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Two Proofs of Riemann Hypothesis by Vector Properties 
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Abstract: The Riemann zeta function(RZF) ζ(s) is useful in number theory for studing 

properties of prime numbers. The Dirichlet eta function(DEF) η(s) is modification of RZF. In 

this thesis, we treat each term of RZF and DEF as a vector. From the geometric properties 

of vectors, we got clues of proof from the fact that, in a complex variable s = α + iβ, α only 

affects the magnitude of each vector and β affects only the argument of each vector, 

independently. So, each vector with same n are parallel to each other, regardless of the 

value of α. This parallel property implies a very strict geometric restriction which lead to two 

successful proofs of Riemann Hypothesis(RH). One proof is from the contradictions which 

come from the trajectories of RZF, and the other proof is by applying Chauchy integral 

theorem to the trajectory of RZF. We tried to provide sufficient graphs and videos for the 

understanding of the vector geometry properties of RZF and DEF. In appendix, we provided 

the source programs for analyzing vectors and suggested two other possible proofs of RH 

for further studies. 

1. Introduction 

RZF [1][2][3][4] 𝜁(𝑠) is a function of a complex variable 𝑠 = + 𝑖.  

𝜁(𝑠) =  ∑
1

𝑛𝑠
∞
𝑛=1 =

1

1𝑠 +
1

2𝑠 +
1

3𝑠 + ⋯   (1.1) 

Equation (1.1) converges only when Re(s) > 1. RH [5] states that all the non-trivial zeros 

of RZF are of the form 𝑠 = 0.5 + 𝑖. which is called the critical line. 

DEF [6] (𝑠) gives an equation for calculating ζ(s) in the region 0 < Re(s) =  < 1. 

(𝑠) =  ∑
(−1)𝑛+1

𝑛𝑠
∞
𝑛=1 = (1 − 21−𝑠)(𝑠)  (1.2) 

In (1.1) and (1.2), let each term of RZF and DEF as 𝑓𝑛(𝑠) and 𝑔𝑛(𝑠), then, 

𝑓𝑛
 (𝑠) =  

1

𝑛𝑠 = 𝑒−𝛼𝑙𝑛𝑛𝑒−𝑖𝑙𝑛𝑛 = 𝑟𝑛𝑒
𝑖𝜃𝑛 = 𝑢𝑛 + 𝑖𝑣𝑛  (1.3) 

𝑟𝑛
 = 𝑒−𝛼𝑙𝑛𝑛  (1.4) 

𝜃𝑛
 = −𝑙𝑛𝑛  (1.5) 

𝑢𝑛 = 𝑟𝑛𝑐𝑜𝑠𝜃𝑛
   (1.6) 

𝑣𝑛 = 𝑟𝑛𝑠𝑖𝑛𝜃𝑛
   (1.7) 

𝑓1
 (𝑠) =  

1

1𝑠 = 𝑒−𝛼𝑙𝑛1𝑒−𝑖𝑙𝑛1 = 1  (1.8) 

𝑓2
 (𝑠) =  

1

2𝑠 = 𝑒−𝛼𝑙𝑛2𝑒−𝑖𝑙𝑛2 = 𝑒−𝛼𝑙𝑛2(𝑐𝑜𝑠𝑙𝑛2 − 𝑖𝑠𝑖𝑛𝑙𝑛2)  (1.9) 
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(𝑠) = ∑ 𝑓𝑛(𝑠)
∞
𝑛=1 = ∑ 𝑒−𝛼𝑙𝑛𝑛𝑒−𝑖𝑙𝑛𝑛∞

𝑛=1    

= 1 + ∑ 𝑒−𝛼𝑙𝑛𝑛𝑒−𝑖𝑙𝑛𝑛∞
𝑛=2   (1.10) 

𝑔𝑛
 (𝑠) =  

(−1)𝑛+1

𝑛𝑠 = (−1)𝑛+1𝑒−𝛼𝑙𝑛𝑛𝑒−𝑖𝑙𝑛𝑛 = (−1)𝑛+1𝑓𝑛(𝑠)  (1.11) 

(𝑠) = ∑ 𝑔𝑛(𝑠)
∞
𝑛=1 = ∑ (−1)𝑛+1𝑒−𝛼𝑙𝑛𝑛𝑒−𝑖𝑙𝑛𝑛∞

𝑛=1    

= 1 + ∑ (−1)𝑛+1𝑒−𝛼𝑙𝑛𝑛𝑒−𝑖𝑙𝑛𝑛∞
𝑛=2   (1.12) 

We can see the following roles of α and β. 

① α determines the magnitude of 𝑓𝑛(𝑠) or 𝑔𝑛(𝑠), 𝑒
−𝛼𝑙𝑛𝑛. 

② β determines the argument of 𝑓𝑛(𝑠) or 𝑔𝑛(𝑠), −𝑙𝑛𝑛. 

③ α and β are independent. 

Table 1 shows some examples of α vs rn relationships. 

Table 1. Radius of 𝑓𝑛(𝑠) and 𝑓2(𝑠) for some α. 

α 0 1/3 1/2 2/3 1 

rn 1 (1/n)1/3 (1/n)1/2 (1/n)2/3 (1/n)1 

r2 1 0.79 0.71 0.63 0.5 

2. Vector Trace Analysis 

2.1 Trace Graphs 

In this study, we deal each 𝑓𝑛(𝑠) or 𝑔𝑛(𝑠) as a vector in the complex plane and by 

tracing the vector sum we can grasp the graphical properties of RZF and DEF. We used 

PureBasic [7] free version to plot the trace. The source program and some videos are given 

in appendix A and C. Figure 1 shows some vector trace graphs. 

