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Abstract

In this paper, we combine a real or complex palindromic sequence, (i.e, a sequence that
remains the same when the sequence is reversed) with a sequence in arithmetic progression
to produce the sums of product of powers of palindromic sequence and arithmetic progres-
sion. As a result, we establish a relationship between the sum of n terms of an arithmetic
progression, the sum of their squares, the sum of their cubes, and the number of terms.
Also, we establish a relationship between the sum of n terms of an arithmetic progression,
the sum of their squares, the sum of their cubes, the sum of their fourth powers, the sum
of their fifth powers and the number of terms. We also give two new different expressions
for Franel numbers as well as the right-hand side of first Strehl identity.

Keywords: palindromic sequence, binomial coefficients, arithmetic progression, Franel
numbers, first Strehl identity.

Introduction

An arithmetic progression is a sequence of numbers such that the difference between
the consecutive terms is constant. For example, the sequence 1, 4, 7, 10, 13, 16, 19 . . . is an
arithmetic progression with a common difference of 3. The first number known as the first
term, the number of terms, the common difference, and the sum of n terms of an arithmetic
progression are denoted by a, d, n, and Sn respectively . Hence, the formula for finding
the sum of n terms of an arithmetic progression is:

Sn =
n

2
(2a+ (n− 1)d).

The binomial expansion describes the expansion of (x+ y)n, for any positive integer n.
The binomial expansion is denoted by
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(x+ y)n =
n∑

k=0

xn−kyk. (2.1)

For instance, if n is 4, then

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

The binomial coefficients are the positive integers that occur as coefficients in binomial
expansion. For instance, the binomial coefficients of (x + y)4 are 1, 4, 6, 4, 1. A binomial
coefficient is denoted by

(
n
k

)
, for n ≥ k ≥ 0, where n and k are integers. The formula for

finding a binomial coefficient is: (
n

k

)
=

n!

(n− k)!k!
,

where n! = 1 · 2 · 3 · · ·n is the factorial of n. The sum of all the coefficients of (x + y)n is
2n, i.e.,

n∑
k=0

(
n

k

)
= 2n. (2.2)

Many identities involving binomial coefficients have been discovered. For instance, Boros
and Moll [1, 14–15] showed that sums of the form

∑n
k=0

(
n
k

)
kr are given by:

n∑
k=0

(
n

k

)
k = n2n−1, (2.3)

n∑
k=0

(
n

k

)
k2 = n(n+ 1)2n−2, (2.4)

n∑
k=0

(
n

k

)
k3 = n(n+ 3)2n−3, (2.5)

n∑
k=0

(
n

k

)
k4 = n(n+ 1)(n2 + 5n− 2)2n−4, (2.6)

n∑
k=0

(
n

k

)
k5 = n2(n3 + 10n2 + 15n− 10)2n−5, (2.7)
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and so on.
A palindromic sequence is a sequence that remains the same when the sequence

is reversed. For example, 2,−5, 7, 7,−5, 2 is a palindromic sequence because we have the
same sequence when the numbers are reversed.

Franel [2] showed that if

f(n,p) =
n∑

k=0

(
n

k

)p

, (2.8)

then

(n+ 1)2f(n+1,3) = (7n2 + 7n+ 2)f(n,3) + 8n2f(n−1,3). (2.9)

Also, Franel [3] showed that

(n+ 1)3f(n+1,4) = 2(2n+ 1)(3n2 + 3n+ 1)f(n,4) + 4(4n− 1)(4n+ 1)2f(n−1,4). (2.10)

We should note that f(n,3) is called the nth Franel number. They arise in first Strehl
identity. Strehl [4] showed that

f(n,3) =
n∑

k=0

(
n

k

)2(
2k

n

)
. (2.11)

In this paper, we establish two relationships between the generalizations of (2.2), (2.3),
(2.4), (2.5), (2.6) and (2.7). Consequently, we obtain some interesting results among which
are finding two new different expressions for f(n,3). We present our main results in section
three and list some applications of our main results in the same section.

