Asymptotic Distribution of Residuals within congruence classes generated by primes

Gregory M. Sobko

Abstract

By using the Dirichlet characters for a finite abelian group $G_p = \mathbb{Z}_p = \mathbb{Z}/(p \cdot \mathbb{Z}), p \in \mathbb{P}$, and the corresponding characteristic functions, we discuss asymptotic distribution for sums of residuals $r = \text{mod}(v, p) = [v]_p, p \in \mathbb{P}$, where \mathbb{P} is a set of prime numbers, and v is a random variable with a certain probability distribution on set \mathbb{N} of natural numbers. We prove that for a sequence $v_1, v_2, \dots, v_n, \dots$ of independent random integers (not necessarily equally distributed), the residuals of sums $[v^{(n)}]_p = \sum_{i=1}^n [v_i]_p$ are asymptotically uniformly distributed on G_p , for every $p \in \mathbb{P}$, (congruence

classes generated by primes). Then, we prove that components of the vector of residuals $\vec{r}(v) = (r_1, r_2, \dots, r_{\pi(v)})$ are asymptotically independent random variables.

1. Characteristic functions for residuals of sums $[v^{(n)}]_p = \sum_{i=1}^n [v_i]_p$.

Notice that the vector function $r(n) = mod(n, \vec{p}(n))$ is periodic with a period $T = \prod_{p \le n} p$ since mod(T,p) = 0 for any $p \le n$. Due to the Chinese Remainder Theorem (CRT) [22, p.101], a solution x to the system of equations $mod(x, p_i) = r_i (1 \le i \le m)$ exists, and if x is a solution to the system, then y = x + T is also a solution to the same system. Considering the ring of all integers \mathbb{Z} , we write $\mathbb{Z}_m = \mathbb{Z}/(m \cdot \mathbb{Z})$. Here \mathbb{Z}_m consists of m congruence classes: $\mathbb{Z}_m = \{C_{m,0}, C_{m,1}, \dots, C_{m,m-1}\}$ modulo m, also called *residue classes*, denoted as $[0]_m, [1]_m, \dots, [m-1]_m$ with the addition and multiplication rules expressed as

$$[k]_m + [l]_m = [\operatorname{mod}(k+l,m)]_m$$
 and $[k]_m \cdot [l]_m = [\operatorname{mod}(k \cdot l,m)]_m$,

respectively. For any prime number $p \in \mathbb{P}$, set \mathbb{Z}_p of congruence classes modulo p is a *finite abelian group* $G_p = \mathbb{Z}_p = \mathbb{Z}/(p \cdot \mathbb{Z})$, of order p.

Consider a random sequence $\omega = (\eta_1, \eta_2, ..., \eta_n)$ where $\eta_i \in G_{p_i}$ (i = 1, 2, ..., n) such that random variables $\eta_1, \eta_2, ..., \eta_n$ are mutually independent and we can always find the minimal solution to $mod(x, p_i) = r_i (1 \le i \le m)$ among all solutions.

For example, given $\vec{p} = (5,11,17,23,29)$ and $\vec{r} = (0,8,13,7,1)$, the system

 $mod(x, p_i) = r_i (1 \le i \le 5)$ has the minimal solution x = 30. One of other possible solutions, for instance, is x = 623675.

We are interested in probability measures on the direct product $G = \prod_{p \in \mathbb{P}} G_p$ such that each non-trivial probability distribution is supported by a finite number of components in G.

For a random sequence $\omega = (\eta_1, ..., \eta_n)$ of mutually independent random variables $\eta_i \ (i = 1, 2, ..., n)$ with distributions $P\{\eta_i = r \mid r \in G_{p_i}\} = q_r^{(i)}$ on G_{p_i} , we have

$$P\Big\{\eta_i \in B \subseteq G_{p_i}\Big\} = \sum_{r \in B} q_r^{(i)}, \quad \sum_{r=0}^{p_i-1} q_r^{(i)} = 1 \ (i = 1, 2, ..., n) \ .$$

and

$$P\left\{\omega \in \prod_{i=1}^{n} B_i\right\} = \prod_{i=1}^{n} P\left\{\eta_i \in B_i\right\} \text{ for any } B_i \subset G_{p_i}$$