Figure 1. Sample vector trace graphs. 

 

 

(a) RZF:  = 0.5,  = 14.134725141734 (b) DEF:  = 0.5,  = 14.134725141734 
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(c) RZF:  = 0.5,  = 24499.249265478 (d) DEF:  = 0.5,  = 24499.249265478 

From Figure 1, we can see that when  is small, graphs are simpler than when  is large. 

In Figure 1 (c) and (d), you can see the lumps where vectors spiral in and spiral out. This 

phenomena occurs because of the argument change patterns of vectors, as in Figure 2. 

Figure 2. Example argument graphs. 

 
(a)  = 0.5,  = 14.13(blue),  = 124.26(brown) 

 

(b) mod(arg, 2),  = 0.5,  = 14.13(blue),  = 124.26(brown) 

There are four types of vector movement. 

① Zigzag: Vectors zigzag when arg(v), the argument of vector v, changes abruptly. 

② Spiral in: Vectors shrink to a point. It occurs when sequence of vectors with 

arg(vn+1) – arg(vn) > 90° are prevalent. 

③ Spiral out: Vectors are inverted from spiral in and spiral out. It occurs when 

sequence of vectors with arg(vn+1) – arg(vn) < 90° are prevalent. 

④ Smooth moving: Vectors move smoothly.  

2.2 Trace of  and  

We used GeoGebra [8] to trace RZF with respect to  and . GeoGebra has zeta function 

and we set the following parameter and function, and animated  and . 
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𝑠 = + 𝑖   

𝑤 = 𝑧𝑒𝑡𝑎(+ 𝑖)  

Graphs for the following cases are drawn. 

(a)  = 0.5, 14.13 ≤  ≤ 32.94. 

(b)  = 0.25, 14.13 ≤  ≤ 32.94. 

(c)  = 0.75, 14.13 ≤  ≤ 32.94. 

(d) 0≤  ≤1,  = 14.13. 

(e) 0≤  ≤1,  = 124.26. 

(f) 0≤  ≤1,  = 294014.13. 

Figure 3 shows above 6 graphs.  

Figure 3. Trace of RZF with respect to  and . 

 
 

(a)  = 0.5, 14.13 ≤  ≤ 32.94. (b)  = 0.25, 14.13 ≤  ≤ 32.94. 

 
 

(c)  = 0.75, 14.13 ≤  ≤ 32.94. (d) 0≤  ≤1,  = 14.13. 

  

(e) 0≤  ≤1,  = 124.26 (f) 0≤  ≤1,  = 294014.13 

From the graphs in Figure 3, we can see the followings. 

(a) When  = 0.5, graphs have zeros.  
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(b) When  = 0.25, graph swells with some biase to the left, because the magnitude 

of each vector 𝑒−𝛼𝑙𝑛𝑛 becomes large. 

(c) When  = 0.75, graph shrinks with some biase to the right, because the magnitude 

of each vector 𝑒−𝛼𝑙𝑛𝑛 becomes small. 

(d) When  = 14.13, as  moves between 0 and 1, an open curve which passes origin 

at  = 0.5 is drawn. 

(e) When  = 124.26, as  moves between 0 and 1, an open curve which passes 

origin at  = 0.5 is drawn.  

(f) When  = 290414.13, as  moves between 0 and 1, an open curve which does 

not cross the origin is drawn. 

3. Symmetry Property of the Zeros of RZF 

It is well known that the following two consequences are true, where (𝑠) is Riemann's 

Xi-function [9].  

(𝑠) =
1

2
𝑠(𝑠 − 1) (

𝑠

2
) (𝑠)

−𝑠

2   (3.1) 

(𝑠) = (1 − 𝑠)  (3.2) 

(𝑠) = (𝑠)  (3.3) 

Equations (3.2) and (3.3) imply two kinds of symmetry of RZF zeros, as in Figure 4.  

① Critical line symmetry: Symmetry of s and 1 - s, so, α and 1 – α symmetry along 

the crtical line. 

② Complex conjugate symmetry: Symmetry of (𝑠) = (𝑠) along the x axis. 

Figure 4. Zero symmetries of RZF. 

 

① critical line symmetry 

② complex conjugate symmetry 
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Suppose that there exists critical line symmetry zeros at P(, ) and Q(1 - , ), then, a 

closed trajectory must be drawn by the following 3 steps, as in Figure 5. 

① Initial state at (, ): At P(, ), 0    1/2, trajectory remains at origin O. 

② Movement to (1/2, ): Trajectory will leave origin and will reach somewhere on C. 

③ Movement to (1 - , ): Trajectory will come back to O, the final state. 

So, the trajectory drawn while moving domain  ≤ x ≤ 1 - , will form a logically closed 

contour C, as in Figure 5. Here, a logically closed contour means that, C may cross itself, 

resulting multiple loops C1, C2, …, Ci. 

Figure 5. Contour for 𝛼 ≤ 𝑥 ≤ 1 − 𝛼, 0 ≤ 𝛼 ≤ 1/2. 

 

4. Two Proofs of RH  

4.1. Proof by the Last Vector Contradiction 

We can rewrite (1.10) as follows.  

