$
5	8	4	2	1
17	26	13	20	10
53	80	40		
161	242	121	182	91
485	728	364		
1457	2186	1093	1640	820
4373	6560	3280	$\left(9^{\mathrm{n}}-1\right) / 4$	$\left(9^{\mathrm{n}}-1\right) / 8$
$2^{*} 3^{\mathrm{n}}-1$	$3^{\mathrm{n+1}}-1$	$\left(3^{\mathrm{n+1}}-1\right) / 2$	$\left(9^{\mathrm{n}}-1\right) / 4$ and $\left(9^{\mathrm{n}}-1\right) / 8$	

$\left(3^{\mathrm{n}+1}-1\right) / 2: 1,4,13,40,121,364,1093,3280,9841,29524,88573, \cdots$.
Scrutinize, it is not difficult to find:

$$
\begin{aligned}
& 1=3 * 0+1 \\
& 4=3 * 1+1 \\
& 13=3 * 4+1
\end{aligned}
$$

The first term is x, the second term has to be $3 x+1$.
So $\left(3^{n+1}-1\right) / 2$ is named "LiKe-Collatz number"(LC).
Hence, LiKe-Collatz sequence can be expressed as:
$\left(3 \mathrm{x}+1,9 \mathrm{x}+4,27 \mathrm{x}+13,3^{4} \mathrm{x}+40,3^{5} \mathrm{x}+121, \cdots, 3^{\mathrm{n}} \mathrm{x}+\left(3^{\mathrm{n}}-1\right) / 2\right) \quad\left(\mathrm{x}=\left(3^{\mathrm{i}}-1\right) / 2\right)$
The formula of "LiKe-Collatz number" is: $3^{n} x+\left(3^{n}-1\right) / 2$
Also \because According to the rule of the corazz conjecture, All the change paths of $3 x+1$ are as follows:

Table 3: All the changes of LiKe-Collatz number

$3 x+1$ even: up odd: below	$\frac{3 x+1}{2}$	$\frac{3 x+1}{4}$	$3 \mathrm{x}+1$...
			8	...
			$9 \mathrm{x}+7$...
			8	...
		$\frac{9 x+5}{4}$	$9 \mathrm{x}+5$	\cdots
			8	...
			$27 \mathrm{x}+19$...
			8	...
	$\frac{9 x+4}{2}$	$\frac{9 x+4}{4}$	$9 \mathrm{x}+4$	\cdots
			8	\cdots
			$27 \mathrm{x}+16$. ${ }^{\text {c }}$
			8	...
		$\frac{27 x+14}{4}$	$27 \mathrm{x}+14$	\cdots
			8	\cdots
			$81 \mathrm{x}+46$...
			8	...

Accordingly,

$$
\frac{3^{j} x+a}{2^{i}} \neq 3^{n} x+\left(3^{n}-1\right) / 2
$$

$\therefore 3 x+1$ is never translate to bigger ones $9 x+4,27 x+121,3^{4} x+40$, $3^{5} x+13, \cdots$.
\therefore According to $3.1: 3 \mathrm{x}+1$ will translate to a smaller LiKe-Collatz number. So $3^{\mathrm{n}}-1$ will translate to a smaller $3^{\mathrm{m}}-1(\mathrm{~m}<\mathrm{n})$ until $8,2,1$. q.e.d!

4. Roadmap

To sum up, the path of change can be seen in the diagram below, which is simple and clear.

Figure 4: The change path of LiKe's Rule

If the value of $\mathrm{C}(\mathrm{x})$ is taken as the ordinate and the number of change steps is taken as the abscissa, the function $\mathrm{C}(\mathrm{x})$ can be expressed as the following figure.

Figure 5: The change rule of Collatz conjecture: LiKe's Rule
Acknowledgments. The author was supported by Natural Science Dream Grants WDM2019002.

References

[1]. L. Collatz, Letter to Michael E. Mays, dated 17 Sept. 1980.
[2]. J. C. Lagarias, The $3 x+1$ problem and its generalizations, Amer. Math. Monthly 92 (1985),3-23.
[3]. A.V. Kontorovich and J. C. Lagarias, Stochastic models for the $3 x+1$ problem and generalizations.
[4]. Tao T. Almost all orbits of the Collatz map attain almost bounded values[J]. 2019.
[5]. LiKe. The change rule of Collatz problem[J].Sciencepaper Online. 5-6-2020.
http://www.paper.edu.cn/releasepaper/content/202006-26
[6]. LiKe. The proof of $3 \mathrm{x}+1$ Problem[video]. figshare. 24-11-2020.
https://figshare.com/articles/media/The_proof_of_3x_1_Problem_mp4/13279670

