Using the partial sums of the Alternating Harmonic Series to prove the Harmonic Series diverges

Robert Spoljaric

r.spoljaric08@gmail.com

Queensland, Australia

Abstract

In this article we shall use the partial sums of the alternating harmonic series to (a) prove the harmonic series diverges, and (b) show that every harmonic number greater than 1 is the sum of partial sums of the alternating harmonic series.

There are many ways to prove the harmonic series diverges. We shall give a novel proof using the partial sums of the alternating harmonic series. Then we shall show that every harmonic number greater than 1 is the sum of partial sums of alternating harmonic series.

The partial sums of the harmonic series are the (finite) harmonic numbers:

$$
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}, \quad \text { for } n=1,2,3, \ldots
$$

Related to the harmonic numbers are the partial sums of the alternating harmonic series:

$$
\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{(-1)^{n-1}}{n}, \text { for } n=1,2,3, \ldots
$$

So we establish a connection between both partial sums.

Lemma:

$$
\sum_{k=1}^{2^{n}} \frac{1}{k}=\sum_{k=1}^{2^{n}} \frac{(-1)^{k-1}}{k}+\sum_{k=1}^{2^{n-1}} \frac{1}{k}, \text { for } n=1,2,3, \ldots
$$

Proof:

$$
\begin{aligned}
& 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{n}-1}+\frac{1}{2^{n}}-\left(1-\frac{1}{2}+\frac{1}{3}-\cdots+\frac{1}{2^{n}-1}-\frac{1}{2^{n}}\right) \\
& =(1-1)+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{2^{n}-1}-\frac{1}{2^{n}-1}\right)+\left(\frac{1}{2^{n}}+\frac{1}{2^{n}}\right) \\
& =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{n-1}}
\end{aligned}
$$

As an aside plugging in $n=1,2,3, \ldots$ gives us the following list of harmonic numbers:

$$
\begin{gathered}
H_{2}=1+\frac{1}{2}=\left(1-\frac{1}{2}\right)+1 \\
H_{4}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)+\left(1+\frac{1}{2}\right) \\
H_{8}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}\right)+\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)
\end{gathered}
$$

As shown below this listing of the subsequence $\left\{\mathrm{H}_{2^{k}}\right\}_{k=1}^{\infty}$ contains all that is required to prove the harmonic numbers diverge.

Theorem 1: The sequence $\left\{H_{n}\right\}_{n=1}^{\infty}$ is divergent.
Proof: As the identity holds for $n=1,2,3, \ldots$ we list the subsequence $\left\{H_{2^{k}}\right\}_{k=1}^{\infty}$ as follows:

$$
\begin{aligned}
H_{2}=1+\frac{1}{2} & =\left(1-\frac{1}{2}\right)+1 \\
H_{4}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4} & =\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)+\left(1+\frac{1}{2}\right) \\
& =\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)+H_{2} \\
& =\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)+\left(1-\frac{1}{2}\right)+\frac{1}{4} \\
H_{8}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} & =\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}\right)+\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right) \\
& =\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}\right)+H_{4} \\
& =\left(1-\frac{1}{2}+\cdots+\frac{1}{7}-\frac{1}{8}\right)+\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)+\left(1-\frac{1}{2}\right)+1
\end{aligned}
$$

Therefore, as each consecutive harmonic number has an additional partial sum on the r.h.s. the subsequence $\left\{H_{2^{k}}\right\}$ is unbounded. Hence, the sequence $\left\{H_{n}\right\}$ is divergent.

The proof above raises the question of whether every harmonic number greater than 1 is the sum of partial sums of the alternating harmonic series?

Lemma A:

$$
\begin{array}{r}
\sum_{k=1}^{2 n} \frac{1}{k}=\sum_{k=1}^{2 n} \frac{(-1)^{k-1}}{k}+\sum_{k=1}^{n} \frac{1}{k}, \text { for } n=1,2,3, \ldots \tag{A}\\
\text { ©2021 Robert Spoljaric } \\
\text { All rights reserved }
\end{array}
$$

Proof:

$$
\begin{aligned}
& 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2 n-1}+\frac{1}{2 n}-\left(1-\frac{1}{2}+\frac{1}{3}-\cdots+\frac{1}{2 n-1}-\frac{1}{2 n}\right) \\
& =(1-1)+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{2 n-1}-\frac{1}{2 n-1}\right)+\left(\frac{1}{2 n}+\frac{1}{2 n}\right) \\
& =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
\end{aligned}
$$

Lemma B:

$$
\begin{equation*}
\sum_{k=1}^{2 n+1} \frac{1}{k}=\sum_{k=1}^{2 n+1} \frac{(-1)^{k-1}}{k}+\sum_{k=1}^{n} \frac{1}{k}, \quad \text { for } n=1,2,3, \ldots \tag{B}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
& 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2 n}+\frac{1}{2 n+1}-\left(1-\frac{1}{2}+\frac{1}{3}-\cdots-\frac{1}{2 n}+\frac{1}{2 n+1}\right) \\
& =(1-1)+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{2 n}+\frac{1}{2 n}\right)+\left(\frac{1}{2 n+1}-\frac{1}{2 n+1}\right) \\
& =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
\end{aligned}
$$

Theorem 2: Every harmonic number greater than 1 is the sum of partial sums of the alternating harmonic series.

Proof: Similar to the previous proof using A and B allows us to consecutively list the harmonic numbers as follows:

$$
H_{1}=1=\mathbf{1}
$$

$(A): n=1$

$$
H_{2}=1+\frac{1}{2}=\left(\mathbf{1}-\frac{\mathbf{1}}{\mathbf{2}}\right)+\mathbf{1}
$$

$(B): n=1$

$$
H_{3}=1+\frac{1}{2}+\frac{1}{3}=\left(\mathbf{1}-\frac{\mathbf{1}}{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{3}}\right)+\mathbf{1}
$$

$(A): n=2 \quad H_{4}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\left(\mathbf{1}-\frac{\mathbf{1}}{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{3}}-\frac{\mathbf{1}}{\mathbf{4}}\right)+\left(1+\frac{1}{2}\right)$

$$
=\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)+\left(1-\frac{1}{2}\right)+1
$$

$(B): n=2 \quad H_{5}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\left(\mathbf{1}-\frac{\mathbf{1}}{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{3}}-\frac{\mathbf{1}}{\mathbf{4}}+\frac{\mathbf{1}}{\mathbf{5}}\right)+\left(1+\frac{1}{2}\right)$

$$
\begin{aligned}
& =\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)+\left(1-\frac{1}{2}\right)+1 \\
H_{6}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6} & =\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\right)+\left(1+\frac{1}{2}+\frac{1}{3}\right) \\
& =\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\right)+\left(1-\frac{1}{2}+\frac{1}{3}\right)+1 \\
H_{7}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7} & =\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}\right)+\left(1+\frac{1}{2}+\frac{1}{3}\right) \\
& =\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}\right)+\left(1-\frac{1}{2}+\frac{1}{3}\right)+1 \\
H_{8}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} & =\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}\right)+\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right) \\
& =\left(1-\frac{1}{2}+\cdots+\frac{1}{7}-\frac{1}{8}\right)+\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)+\left(1-\frac{1}{2}\right)+1
\end{aligned}
$$