(𝑠) = ∑ 𝑓𝑛(𝑠)
∞
𝑛=1 = ∑ 𝑒−𝛼𝑙𝑛𝑛𝑒−𝑖𝑙𝑛𝑛∞

𝑛=1    

= 1 + ∑ 𝑒−𝛼𝑙𝑛𝑛𝑒−𝑖𝑙𝑛𝑛∞
𝑛=2   (1.10) 

= 1 + ∑ 𝑒−𝛼𝑙𝑛𝑛𝑒−𝑖𝑙𝑛𝑛∞
𝑛=3 + 𝑒−𝛼𝑙𝑛2𝑒−𝑖𝑙𝑛2  (4.1) 

= 𝐴
⃗⃗ ⃗⃗  + 𝐵⃗⃗⃗⃗ + 𝐶⃗⃗⃗⃗   (4.2) 

𝐴
⃗⃗ ⃗⃗  = (1,0)  (4.3) 

𝐵⃗⃗⃗⃗ = ∑ 𝑒−𝛼𝑙𝑛𝑛𝑒−𝑖𝑙𝑛𝑛∞
𝑛=3   (4.4) 

𝐶⃗⃗⃗⃗ = 𝑒−𝛼𝑙𝑛2𝑒−𝑖𝑙𝑛2  (4.5) 

Definition 4.1. Last vector: Vector 𝐶⃗⃗⃗⃗  in (4.2) and (4.5).  

Definition 4.2. Triangle vector set(TVS): Set of three vectors in (4.2), 𝑉 = {𝐴
⃗⃗ ⃗⃗  , 𝐵⃗⃗⃗⃗ , 𝐶⃗⃗⃗⃗ } or 

𝑉1− = {𝐴1−
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐵1−

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐶1−
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  } or for any value 𝑥, 0 < 𝑥 < 1, 𝑉𝑥 = {𝐴𝑥

⃗⃗ ⃗⃗ , 𝐵𝑥
⃗⃗⃗⃗ , 𝐶𝑥

⃗⃗⃗⃗ }.  

Lemma 4.3. If (+ 𝑖) = (1 − + 𝑖) = 0, 0 <  < 0.5, then, the two last vectors 𝐶⃗⃗⃗⃗  and 

𝐶1−
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   must be on the same line.  
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Proof. Figure 6 shows example TVSs 𝑉 = {𝐴
⃗⃗ ⃗⃗  , 𝐵⃗⃗⃗⃗ , 𝐶⃗⃗⃗⃗ } and 𝑉1− = {𝐴1−

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐵1−
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐶1−

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  }.  

Figure 6. Last vector examples. 

  

(a) Two last vectors can’t end at the origin. (b) Two last vectors end at the origin. 

* For convenience, we omitted the vector arrows in Figures. 

The last vectors are 𝐶⃗⃗⃗⃗ = 𝑒−𝛼𝑙𝑛2𝑒−𝑖𝑙𝑛2 and 𝐶1−
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑒−(1−𝛼)𝑙𝑛2𝑒−𝑖𝑙𝑛2, respectively. The 

arguments of the two last vectors are same. If the two last vectors are not on the same line 

as in figure (a), it can’t be (+ 𝑖) = (1 − + 𝑖) = 0, so, the two last vectors should be 

on the same line, as in figure (b).                                                    ■ 

Definition 4.4. Same line restriction: The result of Lemma 4.3.  

Lemma 4.5. If there exists   such that (+ 𝑖) = (1 − + 𝑖) = 0, 0 <  < 0.5 , then, 

there are three possible trajectories of 𝐴
⃗⃗ ⃗⃗  , +𝐵⃗⃗⃗⃗ , while  approaches to 1 − , that will cause 

a contradiction, respectively. So, there can’t exist  such that (+ 𝑖) = (1 − + 𝑖) =

0, 0 <  < 0.5, i.e., RH is true.  

Proof. Following steps will lead to the proof.  

Step 1: The magnitude of the two last vectors are 𝑒−𝛼𝑙𝑛2 and 𝑒−(1−𝛼)𝑙𝑛2, as in figure 7. The 

red graph 𝑓(𝑥) = 𝑒−𝑥𝑙𝑛2 represents the magnitude of the term of RZF for 𝑛 = 2. 

Figure 7. Last vector magnitude graph. 

 

* The graph 𝑒−𝑥𝑙𝑛2 represents the magnitude of all vectors for n = 2. 



 

 

                           

                                                

- 8 - 

 

Step 2: The argument of the two last vectors is −𝑖𝑙𝑛2, so,  = −𝑖𝑙𝑛2 − 𝜋, as in figure 8. 

The new blue axis is introduced to reflect the argument of the last vectors. Also, the two TVSs 

𝑉 = {𝐴
⃗⃗ ⃗⃗  , 𝐵⃗⃗⃗⃗ , 𝐶⃗⃗⃗⃗ } and 𝑉1− = {𝐴1−

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐵1−
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐶1−

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  } are shown. 

Figure 8. Last vector argument graph. 

 

* The blue axis reflect the argument of the last vectors. 

Step 3: The trajectory of 𝐴
⃗⃗ ⃗⃗  , +𝐵⃗⃗⃗⃗  while  approaches to 1 −  falls into one of the following 

three cases, as shown in Figure 9. Trajectories are marked as bold red line or curves. 