$$(4.1)$$

Further, we use the following notation: $B-r = \left\{s \in G_p | s+r \in B, r \in G_p\right\}$ and for every probability distribution P on G_p define the 'shifted' measure $\theta_r P(B) = P(B-r)$. Obviously the shifted measure $\theta_r P$ is a probability measure on subsets of a finite set $G_p: \theta_r P(G_p) = P(G_p - r) = 1$ because $G_p - r = G_p$ for any $r \in G_p$ since G_p is a group. Due to CRT, there exist one-to one correspondence between finite sequences of residues $(r_1, r_2, ..., r_n)$ and positive integers $n = \prod_{i=1}^k p_i^{\alpha_i}$ such that $mod(n, p_i) = r_i \ (i = 1, 2, ..., k)$. If $mod(m, p_i) = s_i$ for some number m, then $mod(n + m, p_i) = mod(r_i + s_i, p_i)$. Consider two independent random integers v and μ with probability measures P^v and P^{μ} , and their residuals $[v]_p, [\mu]_p \mod p$, respectively. We are interested in probability distribution $P^{[v+\mu]_p}$ of the sum $[v]_p + [\mu]_p = [v + \mu]_p$. For any set $B \subset G_p$ we have

$$P\left\{\left[\nu+\mu\right]_{p}\in B\right\}=\sum_{(r+s)\in B}P\left\{\left[\nu\right]_{p}=r\right\}\cdot P\left\{\left[\mu\right]_{p}=s\right\}=\sum_{t\in B}P\left\{\left[\nu\right]_{p}=t-s\right\}\cdot P\left\{\left[\mu\right]_{p}=s\right\}$$

and we denote $P^{\left[\nu+\mu\right]_p}(B) = P\left\{\left[\nu+\mu\right]_p \in B\right\}$ as

$$P^{\left[\nu+\mu\right]_{p}}(B) = P^{\left[\nu\right]_{p}} * P^{\left[\mu\right]_{p}}(B), \qquad (4.2)$$

so that $P^{\nu+\mu}(B) = P^{\nu} * P^{\mu}(B) = \sum_{t \in B} P\left\{ \left[\nu \right]_{p} = t - s \right\} \cdot P\left\{ \left[\mu \right]_{p} = s \right\}$

The measure $P^{\nu+\mu}(B) = P^{\nu} * P^{\mu}(B)$ is called a *convolution* of measures P^{ν} and P^{μ} . One of interesting questions is an asymptotic distribution of sums of independent random integers $v^{(n)} = v_1 + v_2 + \dots + v_n$ and their corresponding residuals

$$\left[\boldsymbol{v}^{(n)}\right]_{p} = \left[\boldsymbol{v}_{1}\right]_{p} + \left[\boldsymbol{v}_{2}\right]_{p} + \dots + \left[\boldsymbol{v}_{n}\right]_{p}$$

which are also sums of independent random variables $[v_i]_p$ (i = 1, 2, ..., n).

The answer to the question about the limit distribution of $v^{(n)}$ depends in general on the distributions of the terms v_i in the sum. Meanwhile the limit behavior of residuals $\left[v^{(n)}\right]_p$ does not depend (under very simple and natural conditions) on the distribution of each term $\left[v_i\right]_p$. In what follows we use the well-known general facts from Probability Theory regarding characteristic functions of probability distributions and their convolutions.

Let P^{ξ} be a probability measure defined on all finite subsets of \mathbb{N} . This means that for every $n \in \mathbb{N}$ there exists $P^{\xi}(n) = P\{\xi = n\} \ge 0$ such that $\sum_{n \in \mathbb{N}} P^{\xi}(n) = 1$.

Characteristic function Φ^{ξ} is defined by the formula

$$\Phi^{\xi}(t) = Ee^{it\cdot\xi} = \sum_{n\in\mathbb{N}} e^{it\cdot n} \cdot P^{\xi}(n).$$

For a finite abelian additive group $G_p = \mathbb{Z}_p$ we consider a homomorphism χ of G_p into multiplicative group C^* of complex numbers $\chi: G_p \to C^*$.

A homomorphism $\chi: G_p \to C^*$ is also called a *character*.

Since any element $[k]_p \in G_p$ (k = 0, 1, ..., p-1) has order p, that is $p \cdot [k]_p = [0]_p$,

we have $1 = \chi([0]_p) = \chi(p \cdot [k]_p) = (\chi([k]_p))^p$. This means that any character value $\chi([k]_p)$ is a *p*-th root of unity.

We can define p such character values: $\chi_r([k]_p) = e^{\frac{2\pi i}{p}(r \cdot k)} (r = 0, 1, 2, ..., p-1)$.

Denote $\chi_{rk} = e^{\frac{2\pi i}{p}(r\cdot k)}$ (r, k = 0, 1, 2, ..., p-1). Character $\chi_0([k]_p) = 1$ for all k = 0, 1, ..., p-1, and χ_0 is called a *principal character*.

