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Abstract: A rational Diophantine 𝑚-tuple is a set of 𝑚 rational numbers such that the 

product of any two is one less than a square. The Prouhet-Tarry-Escott problem seeks 

two different multisets of 𝑛 integers such that the sums of like powers of each set are 

equal for all exponents up to some k < n. Here a new connection is established between 

rational Diophantine quadruples (𝑚 = 4) and ideal solutions of the Prouhet–Tarry–

Escott problem of size 4 (𝑛 = 4, 𝑘 = 3) Both problems are shown to be related to 

finding 3 by 3 singular matrices of integers whose 9 elements are all square.  

Prouhet–Tarry–Escott 

The Prouhet-Tarry-Escott (PTE) problem seeks two 𝑛-tuples of integers 𝑥𝑖 and 𝑦𝑖 such that 

the sums of like powers up to 𝑘 are equal 

∑ 𝑥𝑖
𝑝
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= ∑ 𝑦𝑖
𝑝
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, 1 ≤ 𝑝 ≤ 𝑘 

𝑘 is called the degree, and 𝑛 the size of the problem. If 𝑥𝑖 and 𝑦𝑖 are permutations of the 

same numbers then the solution is trivial. The system of equations is written with the 

notation [𝑥𝑖] =𝑘 [𝑦𝑖]. For non-trivial solutions 𝑘 < 𝑛. If 𝑘 = 𝑛 − 1, the solution is called 

ideal. Chains of 𝑛-tuples which are PTE solutions in pairs [𝑥𝑖] =𝑘 [𝑦𝑖] =𝑘 [𝑧𝑖] … , are also of 

interest. The problem is equivalent to seeking pairs of polynomials which fully factorise over 

the integers and which differ by a polynomial of degree 𝑛 − 𝑘 − 1, a non-zero integer 

constant in the ideal case, 
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Versions of the PTE problem date back to Euler, but it was introduced in its current form by 

Prouhet in 1851 [1] and was studied in detail by Tarry who found solutions on size 6 and 8 [2] 

and Escott who found solution of size 7 [3] in the early twentieth century. Solutions of size 9 

were found by Letac in 1942 [7] 

Solutions are said to be equivalent if they differ only by permutations of the elements, 

addition of an integer constant, multiplication by a rational constant, or any combination of 

these operations.  

In particular, negating each element on both sides leads to an equivalent solution. If these 

are the same up to permutations then the solution is called symmetric. The nature of 



symmetric solutions differs for odd vs even size 𝑛.  If 𝑛 is odd then the elements on the left 

side are the negatives of the elements on the right and the even power equations are 

automatically satisfied. If 𝑛 is even, the elements on either side fall into pairs differing in 

sign, and the odd power equations are automatically satisfied. 

In the current state of art of the PTE problem, ideal solutions are known for all sizes up to 10 

[5] and also for size 12 [4,6].  

Ideal PTE problems of low size 

The ideal PTE problem of size two only requires that 𝑥1 + 𝑥2 = 𝑦1 + 𝑦2. Any solution is 

therefore equivalent to the symmetric form [𝑎, −𝑎] =1 [𝑏, −𝑏] which can be extended to an 

infinite chain of solutions. For the size two case all solutions are therefore equivalent to a 

symmetric form. 

For size three, a linear and quadratic equation in three variables must be satisfied. A general 

solution is readily found and can be expressed in a symmetric form parameterised by six 

variables [13,14] 

𝑥1 = 𝑎𝑝 + 𝑏𝑞 + 𝑐𝑟 

𝑥2 = 𝑎𝑞 + 𝑏𝑟 + 𝑐𝑝 

𝑥3 = 𝑎𝑟 + 𝑏𝑝 + 𝑐𝑞 

𝑦1 = 𝑎𝑝 + 𝑏𝑟 + 𝑐𝑞 

𝑦2 = 𝑎𝑞 + 𝑏𝑝 + 𝑐𝑟 

𝑦3 = 𝑎𝑟 + 𝑏𝑞 + 𝑐𝑝 

 

This solution can be understood in terms of factorisations over the commutative ring 

generated by an element 𝜔 subject to 𝜔3 = 1 so that a general element takes the form 

= 𝑎 + 𝑏𝜔 + 𝑐𝜔2 . The ring has a conjugation �̅� = 𝑎 + 𝑐𝜔 + 𝑏𝜔2 . With 𝑣 = 𝑝 + 𝑞𝜔 + 𝑟𝜔2, 

𝑥 = 𝑥1 + 𝑥2𝜔 + 𝑥3𝜔2 and 𝑦 = 𝑦1 + 𝑦2𝜔 + 𝑦3𝜔2 the solution reduces 𝑥 = �̅�𝑣, 𝑦 = 𝑢𝑣.  