Figure 9. Three possible trajectories of 𝐴
⃗⃗ ⃗⃗  , +𝐵⃗⃗⃗⃗ , ≤ 𝑥 ≤ 1 − . 

 

(a) Line trajectory. 
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(b) Curve trajectory which crosses 𝐶⃗⃗⃗⃗ . 

 

(c) Curve trajectory which does not cross 𝐶⃗⃗⃗⃗ . 

Step 4: All three possible trajectories of 𝐴
⃗⃗ ⃗⃗  , +𝐵⃗⃗⃗⃗  introduce a contradiction, respectively, so, 

RH is true. 

① Trajectory (a): For all 𝑥 in  < 𝑥 < 1 − , the last vectors 𝐶𝑥
⃗⃗⃗⃗  will end at the origin 

which means that (𝑥 + 𝑖) = 0 for all 𝑥, which contradicts.  

② Trajectory (b): For some 𝑥 in  < 𝑥 < 1 − , the trajectory will cross 𝐶⃗⃗⃗⃗ , and at 

that moment, (𝑥 + 𝑖) = 0, which contradicts.  

③ Trajectory (c): There always exist 𝑥1, 𝑥2 such that, 𝑠1 = 𝑥1 + 𝑖, 𝑠2 = 𝑥2 + 𝑖, <

𝑥1, 𝑥2 < 1 − , 𝑥1 ≠ 𝑥2, which satisfy (𝑠1) = (𝑠2), as in Figure 10.  

In Figure 10, while 𝑥 moves from  to 1 − , (𝑥 + 𝑖) moves on the pink line 

segment OT̅̅ ̅̅  from left to right and exactly back from right to left. So, there always exists 

(s1, s2) pair that satisfy (𝑠1) = (𝑠2) for all 𝑥1, 𝑥2, < 𝑥1, 𝑥2 < 1 − , 𝑥1 ≠ 𝑥2. The last 

two pink vectors, PR⃗⃗⃗⃗  ⃗ of 𝑥1 and QR⃗⃗⃗⃗  ⃗ of 𝑥2, show why (𝑥1 + 𝑖, ) = (𝑥2 + 𝑖) should 
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have the same value.  

The last vector ST⃗⃗⃗⃗  is any rightmost tangent vector to the trajectory (c).  

According to the curve shape of trajectory (c), there can be more than two same 

values (𝑠1) = (𝑠2) = ⋯ = (𝑠𝑛).  

It does not matter whether the trajectory (c) is on the right side or left side. 

Figure 10. Trajectory (c) with (𝑠1) = (𝑠2) example. 

 

This lead to a contradiction, because (𝑠1) = (𝑠2) for infinitely many 𝑥1 ≠ 𝑥2, means 

that there exist reflection symmetry with respect to some 𝑥 in  < 𝑥 < 1 − .           ■ 

This result stems from the restriction that there exist   such that (+ 𝑖) =

(1 −  + 𝑖) = 0, 0 <  < 0.5. It leads to the restriction that the two last vectors must be on 

the same line as in Figure 6 (b). If the two last vectors are freed from the ‘same line  

restriction’, the contradictions of Lemma 4.5 are not necessary, as in Figure 11.  

Figure 11. Example trajectory with no ‘same line restriction’. 
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Note that, we selected second term of (1.1) as the last vector, but, we can select any term 

as the last vector.  

Figure 12 shows nine parallel vector trace graphs for  = 24499.249265478 and  = 

0.3(outside red), 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7(inside aqua). In Figure 12, the white 

lines from outside to inside are the end point links for every mod(n, 100) = 0 terms. The 

parallel vector trace program source is provided in Appendix B. 

Figure 12. Parallel vector trace example. 

 

4.2. Proof by Cauchy Integral Theorem 

Cauchy integral theorem states that for any analytic complex function ℎ(𝑧), the closed 

curve integral is always zero, as the following equation. 

∮ ℎ(𝑧)𝑑𝑧 = 0
 

𝐶
  (4.6) 

Lemma 4.6. If there exist  such that (+ 𝑖) = (1 −  + 𝑖) = 0, 0 <  < 0.5, then, the 

Cauchy integral on the close trajectory (𝑧) proves that  = 0.5.  
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Proof. In our case, the three trajectory types in Figure 9 can be generalized as a line segment 

of 𝑦 = 𝑘𝑥, as in figure 13. So, the Cauchy integral theorem can be applied to that line segment, 

which is denoted as contour C in Figure 13. C starts from the origin and returns back to the 

origin. In the case of trajectory (a) in Figure 9, C always remains at the origin, regardless of 

the movement of 𝑡, ≤ 𝑡 ≤ 1 − . 

Figure 13. Cauchy integral domain and contour C. 