Main results

Let
(
n
0

)
,
(
n
1

)
,
(
n
2

)
,
(
n
3

)
, . . . ,

(
n
n

)
be a sequence of binomial coefficients such that

∑n
k=0

(
n
k

)
= 2n

is the sum of binomial coefficients, and
(
n
k

)
=
(

n
n−k

)
holds for n ≥ k ≥ 0. We define

β(n,0), β(n,1), β(n,2), β(n,3), . . . , β(n,n) as a palindromic sequence such that

α(n,p) =
n∑

k=0

βp
(n,k),

is the sums of powers of a palindromic sequence, where β(n,k) = β(n,n−k) holds for n ≥ k ≥ 0,
and β(n,0) = β(n,n), β(n,1) = β(n,n−1), β(n,2) = β(n,n−2) . . . are any real or complex numbers.
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Theorem 1. Let α(n,p) be the sums of powers of a palindromic sequence, i.e.,

α(n,p) =
n∑

k=0

βp
(n,k).

If

A(n,p) =
n∑

k=0

βp
(n,k)(a+ kd), (3.1)

B(n,p) =
n∑

k=0

βp
(n,k)(a+ kd)2, (3.2)

and

C(n,p) =
n∑

k=0

βp
(n,k)(a+ kd)3, (3.3)

where a, d, p are real or complex numbers, then

C(n,p) =
A(n,p)

α2
(n,p)

(3B(n,p)α(n,p) − 2A2
(n,p)). (3.4)

We should note that

β(n,k) = β(n,n−k), (3.5)

for n ≥ k ≥ 0.

Proof. Let Sj =
∑n

k=0 β
p
(n,k)(a+ kd)j, where j is any integer greater than or equal to zero,

we can see that for all real or complex a, d, p, Sj can be written as

Sj = βp
(n,0)(a)

j + βp
(n,1)(a+ d)j + βp

(n,2)(a+ 2d)j + · · ·+ βp
(n,n)(a+ nd)j. (3.6)

Since β(n,k) = β(n,n−k) is true for n ≥ k ≥ 0, we see that Sj can also be written as

Sj = βp
(n,0)(a+ nd)j + βp

(n,1)(a+ (n− 1)d)j + βp
(n,2)(a+ (n− 2)d)j + · · ·+ βp

(n,n)(a)
j.

(3.7)

Adding (3.6) and (3.7), we have

2Sj =
n∑

k=0

βp
(n,k)((a+ kd)j + (a+ (n− k)d)j),
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Sj =
1

2

n∑
k=0

βp
(n,k)((a+ kd)j + (a+ (n− k)d)j), (3.8)

We know that S1 = A(n,p), S2 = B(n,p), S3 = C(n,p). So, we have that

A(n,p) =
(2a+ nd)

2
α(n,p). (3.9)

Putting (3.9) in (3.4), we have

C(n,p) =
(2a+ nd)

2

(
3B(n,p) −

(2a+ nd)2

2
α(n,p)

)
,

(2a+ nd)3α(n,p) = 6(2a+ nd)B(n,p) − 4C(n,p). (3.10)

B(n,p) =
1

2

n∑
k=0

βp
(n,k)((a+ kd)2 + (a+ (n− k)d)2), (3.11)

6(2a+ nd)B(n,p) = 3(2a+ nd)
n∑

k=0

βp
(n,k)((a+ kd)2 + (a+ (n− k)d)2). (3.12)

C(n,p) =
1

2

n∑
k=0

βp
(n,k)((a+ kd)3 + (a+ (n− k)d)3), (3.13)

4C(n,p) = 2
n∑

k=0

βp
(n,k)((a+ kd)3 + (a+ (n− k)d)3). (3.14)

Subtracting (3.14) from (3.12), we have

6(2a+nd)B(n,p)−4C(n,p) =
n∑

k=0

βp
(n,k)

(
3(2a+nd)

(
(a+kd)2+(a+(n−k)d)2

)
−2
)
(a+kd)3+(a+(n−k)d)3

))
.