Consider a square matrix $\chi = [\chi_{rk}] (0 \le r, k \le p-1)$ of size *p*. All characters are orthogonal to each other in terms of scalar products of rows of matrix χ :

$$\left\langle \chi_{r}, \chi_{s} \right\rangle = \sum_{t=0}^{p-1} \chi_{rt} \cdot \bar{\chi}_{st} = \sum_{t=0}^{p-1} e^{\frac{2\pi i}{p}(r \cdot t)} \cdot e^{\frac{-2\pi i}{p}(s \cdot t)} = \sum_{t=0}^{p-1} e^{\frac{2\pi i}{p}((r-s) \cdot t)} = \frac{1 - e^{2\pi i \cdot (r-s)}}{1 - e^{\frac{2\pi i}{p}}} = \begin{cases} p, & \text{if } r = s \\ 0, & \text{if } r \neq s \end{cases}$$

Characteristic function $\Phi^{[\xi]_p}$ for residual $[\xi]_p$ is given by the formula

$$\Phi^{[\xi]_{p}}(r) = Ee^{i\chi_{r}([\xi]_{p})} = \sum_{k=0}^{p-1} P^{[\xi]}(k)e^{\frac{2\pi i}{p}(r\cdot k)} = \sum_{k=0}^{p-1}\chi_{rk} \cdot P^{[\xi]}(k) = \left[\chi \cdot P^{[\xi]}\right](r)$$

Since the matrix $\chi = [\chi_{rk}]_p \ (0 \le r, k \le p-1)$ is orthogonal, the inverse matrix χ^{-1} exists and the probability distribution $P^{[\xi]_p}$ can be uniquely recovered as $P^{[\xi]_p} = \chi^{-1} \cdot \Phi^{[\xi]_p} \text{ given its characteristic function } \Phi^{[\xi]_p}.$

There is one-to-one correspondence between finite probability distributions and the corresponding characteristic functions.

2. Convergence of probability distributions of residuals $mod(v^{(n)}, p)$ as $n \to \infty$

for sums $v^{(n)} = \sum_{i=1}^{n} v_i$ (n = 1, 2, ...)to uniform disributions on G_p , for every $p \in \mathbb{P}$

A probability distribution $P^{\xi}(k)$ (k = 1, 2, ..., n) defined on a finite set $X = \{x_1, x_2, ..., x_n\}$ can be identified with the *n*-dimensional vector $P^{\xi} = (p_1, p_2, ..., p_n)$ where $p_k = P\{\xi = k\}, 1 \le k \le n$.

If we have a sequence of probability distributions P^{ξ_m} (m=1,2,...) such that $P^{\xi_m} \to P$ in a sense of vector convergence in *n*-dimensional vector space to probability measure P on X, then we can expect the convergence for the sequences of corresponding characteristic functions: $\Phi^{\xi_m} \to \Phi$, where Φ is a characteristic function of some limit random variable ξ_{∞} on X, and vice versa. One of the most important properties of characteristic functions is that for any two independent random variables ξ_1, ξ_2 we have $\Phi^{\xi_1+\xi_2} = \Phi^{\xi_1} \cdot \Phi^{\xi_2}$,

so that
$$\Phi^{\sum_{i=1}^{n} \xi_{i}} = \prod_{i=1}^{n} \Phi^{\xi_{i}}$$
 for independent $\xi_{1}, \xi_{2}, \dots, \xi_{n}$.

Theorem 4.1

For any random integers $_{V}$ its residual $[_{V}]_{p}$ for a prime $p \in \mathbb{P}$ has a characteristic function $\Phi^{[V]_{p}}$ such that $\Phi^{[V]_{p}}(0) = 1$ and $\left| \Phi^{[V]_{p}}(r) \right| < 1$, if $0 < r \le p-1$.

Proof.