 

Let ℎ(𝑧) = 1, which is entirely analytic, then, 

∮ ℎ(𝑧)𝑑𝑧
 

𝐶
= ∮ 𝑑𝑧 = 0

 

𝐶
  (4.7) 

𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) = 𝑡 + 𝑖𝑘𝑡 = (1 + 𝑖𝑘)𝑡 (4.8) 

𝑑𝑧 = (𝑖 + 𝑖𝑘)𝑑𝑡, ≤ 𝑡 ≤ 1 −  (4.9) 

∮ 𝑑𝑧 = ∫ (1 + 𝑖𝑘)𝑑𝑡 =
1−𝛼

𝛼
(1 + 𝑖𝑘)[𝑡] = (1 + 𝑖𝑘)(1 − 2) = 0𝛼  

1−𝛼 

𝐶
  (4.10) 

 = 0.5.  (4.11) 

The result (4.10) explicitly shows that RH is true.                                   ■ 

5. Conclusion 

In this thesis, we proved RH by analysing the vector properties of RZF and DEF. In a 

complex variable 𝑠 = + 𝑖,  only affects the magnitude of each vector and  affects only 

the argument of each vector, independently. We provided various vector trace examples of 

RZF and DEF from which the triangle vector geometry with last vector concept can be devised 

to induce contradictions. The parallel property of each vectors implies a very strict geometric 

restriction which lead to Lemma 4.5, which is a successful proof of RH. The contour trajectory 

of RZF that satisfies (+ 𝑖) = (1 − + 𝑖) = 0 must be just a line segment that start from 

the origin and go back to origin. This simple restriction let us the second proof possible by 

using Cauchy integral theorem, as in Lemma 4.6.  

 

  



 

 

                           

                                                

- 13 - 

 

References 

[1] H.M. Edwards, Riemann’s Zeta Function, Dover Publications, Inc., 1974.  

[2] Aleksandar Ivic, The Riemann Zeta-Function, Theory and Applications, Dover  

Publications, Inc., 1985.  

[3] https://en.wikipedia.org/wiki/Riemann_zeta_function  

[4] https://www.youtube.com/watch?v=ZlYfEqdlhk0&list=PL32446FDD4DA932C9  

Lectures on Euler-Riemann Zeta Function.  

[5] https://en.wikipedia.org/wiki/Riemann_hypothesis  

[6] https://en.wikipedia.org/wiki/Dirichlet_eta_function   

[7] https://www.purebasic.com 

[8] https://www.geogebra.org/m/UdjMfsKS  

[9] https://en.wikipedia.org/wiki/Riemann_Xi_function  

 

 

 

 

  

https://en.wikipedia.org/wiki/Riemann_zeta_function
https://www.youtube.com/watch?v=ZlYfEqdlhk0&list=PL32446FDD4DA932C9
https://en.wikipedia.org/wiki/Riemann_hypothesis
https://en.wikipedia.org/wiki/Dirichlet_eta_function
https://www.purebasic.com/
https://www.geogebra.org/m/UdjMfsKS
https://en.wikipedia.org/wiki/Riemann_Xi_function


 

 

                           

                                                

- 14 - 

 

List of Tables 

1 Radius of 𝑓𝑛(𝑠) and 𝑓2(𝑠) for some α. ……….……………………….……………... 2 

   

List of Figures 

1 Sample vector trace graphs ….……………………….………………………………... 2 

2 Example argument graphs .………………………………………………….…………. 3 

3 Trace of RZF with respect to  and  …………………….………………...…………... 4 

4 Zero symmetries of RZF .…………………………………………………………….…. 6 

5 Contour for 𝛼 ≤ 𝑥 ≤ 1 − 𝛼, 0 ≤ 𝛼 ≤ 1/2 ……………….………………..…………... 6 

6 Last vector examples .………………………………………………………………..…. 7 

7 Last vector magnitude graph ……….……………………….…………………..……... 8 

8 Last vector argument graph .……………………………………………………………. 8 

9 Three possible trajectories of 𝐴
⃗⃗ ⃗⃗  , +𝐵⃗⃗⃗⃗ , ≤ 𝑥 ≤ 1 −  .……………………………... 9 

10 Trajectory (c) with (𝑠1) = (𝑠2) example ……………………………………………. 10 

11 Example trajectory with no ‘same line’ restriction ….………………………..………... 10 

12 Parallel vector trace example .………………………………………………….………. 11 

13 Cauchy integral domain and contour C ……………………………………………… 12 

 

 



 

 

                           

                                                

- 15 - 

 

Appendix A : Source Code For RZF or DEF Trace 
 

;Code for zeta or eta vector trace visualization using PureBasic evaluation version. 

 

;[1] graph window. 

#Window1   = 0 

#Image1    = 0 

#ImgGadget = 0 

#width         = 1370 

#height        = 735 

 

;[2] variables. 

Define.d Dim x(10000000)    ;Re(z) 

Define.d Dim y(10000000)    ;Im(z) 

Define.d Dim t(10000000)    ;Arg(z), radian 

Define.d Dim deg(10000000)  ;Arg(z), degree 

Define.d Dim r(10000000)    ;r = |z| 

Define.d a, b, r, t, delta, x0, y0, x1, y1, xsum, ysum, x2, y2, x3, y3, lnn, rr 

Define.q i, m, n, thresh 

 

;[3] sample zero values. 

a = 1/2 

;a = 0.501 

;b = 14.134725141734693790 

;b = 236.5242296658162058 

;b = 5565.566217327 

b = 24499.249265478 

;b = 74908.108191005 

 

;[4] font. 

LoadFont (0, "Courier", 15) ;load Courier Font, Size 15. 

LoadFont (1, "Arial", 24)   ;load Arial Font, Size 24. 

OpenConsole() 

If b>0 

  header$ = "Riemann Zeta : s=" + a + "+" + b + "i"  

  ;header$ = "Dirichlet Eta : s=" + a + "+" + b + "i"  

Else 

  header$ = "Riemann Zeta : s=" + a + "" + b + "i"  

  ;header$ = "Dirichlet Eta : s=" + a + "" + b + "i"  

EndIf 

delta = 0.007  ;image zoom factor: small value for zoom in.  

m = 7000 ;#vectors to plot. 

pi.d = 3.1415926535 

 

;[5] calculate vectors. 