6(2a+ nd)B(n,p) − 4C(n,p) = (2a+ nd)3α(n,p). (3.15)

we can see that (3.15) and (3.10) are the same. Therefore, (3.4) is true.
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Theorem 2. If

D(n,p) =
n∑

k=0

βp
(n,k)(a+ kd)4, (3.16)

E(n,p) =
n∑

k=0

βp
(n,k)(a+ kd)5, (3.17)

where a, d are any real or complex numbers, then

E(n,p) =
A(n,p)

α4
(n,p)

(5D(n,p)α
3
(n,p) − 4A(n,p)C(n,p)α

2
(n,p) − 8A2

(n,p)B(n,p)α(n,p) + 8A4
(n,p)). (3.18)

Proof. Putting (3.9) in (3.18), we have

E(n,p) =
(2a+ nd)

2

(
5D(n,p) − 2(2a+ nd)C(n,p) − 2(2a+ nd)2B(n,p) +

(2a+ nd)4

2
α(n,p)

)
,

(2a+ nd)5α(n,p) = 4E(n,p) + 4(2a+ nd)3B(n,p) + 4(2a+ nd)2C(n,p) − 10(2a+ nd)D(n,p).
(3.19)

From (3.8), we know that B(n,p) = S2, C(n,p) = S3, D(n,p) = S4, E(n,p) = S5. So, we have

D(n,p) =
1

2

n∑
k=0

βp
(n,k)((a+ kd)4 + (a+ (n− k)d)4),

10(2a+ nd)D(n,p) = 5(2a+ nd)
n∑

k=0

βp
(n,k)((a+ kd)4 + (a+ (n− k)d)4), (3.20)

Also,

E(n,p) =
1

2

n∑
k=0

βp
(n,k)((a+ kd)5 + (a+ (n− k)d)5),

4E(n,p) = 2
n∑

k=0

βp
(n,k)((a+ kd)5 + (a+ (n− k)d)5), (3.21)

Let y be the difference of (3.20) and (3.20), we have

y =
n∑

k=0

βp
(n,k)

(
2
(
(a+kd)5+(a+(n−k)d)5

)
−5(2a+nd)

(
(a+kd)4+(a+(n−k)d)4

))
(3.22)

6



Multiplying (3.11) by 4(2a+ nd)3, we have

4(2a+ nd)3B(n,p) = 2(2a+ nd)3
n∑

k=0

βp
(n,k)((a+ kd)2 + (a+ (n− k)d)2). (3.23)

Multiplying (3.13) by 4(2a+ nd)2, we have

4(2a+ nd)2C(n,p) = 2(2a+ nd)2
n∑

k=0

βp
(n,k)((a+ kd)3 + (a+ (n− k)d)3). (3.24)

Let y1 be the sum of (3.23) and (3.24), we have

y1 = 2(2a+nd)2
n∑

k=0

βp
(n,k)

(
(2a+nd)

(
(a+kd)2+(a+(n−k)d)2

)
+
(
(a+kd)3+(a+(n−k)d)3

))
(3.25)

Now, Adding (3.22) and (3.25), we see that

y + y1 = (2a+ nd)5α(n,p)

4E(n,p) + 4(2a+ nd)3B(n,p) + 4(2a+ nd)2C(n,p) − 10(2a+ nd)D(n,p) = (2a+ nd)5α(n,p).
(3.26)

We can see that (3.19) and (3.26) are the same. Therefore, (3.18) is true.

Applications of the main results

We should note that a sequence of binomial coefficients on the nth row of Pascal’s triangle
is a special case of palindromic sequence.

Now, if we let a = 1, d = 1, and α(n,p) be the sums of real or complex powers of binomial
coefficients on the nth row of Pascal’s triangle, (3.4) becomes

α(n,p) =
n∑

k=0

(
n

k

)p
(
6

(
k + 1

n+ 1

)2

− 4

(
k + 1

n+ 1

)3
)
, (3.27)

and (3.18) becomes

α(n,p) =
n∑

k=0

(
n

k

)p
(
4

(
k + 1

n+ 1

)2

+ 4

(
k + 1

n+ 1

)3

− 10

(
k + 1

n+ 1

)4

+ 4

(
k + 1

n+ 1

)5
)
. (3.28)

We can see that (3.27) and (3.28) give two different expressions for the sums of real or
complex powers of binomial coefficients. Letting p = 3 in (3.27) and (3.28) give another
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two different expressions for nth Franel number as well as first Strehl identity.