If a random integer λ is such that $[\lambda]_p$ has a uniform distribution on G_p , that is

$$P\{[\lambda]_{p} = k\} = \frac{1}{p} \text{ for all } k = 0, 1, \dots, p-1 \text{ , then } \Phi^{[\lambda]_{p}}(r) = \begin{cases} 1, & \text{if } r = 0\\ 0, & \text{if } r \neq 0 \end{cases}$$

We prove this by the direct calculations:

$$\Phi^{[\lambda]_{p}}(r) = \sum_{k=0}^{p-1} \chi_{rk} \cdot P^{[\lambda]_{p}}(k) = \sum_{k=0}^{p-1} \chi_{rk} \cdot \frac{1}{p} = \frac{1}{p} \langle \chi_{r}, \chi_{0} \rangle = \begin{cases} 1, r = 0\\ 0, r \neq 0 \end{cases}$$

We have $\Phi^{[\nu_{i}]_{p}}(r) = \sum_{k=0}^{p-1} \chi_{rk} \cdot P^{[\nu_{i}]}(k) = [\chi \cdot P^{[\nu_{i}]}](r).$ This implies $|\Phi^{\nu_{i}}(r)| \le 1$

We have $\Phi^{v_i}(0) = 1$. Assume that there exist $r \neq 0 \mod p$ such that $\Phi^{v_i}(r) = 1$.

Then,
$$\Phi^{[\nu]_p}(r) = \sum_{k=0}^{p-1} P^{[\nu]}(k) e^{\frac{2\pi i}{p}(r \cdot k)} = 1$$
 and, equivalently,
$$\sum_{k=0}^{p-1} \left(1 - \cos\left(\frac{2\pi i}{p}(r \cdot k)\right) \right) \cdot P^{[\nu]_p}(k) = 0.$$

Since $1 - \cos(\alpha) \ge 0$ for any α , and $P^{[\nu]_p}(k) > 0$ for all k, we have $r \cdot k = 0 \pmod{p}$ for $k = 0, 1, 2, \dots, p-1$, which is possible only if $r = 0 \pmod{p}$.

Q.E.D.

Now, we can answer the question about convergence of probability distributions of residuals $mod(v^{(n)}, p)$ as $n \to \infty$ for sums $v^{(n)} = \sum_{i=1}^{n} v_i$ (n = 1, 2, ...) of independent random integers by the following statement.

Theorem 4.2

Let $v_1, v_2, ..., v_n, ...$ be a sequence of independent random integers (not necessarily equally distributed) such that for every prime $p \in \mathbb{P}$ the residuals $[v_i]_p$ (i = 1, 2, ...) have probability distributions $P^{[v_i]_p}(k) > 0$ for all $0 \le k \le p-1$.

We assume that $\sup_{1 \le i \le n, r \ne 0} \left| \Phi^{\left[v_i \right]_p}(r) \right| = M < 1$ for $r \ne 0$. Then, the residuals of sums $\left[v^{(n)} \right]_p = \sum_{i=1}^n \left[v_i \right]_p$ are asymptotically uniformly distributed on G_p , for every $p \in \mathbb{P}$.

Proof.

We need to prove that $\lim_{n\to\infty} P^{\nu^{(n)}} = P^{\lambda}$, or simply that $[\nu^{(n)}]_p = \sum_{i=1}^n [\nu_i]_p \to [\lambda]_p$ (in probability) as $n \to \infty$, where $[\lambda]_p$ is uniformly distributed on G_p .

We have
$$\Phi^{v^{(n)}} = \prod_{i=1}^{n} \Phi^{v_i}$$
 and $\left| \Phi^{v^{(n)}}(r) \right| = \prod_{i=1}^{n} \left| \Phi^{v_i}(r) \right| \le M^n \to 0$ as $n \to \infty$, for each $r \ne 0$.

This implies that $\lim_{n \to \infty} \Phi^{\left[\nu^{(n)}\right]_p}(r) = \Phi^{\left[\lambda\right]_p}(r) = \begin{cases} 1, \text{ if } r = 0\\ 0, \text{ if } r \neq 0 \end{cases}, \text{ so that } \left[\nu^{(n)}\right]_p = \sum_{i=1}^n \left[\nu_i\right]_p \to \left[\lambda\right]_p.$

Thus, random variables $[v^{(n)}]_p$ are asymptotically uniformly distributed on $G_p = \mathbb{Z}_p$ as $n \to \infty$.

Q.E.D.

For a random variable $v \in \mathbb{N}$ we are interested in the vector of residuals $\vec{r}(v) = (r_1, r_2, \dots, r_{\pi(v)})$, where $\pi(v)$ stands for number of primes $p \le v$.

Here $[v]_{p_i} = r_i = \text{mod}(v, p_i) (i = 1, 2, ..., \pi(v))$ for all $p_i \le v$. The asymptotic independence of residuals $[v]_{p_i} = r_i = \text{mod}(v, p_i) (i = 1, 2, ..., \pi(v))$

is addressed in the following statement.

Theorem 4.3.

All components of the vector of residuals $\vec{r}(v) = (r_1, r_2, \dots, r_{\pi(v)})$ are asymptotically independent random variables.