For n=1 To m Step 1    

  lnn = Log(n) 

  r(n) = Exp(-a*lnn) 

  t(n) = -b*lnn 

  deg(n) = Mod(Round(Degree(t(n)), #PB_Round_Down), 360)  ;#PB_Round_Up, #PB_Round_Nearest   

  If deg(n)<0 

    deg(n) = deg(n) + 360 

  EndIf 

  dg = deg(n) - deg(n-1) 
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  ;PrintN("n=" + n + " r(n)=" + r(n) + " θ=" + deg(n) + "° dθ=" + dg + "°" + " t(n)=" + t(n))  ;print values.   

;for eta function, remove following 5 comments in If...Else...EndIf block. 

;  If Mod(n, 2)=1  

    x(n) = r(n)*Cos(t(n)) 

    y(n) = r(n)*Sin(t(n)) 

;  Else 

;    x(n) = -r(n)*Cos(t(n)) 

;    y(n) = -r(n)*Sin(t(n))   

;  EndIf     

Next 

 

;[6] graph origin. 

x0 = #width/2 

y0 = #height/2 

xsum = 0 

ysum = 0 

If OpenWindow(#Window1, 0, 0, #width, #height, header$, #PB_Window_SystemMenu ) ;If 1 

  If CreateImage(#Image1, #width, #height)                                      ;If 2       

    ImageGadget(#ImgGadget, 0, 0, #width, #height, ImageID(#Image1))           

    StartDrawing(ImageOutput(#Image1))     

    Delay(2000)     

    DrawingFont(FontID(1))  ;use the 'Courier' font       

    c$ = "Riemann Zeta Function Vector Trace : s = " + a + " + " + b + "i" 

    ;c$ = "Dirichlet Eta Function Vector Trace : s = " + a + " + " + b + "i" 

    DrawText(200,200, c$, RGB(255, 255, 255))      

    StopDrawing()     

    ImageGadget(#ImgGadget, 0, 0, #width, #height, ImageID(#Image1)) 

    StartDrawing(ImageOutput(#Image1))     

    Delay(1000)     

    DrawingFont(FontID(1))  

    c$ = "                                                                                                                                        

" 

DrawText(150, 200, c$, RGB(0, 0, 0))  ;erase previous text.      

    StopDrawing()                 

    ImageGadget(#ImgGadget, 0, 0, #width, #height, ImageID(#Image1)) 

    StartDrawing(ImageOutput(#Image1))       

    ;axis. 

    LineXY(0, y0, #width, y0, RGB(128,128,128)) 

    LineXY(x0, 0, x0, #height, RGB(128,128,128)) 

    x1 = Int(xsum/delta) + x0 

    y1 = -Int(ysum/delta) + y0 

    StopDrawing()        

 

    ;[7]plot vectors. 

    For i = 1 To m    

      If Not(i>=startVector And i<=endVector) 

        Gosub plotVector 

      EndIf         

    Next      

    SetGadgetState(#ImgGadget, ImageID(#Image1))  

    StartDrawing(ImageOutput(#Image1))            

   EndIf  ;If 2    

  Repeat 
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    Event = WaitWindowEvent() 

  Until Event = #PB_Event_CloseWindow   

EndIf ;If 1 

 

;======================== plotVector Subroutine =============================== 

plotVector: 

       xsum = xsum + x(i) 

       ysum = ysum + y(i) 

       xx = Int(xsum/delta) 

       yy = Int(ysum/delta) 

       x2 = xx + x0 

       y2 = -yy + y0           

       SetGadgetState(#ImgGadget, ImageID(#Image1))  

       StartDrawing(ImageOutput(#Image1))        

       ;vector colors. 

       If Mod(i, 3) = 1 

         color = RGB(255, 255, 255) ;white. 

       ElseIf Mod(i, 3) = 2 

         color = RGB(0, 255, 255)   

       Else 

         color = RGB(255, 0, 255)          

       EndIf  

       LineXY(x1, y1, x2, y2, color)        

       x3 = Int(xsum*100)/100 

       y3 = Int(ysum*100)/100  

       rr = Sqr(xsum*xsum + ysum*ysum) 

       c$ = "n = " + Str(i+jump) + " : (x, y) = (" + xsum + ", " + ysum + "), r = " + rr + ", θ = " + deg(i) + "°, dθ = " 

+ Str(deg(i)-deg(i-1)) + "°          " 

       DrawText(20, 20, c$) 

       PrintN(c$)                   

       If i=1 ;mark 0 and 1 

         DrawText(x1, y1, "0")   

         DrawText(x2, y2, "1")             

       EndIf                                          

       If i>=2 And i<=10  ;mark first 10 points 

         DrawText(x2, y2, Str(i))             

       EndIf              

       Delay(1)  ;plot speed.                   

       StopDrawing()                 

       x1 = x2 

       y1 = y2 

Return  
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Appendix B: Source Code For Parallel RZF or DEF Trace 
 

;Code for parallel zeta or eta vector trace visualization using PureBasic evaluation version. 