If the additional relation 1 + 𝜔 + 𝜔2 = 0 is imposed then the ring reduces to the Eisenstein 

integers and the general solution can be simplified to a four parameter form, but with less 

symmetry.  

Solution chains of length 2𝑙−1 can be generated using products of 𝑙 Eisenstein integers with 

arbitrary selections of conjugates taken.  

The general size 4 ideal case requires three equations, but the symmetric case reduces to 

one 

[𝑎, −𝑎, 𝑏, −𝑏] =3 [𝑐, −𝑐, 𝑑, −𝑑] 

𝑎2 + 𝑏2 = 𝑐2 + 𝑑2 



This has the well-known general solution from products of Gaussian integers and their 

conjugates 

𝑎 = 𝑝𝑞 − 𝑟𝑠, 𝑏 = 𝑝𝑟 + 𝑞𝑠, 𝑐 = 𝑝𝑞 + 𝑟𝑠, 𝑑 = 𝑝𝑟 − 𝑞𝑠 

Chains of symmetric solutions of size 4 can be formed using products of more Gaussian 

integers and their conjugates. 

The general ideal case of size 4 was solved by “Crussol” in 1913 [15].  

The linear equation is resolved by making use of an additive constant to set both sides to 

zero 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 = 0 

The remaining quadratic and cubic power equations are transformed by a linear substitution 

𝑥1 = 𝑋1 + 𝑋2 + 𝑋3 

𝑥2 = 𝑋1 − 𝑋2 − 𝑋3 

𝑥3 = −𝑋1 − 𝑋2 + 𝑋3 

𝑥4 = −𝑋1 + 𝑋2 − 𝑋3 

𝑦1 = 𝑌1 + 𝑌2 + 𝑌3 

𝑦2 = 𝑌1 − 𝑌2 − 𝑌3 

𝑦3 = −𝑌1 − 𝑌2 + 𝑌3 

𝑦4 = −𝑌1 + 𝑌2 − 𝑌3 

This reduces the system of equations to 

𝑋1
2 + 𝑋2

2 + 𝑋3
2 = 𝑌1

2 + 𝑌2
2 + 𝑌3

2 

𝑋1𝑋2𝑋3 = 𝑌1𝑌2𝑌3 

Taking account of the common factors in the second equation, a general solution 

parameterised by 9 integers 𝑡𝑖𝑗 , 𝑖 = 1,2,3, 𝑗 = 1,2,3 is given by 

𝑋𝑖 = 𝑡𝑖1𝑡𝑖2𝑡𝑖3   𝑖 = 1,2,3 

𝑌𝑗 = 𝑡1𝑗𝑡2𝑗𝑡3𝑗   𝑗 = 1,2,3 

Leaving just one equation to be resolved 

𝑡11
2𝑡12

2𝑡13
2 + 𝑡21

2𝑡22
2𝑡23

2 + 𝑡31
2𝑡32

2𝑡33
2 = 𝑡11

2𝑡21
2𝑡31

2 + 𝑡12
2𝑡22

2𝑡32
2 + 𝑡13

2𝑡23
2𝑡33

2 

Crussol and other authors since have completed the solution by treating it as a quadratic in 

the three variables 𝑡𝑖𝑖 with the remaining variables taken as givens. Standard methods can 

be used to parameterise all solutions over the rational numbers, which can then be 

transformed to integers by multiplying through by all denominators. This provides a solution 

which is complete, but opaque and unsymmetrical. An alternative approach is to recognise 

the equation as a determinant expression 



|

𝑡11
2 𝑡33

2 𝑡22
2

𝑡23
2 𝑡12

2 𝑡31
2

𝑡32
2 𝑡21

2 𝑡13
2

| = 0 

The ideal PTE problem of size 4 is therefore equivalent to seeking 3 by 3 singular matrices 

with all square elements. Note that a solution being symmetric is equivalent to one of the 

elements being zero. 

The singularity of a matrix is equivalent to there being a linear relationship between the 

rows or columns. I.e there exist integers 𝑎, 𝑏, 𝑒 such that 

𝑎𝑡11
2 + 𝑏𝑡33

2 + 𝑒𝑡22
2 = 0 

𝑎𝑡23
2 + 𝑏𝑡12

2 + 𝑒𝑡31
2 = 0 

𝑎𝑡32
2 + 𝑏𝑡21

2 + 𝑒𝑡13
2 = 0 

For example, in the specific case of 𝑎 = 𝑏 = 1, 𝑒 = −1  the problem requires three 

Pythagorean triples. 

