A NESTED INFINITE RADICAL EXPRESSION FOR ODD NUMBERS

Treanungkur Mal
maltreanungkur@gmail.com
Independent Researcher, India

September 17, 2021

Abstract

I am going to provide a Nested Infinite Radical Expression for all Odd Numbers greater than 1. Along with that, I will also prove the Proposition mentioned by various methods.

1 Introduction

Srinivasa Ramanujan proposed a nested infinite radical problem in JIMS (Journal of the Indian Mathematical Society). The problem (Q.289) says Find the value of :

$$
\begin{equation*}
\sqrt{1+2 \sqrt{1+3 \sqrt{1+\ldots}}} \tag{1}
\end{equation*}
$$

Ramanujan gave the solution of the above problem as 3. I have tried to create some similar series like this and later generalized it for all odd numbers greater than 1 .

Proposition 1. For all odd numbers (in the form 2k-1) greater than 1 we have

$$
\begin{equation*}
2 k-1=\sqrt{1+4 \sqrt{1+\left(k^{2}-k-1\right) \sqrt{1+\left(k^{2}-k\right) \sqrt{1+\ldots}}}} \tag{2}
\end{equation*}
$$

Later in the paper, I will also provide some strong proof using the generalization of nested expression given by Srinivasa Ramanujan, along with that I will also show that how any odd numbers can be transformed into a nested infinite expression and vice versa.

2 Generalization

I begin by proving Proposition 1,

$$
2 k-1=\sqrt{1+4 \sqrt{1+\left(k^{2}-k-1\right) \sqrt{1+\left(k^{2}-k\right) \sqrt{1+\ldots}}}}
$$

Proof. From the generalization of (1) given by Srinivasa Ramanujan, i.e.

$$
\begin{equation*}
\sqrt{a x+(n+a)^{2}+x \sqrt{a(x+n)+(n+a)^{2}+(x+n) \sqrt{\cdots}}}=x+n+a \tag{3}
\end{equation*}
$$

if we set $\mathrm{a}=0, x=k^{2}-k-1$, and $\mathrm{n}=1$ we get,

$$
\sqrt{1+\left(k^{2}-k-1\right) \sqrt{1+\left(k^{2}-k\right) \sqrt{1+\ldots}}}=k^{2}-k
$$

After some algebric manupulation we get,

$$
\begin{aligned}
& \sqrt{1+4 \sqrt{1+\left(k^{2}-k-1\right) \sqrt{1+\left(k^{2}-k\right) \sqrt{1+\ldots}}}=\sqrt{1+4\left(k^{2}-k\right)}} \\
& \Rightarrow \sqrt{1+4 \sqrt{1+\left(k^{2}-k-1\right) \sqrt{1+\left(k^{2}-k\right) \sqrt{1+\ldots}}}}=\sqrt{(2 k-1)^{2}} \\
& \Rightarrow \sqrt{1+4 \sqrt{1+\left(k^{2}-k-1\right) \sqrt{1+\left(k^{2}-k\right) \sqrt{1+\ldots}}}}=(2 k-1) \quad
\end{aligned}
$$

and this completes our proof. Now I will provide some examples which would help us understand the need for the formula (2).
Example 2.1 Find a nested radical expression for : i) 131 ii) 729
Solution. i) To find the required expression we first set

$$
2 k-1=131 \Rightarrow k=66
$$

Now, using (2) we get,

$$
131=\sqrt{1+4 \sqrt{1+4289 \sqrt{1+4290 \sqrt{1+\ldots}}}}
$$

ii) Again, to find the required expression we first set

$$
2 k-1=729 \Rightarrow k=365
$$

Now, using (2) we get,

$$
729=\sqrt{1+4 \sqrt{1+132859 \sqrt{1+132860 \sqrt{1+\ldots}}}}
$$

Example 2.2 Find the value of:

$$
\sqrt{1+4 \sqrt{1+65279 \sqrt{1+65280 \sqrt{1+\ldots}}}}
$$

Solution. Now to solve this we need to compare this with (2),

$$
\begin{gathered}
\sqrt{1+4 \sqrt{1+\underbrace{65279}_{=k^{2}-k-1} \sqrt{1+65280 \sqrt{1+\ldots}}}} \\
\text { So, } k^{2}-k-1=65279 \\
\Rightarrow k=256
\end{gathered}
$$

or

$$
\Rightarrow k=-255
$$

Since k is positive so our final value for k is 256 and thus our final answer is 511.

3 The Famous Problem

Now I will show how we can use the above-mentioned formula to solve the problem given by Srinivasa Ramanujan, i.e.

$$
\text { Let, } S=\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+\ldots}}}}}
$$

On comparing with (2) we get,

$$
\begin{gathered}
S=\sqrt{1+2 \sqrt{1+3 \underbrace{\sqrt{1+4 \sqrt{1+5 \sqrt{1+\ldots}}}}}=\sqrt{1+4 \sqrt{1+\left(k^{2}-k-1\right) \sqrt{1+\left(k^{2}-k\right) \sqrt{1+\ldots}}}}} \\
\Rightarrow k^{2}-k-1=5 \\
\Rightarrow k=3
\end{gathered}
$$

or

$$
\Rightarrow k=-2
$$

Since k is positive so our final value for k is 3 , Now on moving back to our original equation we get,

$$
\begin{gathered}
\Rightarrow S=\sqrt{1+2 \sqrt{1+3 \underbrace{\sqrt{1+4 \sqrt{1+5 \sqrt{1+\ldots}}}}}=2(3)-1} \\
\Rightarrow S=\sqrt{1+2 \sqrt{1+3 \cdot 5}}=\sqrt{1+2 \sqrt{16}}=\sqrt{1+2 \cdot 4}
\end{gathered}=\sqrt{9}=3
$$

4 Acknowledgements

I would like to thank Andrew Kukla, and Vinci Mak.

References

[1] Nested radical - Wikipedia.
[2] The Problems Submitted by Ramanujan to the Journal of the Indian Mathematical Society by Bruce C. Berndt, Youn-Seo Choi, and Soon-Yi Kang