 

#Window1   = 0 

#Image1    = 0 

#ImgGadget = 0 

#width         = 1370 

#height        = 735 

 

Define.d Dim x(100000, 9) 

Define.d Dim y(100000, 9) 

Define.d Dim t(100000, 9) 

Define.d Dim deg(100000, 9) 

Define.d Dim r(100000, 9) 

Define.d Dim a2(9) 

Define.s Dim header$(9) 

 

Define.d a, b, r, t, delta 

Define.d Dim x0(9), Dim y0(9), Dim x1(9), Dim y1(9), Dim xsum(9), Dim ysum(9), Dim x2(9), Dim y2(9), Dim 

x3(9), Dim y3(9) 

Define.d lnn, rr 

Define.q i, m, n, Dim color(9) 

 

b = 14.134725141734693790 

;b = 21.02203963877155499 

;b = 69.546401711 

;b = 124.256818554 

;b = 236.5242296658162058 

;b = 570.051114782 

;b = 572.419984132 

;b = 1201.810334857 

;b = 2210.850941099 

;b = 3156.300357947 

;b = 5565.566217327 

;b = 7776.955377123 

;b = 9457.289938949 

;b = 10000.065345417 

;b = 10000.651847322 

;b = 10000.918178956 

;b = 12571.195309379 

;b = 15536.816303095 

;b = 24499.249265478 

;b = 33945.406726423 

;b = 48596.896626512 

;b = 53243.675588739 

;b = 74908.108191005 

 

maxj = 9 

 

a2(1) = 0.3 

a2(2) = 0.35 

a2(3) = 0.4 
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a2(4) = 0.45 

a2(5) = 0.5 

a2(6) = 0.55 

a2(7) = 0.6 

a2(8) = 0.65 

a2(9) = 0.7 

 

color(1) = RGB(255, 0, 0) 

color(2) = RGB(255, 127, 0) 

color(3) = RGB(255, 255, 0) 

color(4) = RGB(0, 255, 0) 

color(5) = RGB(255, 255, 255) 

color(6) = RGB(0, 0, 255) 

color(7) = RGB(75, 0, 130) 

color(8) = RGB(148, 0, 211) 

color(9) = RGB(0, 255, 255) 

 

delta = 0.015 ;image size zoom factor 

d = 0 ;delay 

markN = 1 ;1=mark, 0=do not mark n on the image 

 

m = 5500 ;# terms 

 

LoadFont (0, "Courier", 15)            ; Load Courier Font, Size 15 

LoadFont (1, "Arial", 24)              ; Load Arial Font, Size 24 

 

OpenConsole() 

 

For j=1 To maxj 

  header$(j) = "Riemann Zeta : s" + j + "=" + a2(j) + "+" + b + "i"  

Next  

 

pi.d = 3.1415926535 

 

For n=1 To m Step 1  

  For j=1 To maxj 

     

    lnn = Log(n) 

    r(n, j) = Exp(-a2(j)*lnn) 

    t(n, j) = -b*lnn 

    deg(n, j) = Mod(Round(Degree(t(n, j)), #PB_Round_Down), 360) ;#PB_Round_Up, #PB_Round_Nearest   

    If deg(n, j)<0 

      deg(n, j) = deg(n, j) + 360 

    EndIf 

    dg = deg(n, j) - deg(n-1, j) 

    ;PrintN("n=" + n + " r(n, j)=" + r(n, j) + " θ" + j + "=" + deg(n, j) + "° dθ" + j + "=" + dg + "°" + " t(n, j)=" + t(n, 

j)) 

  ;  If Mod(n, 2)=1 ;For eta function, remove comments of If...Else...EndIf block. 

      x(n, j) = r(n, j)*Cos(t(n, j)) 

      y(n, j) = r(n, j)*Sin(t(n, j)) 

  ;  Else 

  ;    x(n, j) = -r(n, j)*Cos(t(n, j)) 

  ;    y(n, j) = -r(n, j)*Sin(t(n, j))   
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  ;  EndIf 

     

  Next   

Next 

 

;origin 

For j=1 To maxj  

  x0(j) = #width/2 

  y0(j) = #height/2 

  xsum(j) = 0 

  ysum(j) = 0 

Next 

 

j = 1 

 

If OpenWindow(#Window1, 0, 0, #width, #height, header$(1) + "/" + header$(2), #PB_Window_SystemMenu ) ;If 

1 

  If CreateImage(#Image1, #width, #height)                                      ;If 2 

       

    ImageGadget(#ImgGadget, 0, 0, #width, #height, ImageID(#Image1))           

    StartDrawing(ImageOutput(#Image1)) 

     

    Delay(1000) 

     

    DrawingFont(FontID(1)) ; Use the 'Courier' font 

     

    c$ = "Riemann Zeta Function Vector Trace : s = " + a2(1) + " + " + b + "i" 

    DrawText(200,200, c$, RGB(255, 255, 255)) 

    c$ = "Riemann Zeta Function Vector Trace : s = " + a2(maxj) + " + " + b + "i" 

    DrawText(200,300, c$, RGB(255, 255, 255)) 

     

    StopDrawing() 

         

    ImageGadget(#ImgGadget, 0, 0, #width, #height, ImageID(#Image1)) 

    StartDrawing(ImageOutput(#Image1)) 

     

    Delay(2000) 

     

    DrawingFont(FontID(1))  

    c$ = "                                                                                                                                        

" 

    DrawText(150, 200, c$, RGB(0, 0, 0))  

    DrawText(150, 300, c$, RGB(0, 0, 0))  