Multiplication or division of the elements in any row or column to an integer only affects the 

overall solution by a constant multiplier. If we are interested in constructing solutions up to 

equivalence then we can freely apply such factors. It can be arranged that no element in the 

bottom row is zero. By this means it is possible to reduce the last row of the matrix to all 

unit elements while keeping the other two rows in integer form.  

|
𝑡11

2 𝑡33
2 𝑡22

2

𝑡23
2 𝑡12

2 𝑡31
2

1 1 1

| = 0 

The linear relationship is then subject to the condition 𝑎 + 𝑏 + 𝑒 = 0 and it can be assumed 

that the three coefficients are relatively prime in pairs. In this case the general solution in 

integers to 𝑎𝑥2 + 𝑏𝑦2 + 𝑒𝑧2 = 0 can be parameterised up to a common factor by 

𝑥 = 𝑏𝑢2 + 𝑒𝑣2, 𝑦 = 𝑒𝑤2 + 𝑎𝑢2, 𝑧 = 𝑎𝑣2 + 𝑏𝑤2 

𝑢 + 𝑣 + 𝑤 = 0 

A general solution up to equivalence is therefore given by 

𝑋1 = (𝑏𝑢2 + 𝑒𝑣2)(𝑒𝑟2 + 𝑎𝑝2) 

𝑋2 = (𝑎𝑣2 + 𝑏𝑤2)(𝑏𝑝2 + 𝑒𝑞2) 

𝑋3 = (𝑒𝑤2 + 𝑎𝑢2)(𝑎𝑟2 + 𝑏𝑝2) 

𝑌1 = (𝑏𝑢2 + 𝑒𝑣2)(𝑎𝑟2 + 𝑏𝑝2) 

𝑌2 = (𝑎𝑣2 + 𝑏𝑤2)(𝑒𝑟2 + 𝑎𝑝2) 



𝑌3 = (𝑒𝑤2 + 𝑎𝑢2)(𝑏𝑝2 + 𝑒𝑞2) 

𝑎 + 𝑏 + 𝑒 = 𝑢 + 𝑣 + 𝑤 = 𝑝 + 𝑞 + 𝑟 = 0 

A further reduction of the determinant equation can be made if the elements are allowed to 

be rational. Dividing the first and second rows by squares 𝑡22
2 and 𝑡31

2 which can be 

assumed to be non-zero gives 

|
𝑥2 𝑧2 1
𝑡2 𝑦2 1
1 1 1

| = 0 

(𝑥2 − 1)(𝑦2 − 1) = (𝑧2 − 1)(𝑡2 − 1) 

This brings us to the problem of Diophantus. 

Diophantine Quadruples 

In the third century AD, Diophantus of Alexandria wrote a series of books on mathematical 

problems dealing with finding solutions to indeterminate problems in rational numbers. 

Most of his problems in the surviving books are motivated by geometric constructions or 

real-life situations, but one problem is more esoteric. Diophantus sought sets of rational 

numbers such that the product of any two is one less than a rational square. He found 

examples of sets of four such numbers. It is not known what inspired this problem, but it 

was well chosen and has been the source of much interesting research.   

A Diophantine 𝑚-tuple is defined as a set of 𝑚 positive integers 𝑎𝑖 such that the product of 

any two is one less than a square  𝑎𝑖𝑎𝑗 + 1 = 𝑥𝑖
2, 𝑖 ≠ 𝑗. Solutions to the rational case 

(negative or positive but not zero) as originally studied by Diophantus are rational 

Diophantine 𝑚-tuples. 

Fermat found the set quadruple 1, 3, 8, 120 and thereby set the long-standing problem of 

deciding the existence of Diophantine quintuples. Euler found a fifth rational number that 

could be added to form a rational Diophantine quintuple. In 1999 I found the first examples 

of rational Diophantine sextuples [8]. 

The integer case has been extensively studied using methods of Diophantine approximation. 

Dujella set an upper bound on the size of elements in a Diophantine quintuple [9] before 

their existence was finally shown to be impossible [10]. A stronger conjecture that all 

Diophantine quadruples are solutions of a regularity equation remains unresolved [11]. 

Continued interest in the problem is spurred by its relationship to elliptic curves with torsion 

and high rank [12].  