Proof.

Notice that the vector function $\operatorname{mod}(n, \vec{p}(v)) = \vec{r}(v) = (r_1, r_2, \dots, r_{\pi(v)})$, where $\vec{p}(v) = (p_1, p_2, \dots, p_{\pi(v)})$, is periodic with a period $T(v) = \prod_{p \leq v} p$ since $\operatorname{mod}(T(v), p) = 0$ for any $p \leq v$. This implies that if x is a solution to the system of equations $\operatorname{mod}(x, p_i) = r_i (1 \leq i \leq \pi(v))$, then y = x + T(v) is also a solution to the same system. We set $v = k(v) \cdot T(v) + r$, where $r = \operatorname{mod}(v, T(v))$. Then, $\operatorname{mod}(v, p_i) = \operatorname{mod}(r, p_i) = r_i$ and since the combination of residual values $\vec{r}(v) = (r_1, r_2, \dots, r_{\pi(v)})$ occurs k(v) times in v trials, then for the relative frequency

$$f(v, \vec{r}(v)) = \frac{k(v)}{v}, \text{ we have: } \left| \frac{k(v)}{v} - \prod_{i \le \pi(v)} \frac{1}{p_i} \right| = \left| \frac{1}{T(v) + \frac{r}{k(v)}} - \frac{1}{T(v)} \right| \to 0 \text{ as } v \to \infty.$$

Q.E.D.

REFERENCES

1. Granville, A., *Harald Cramér and the distribution of prime numbers*, Scandinavian Actuarial Journal, 1:12-28. 1995]

2. Mark Kac, *Statistical Independence in Probability, Analysis and Number Theory*, The Mathematical Association of America, John Wiley and Sons, Inc., 1972.

3. Tom M. Apostol, Introduction to Analytic Number Theory, Springer, 2000.

4. Edward Beltrami, *What is Random? Chance and Order in Mathematics and Life*. Springer-Verlag New York, Inc., 1999.

5. Song Y. Yan, Number Theory for Computing, Springer, Springer-Verlag, 2000.

6. A.N. Shiryaev, *Probability*, 2nd edition, Springer, 1996.

7. V.S. Varadarajan, Euler Trough Time: A new Look at Old Themes, AMS, 2006.

8. Gérald Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd Edition, AMS, 2015.

9. Gérald Tenenbaum and Michael Mendès, *The Prime Numbers and Their Distribution*, AMS, 2000.

10. А. Г. Постников, *Введение в аналитическую теорию чисел*, Москва, Наука, 1971.

11. Harry Fusrstenberg, *Poincaré Reccurence and Number Theory*, Bulletin of the American Mathematical Society, Volume 5, Number 3, November 1981, p. 211-234.

12. V.K. Balakrishnan, Introductory Discrete Mathematics, Prentice-Hall International, Inc.,1991.

13. Michel Loèv, Probability Theory, Third Edition. Dover Publications, Inc., Mineola, New York, 2017. 14. G.M. Sobko, *The First Diffusion Problem on Differentiable Manifolds*, Theory of Probability and its Applications, v. XVII, n.3, 1972, pp. 521 – 528.

15.. G. M. Sobko, *A Diffusion Approximation of non-Markov Random Walks on Differentiable Manifolds*, Theory of Probability and its Applications,

v. XVIII, n.1, 1973, pp. 41 - 53

16. А. Н. Колмогоров, *Основные понятия теории вероятностей*. Москва, "Наука", 1974.

17. A.N. Shiryaev, *Probability*, 2nd edition, Springer, 1996.

18. S.R.S Varadhan, *Probability Theory*. Courant Institute of Mathematical Studies, American Mathematical Society. 2001.

19. S.R.S Varadhan, *Stochastic Processes*. Courant Institute of Mathematical Studies, American Mathematical Society. 2007.

20. Yu. I. Manin, Alexey A. Panchishkin, *Introduction to Modern Number Theory*. Springer, 2006

21. Jacque Neveu, *Bases Mathématiques du Calcul des Probabilités*, Masson et Cie, Paris, 1964.

2010 Mathematics Subject Classification Primary 11Nxx, 11N05, 11A41,11A07, 11A25, 11A51, 11N60, 11N37, 11P32, 11Mxx, 11M06, 11Y05; Secondary: 11N36, 11Y16, 60-xx, 60Fxx, 60J65, 60G50, 60Bxx, 60B15 Copyright © 2020 Gregory M. Sobko email: greg.beholder@gmail.com (Gregory Sobko)