   

    StopDrawing()       

           

    ImageGadget(#ImgGadget, 0, 0, #width, #height, ImageID(#Image1)) 

    StartDrawing(ImageOutput(#Image1)) 

     

 

     LineXY(0, y0(j), #width, y0(j), RGB(128,128,128)) 

     LineXY(x0(j), 0, x0(j), #height, RGB(128,128,128)) 
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     For j=1 To maxj 

       x1(j) = Int(xsum(j)/delta) + x0(j) 

       y1(j) = -Int(ysum(j)/delta) + y0(j) 

     Next    

      

     xo = 150 

     yo = 150 

     deg(0, 1) = 0 

     deg(0, 2) = 0 

               

     StopDrawing() 

      

     lastMile = 0 

 

     For i = 1 To m  ;For loop        

       For j=1 To maxj 

         Gosub plotVector 

       Next      

        

        

       If Mod(i, 100)=0          

         For j=2 To maxj+0     

           Delay(1) 

           SetGadgetState(#ImgGadget, ImageID(#Image1))  

           StartDrawing(ImageOutput(#Image1)) 

           LineXY(x1(j-1), y1(j-1), x1(j), y1(j), color(5))  

           StopDrawing() 

         Next          

       EndIf            

        

     Next ;For loop 

           

   EndIf ;If 2 

    

  Repeat 

    Event = WaitWindowEvent() 

  Until Event = #PB_Event_CloseWindow 

   

EndIf ;If 1 

 

;======================== plotVector Subroutine =============================== 

 

plotVector: 

 

  Delay(d) 

 

       xsum(j) = xsum(j) + x(i, j) 

       ysum(j) = ysum(j) + y(i, j) 

       xx = Int(xsum(j)/delta) 

       yy = Int(ysum(j)/delta) 

       x2(j) = xx + x0(j) 

       y2(j) = -yy + y0(j) 
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       SetGadgetState(#ImgGadget, ImageID(#Image1))  

       StartDrawing(ImageOutput(#Image1)) 

               

       LineXY(x1(j), y1(j), x2(j), y2(j), color(j)) 

 

       x3(j) = Int(xsum(j)*100)/100 

       y3(j) = Int(ysum(j)*100)/100 

                                         

       rr = Sqr(xsum(j)*xsum(j) + ysum(j)*ysum(j)) 

 

       c$ = "n = " + Str(i+jump) + " : (x, y) = (" + xsum(j) + ", " + ysum(j) + "), r = " + rr + ", θ = " + deg(i, j) + "°, 

dθ = " + Str(deg(i, j)-deg(i-1, j)) + "°          " 

       DrawText(20, 20, c$) 

       ;PrintN(c$) 

                   

       If i=1 ;mark 0 and 1 

         DrawText(x1(j), y1(j), "0")   

         DrawText(x2(j), y2(j), "1")             

       EndIf                       

                   

       StopDrawing() 

                      

       x1(j) = x2(j) 

       y1(j) = y2(j) 

Return  
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Appendix C: Vector Trace Videos 

seq type s link 

1 

DEF 

0.4 + 10000.065i https://www.youtube.com/watch?v=cIZlImNSclI 

2 0.6 + 10000.065i https://www.youtube.com/watch?v=CHjCcqthuTc 

3 0.5 + 74908.108i https://www.youtube.com/watch?v=dE2fnWLzqxw 

4 0.5 + 10000.065i https://www.youtube.com/watch?v=3c2riWMV78I 

5 0.5 + 14.135i https://www.youtube.com/watch?v=5XPmdAfBphw 

6 

RZF 

0.4 + 10000.065i https://www.youtube.com/watch?v=54FGRm4mb_c 

7 0.6 + 10000.065i https://www.youtube.com/watch?v=pOeANPrMIRI 

8 0.5 + 74908.108i https://www.youtube.com/watch?v=W09mzoCTHEI 
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Appendix D: Other Possible Proofs 

D.1. Possible Proof 1: By Lattice Hitting 

RZF can be rewritten as (𝑠) = 1 + ∑ 1/𝑛𝑠∞
𝑛=2  and we can consider zero of ζ(s) as where  

∑ 1/𝑛𝑠∞
𝑛=2  hit the origin starting from (1, 0), as in the following figure.  

 

 
 

  Considering that the origin is also a lattice point, only some circle with radius √𝑛 or 1/√𝑛 

can hit the origin. To keep the radius to be of 1/√𝑛 pattern,  should be 1/2. 

 

D.2. Possible Proof 2: By x-Axis Property 

(𝑠) = ∑
1

𝑛𝑠
∞
𝑛=1   

= 𝐴()𝑒𝑖𝐵()  

= 𝐴(){𝑐𝑜𝑠𝐵() + 𝑖𝑠𝑖𝑛𝐵()}  

= 𝑢 + 𝑖𝑣  

Eventually, RZF falls into just the two sine and cosine functions, but with a variable 

amplitude 𝐴() and a variable argument 𝐵(). So, the zeros of RZF must be on the x-axis, 

because the zeros must satisfy 𝑐𝑜𝑠𝐵() = 0, 𝑠𝑖𝑛𝐵() = 0, simultaneously.  

The x-axis on the complex plane is just the critical line, where zeros are found. That is to 

say, zeros of sinusoidal functions are found only on x-axis, so, the crtical line should be the 

x-axis. 

 