The case of Diophantine quadruples 𝑎, 𝑏, 𝑐, 𝑑 requires 



𝑎𝑏 + 1 =  𝑥2, 𝑐𝑑 + 1 = 𝑦2 

𝑎𝑐 + 1 = 𝑧2, 𝑏𝑑 + 1 = 𝑡2 

𝑎𝑑 + 1 = 𝑢2, 𝑏𝑐 + 1 = 𝑣2 

The first two pairs of equations imply 

(𝑥2 − 1)(𝑦2 − 1) = (𝑧2 − 1)(𝑡2 − 1) = 𝑎𝑏𝑐𝑑 

From the analysis of the ideal PTE problem of size four, it can now be seen that a rational 

Diophantine quadruple provides a solution.  

(𝑋1, 𝑋2, 𝑋3, 𝑌1, 𝑌2, 𝑌3) = (𝑥2𝑦2, 𝑧2, 𝑡2, 𝑧2𝑡2, 𝑥2, 𝑦2) 

Indeed it provides three separate solutions from different choices of the squares. Consider 

for example Fermat’s quadruple 

(𝑎, 𝑏, 𝑐, 𝑑) = (1,3,8,120) 

(𝑥, 𝑦, 𝑧, 𝑡, 𝑢, 𝑣) = (2,31,3,19,11,5) 

There are three singular matrices  

|
22 32 1

192 312 1
1 1 1

| = |
22 52 1

112 312 1
1 1 1

| = |
32 52 1

112 192 1
1 1 1

| = 0 

From this we derive three solutions to the problem 

[88,22, −26, −84] =3 [78,46, −56, −68] 

[73,41, −63, −51] =3 [77,33, −71, −39] 

[84,40, −46, −78] =3 [90,24, −86, −28] 

As a bonus, if the three pairs are amalgamated into a single pair then the fourth, fifth and 

sixth powers also give equal sums providing a solution for 𝑛 = 12, 𝑘 = 6 

[88,22, −26, −84,73,41, −63, −51,84,40, −46, −78] =6 

[78,46, −56, −68,77,33, −71, −39,90,24, −86, −28] 

It can be checked algebraically that this works for any Diophantine quadruple 

The inverse derivation can also be followed. Given an ideal PTE solution of size 4 a 3x3 

singular matrix can be formed with elements that are all square. If the solution is not 

symmetric then none of the elements are zero. For any choice of row and column (nine 

possibilities) the matrix can be normalised by multiplying rows and columns until the 

elements in the row and column are all equal to one and the remaining square of four 

elements are rational squares. This provides nine rational solutions to the equation 

(𝑥2 − 1)(𝑦2 − 1) = (𝑧2 − 1)(𝑡2 − 1) 



For each of these it is possible to find a quadruple of rationals (𝑎, 𝑏, 𝑐, 𝑑) such that 

𝑎𝑏 + 1 =  𝑥2, 𝑐𝑑 + 1 = 𝑦2 

𝑎𝑐 + 1 = 𝑧2, 𝑏𝑑 + 1 = 𝑡2 

The solution is undetermined up to a rational 𝑟 so that the general solution is given in terms 

of one starting solution as (𝑎0𝑟,
𝑏0

𝑟
,

𝑐0

𝑟
, 𝑑0𝑟) 

To complete a Diophantine quadruple it is then necessary to solve 

𝑎0𝑑0𝑟2 + 1 = 𝑢2, 𝑏0𝑐0/𝑟2 + 1 = 𝑣2 

For the general solution this can be reduced to an elliptic curve. However, two special cases 

can be found using the concept of regularity for Diophantine quadruples. A regular rational 

Diophantine quadruple is one which satisfies the equation 

(𝑎 + 𝑏 − 𝑐 − 𝑑)2 = 4(𝑎𝑏 + 1)(𝑐𝑑 + 1) 

It is well-known that if (𝑎, 𝑏, 𝑐) is a Diophantine triple, then this equation can be solved for 𝑑 

to give a Diophantine quadruple. There are in general two rational solutions one of which 

may be zero. It is perhaps less well-known that this equation can also be solved to complete 

the Diophantine quadruple given (𝑥, 𝑦, 𝑧, 𝑡) as above. Again there are in general two 

rational solutions.  

In conclusion, one ideal non-symmetric solution to the PTE problem of size four provides 

nine partial rational Diophantine quadruples and therefore up to 18 regular Diophantine 

quadruples. Each of these in turn would provide three solutions to the PTE problem, one of 

which would be the original and the two others would be new. 
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