If we let p = 0 and subtract one from n, (3.4) becomes

C(n−1,0) =
A(n−1,0)

n2
(3nB(n−1,0) − 2A2

(n−1,0)), (3.29)

and (3.18) becomes

E(n,0) =
A(n,0)

n4
(5D(n,0)n

3 − 4A(n,0)C(n,0)n
2 − 8A2

(n,0)B(n,0)n+ 8A4
(n,0)), (3.30)

where A(n,0) =
∑n−1

k=0(a + kd), B(n,0) =
∑n−1

k=0(a + kd)2, C(n,0) =
∑n−1

k=0(a + kd)3, D(n,0) =∑n−1
k=0(a+ kd)4, E(n,0) =

∑n−1
k=0(a+ kd)5.

We can see that (3.29) establishes a relationship between the sum of n terms of an arith-
metic progression, the sum of their squares, the sum of their cubes, and the number of
terms. This means that if three of the four variables in (3.29) are given, the fourth variable
can be found easily using (3.29). Also, (3.30) establishes a relationship between the sum
of n terms of an arithmetic progression, the sum of their squares, the sum of their cubes,
the sum of their fourth powers, the sum of their fifth powers, and the number of terms.

If we let p = 1, α(n,1) be the sum of binomial coefficients, (3.4) becomes

C(n,1) =
A(n,1)

22n
(3 · 2nB(n,1) − 2A2

(n,1)),

and (3.18) becomes

E(n,1) =
A(n,1)

24n
(5 · 23nD(n,1) − 4 · 22nA(n,1)C(n,1) − 8 · 2nA2

(n,1)B(n,1) + 8A4
(n,1)),

where A(n,1) =
∑n

k=0

(
n
k

)
(a+ kd), B(n,1) =

∑n
k=0

(
n
k

)
(a+ kd)2, C(n,1) =

∑n
k=0

(
n
k

)
(a+ kd)3,

D(n,1) =
∑n

k=0

(
n
k

)
(a+ kd)4, E(n,1) =

∑n
k=0

(
n
k

)
(a+ kd)5.

If we let p = 2, α(n,2) be the sum of squares of binomial coefficients, (3.4) becomes

C(n,2) =
A(n,2)(
2n
n

)2 (3(2nn
)
B(n,2) − 2A2

(n,2)

)
,

and (3.18) becomes

E(n,2) =
A(n,2)(
2n
n

)4
(
5

(
2n

n

)3

D(n,2) − 4

(
2n

n

)2

A(n,2)C(n,2) − 8

(
2n

n

)
A2

(n,2)B(n,2) + 8A4
(n,2)

)
,

where A(n,2) =
∑n

k=0

(
n
k

)2
(a+kd), B(n,2) =

∑n
k=0

(
n
k

)2
(a+kd)2, C(n,2) =

∑n
k=0

(
n
k

)2
(a+kd)3,

D(n,2) =
∑n

k=0

(
n
k

)2
(a+ kd)4, E(n,2) =

∑n
k=0

(
n
k

)2
(a+ kd)5.
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Problems

If n is any positive integer, Show that

n∑
k=0

(
n

k

)4

= 5
n−1∑
k=0

(
n

k + 1

)2(
n− 1

k

)2

− 4n− 1

n

n−1∑
k=0

(
n− 1

k

)4

, (13)

and

n∑
k=0

(
n

k

)4

= 20
n−1∑
k=0

(
n

k + 1

)(
n− 1

k

)3

− 6
4n− 1

n

n−1∑
k=0

(
n− 1

k

)4

. (14)

Conclusion

In this paper, we combined the powers of a palindromic sequence with the powers of
an arithmetic progression to generalize (2.2), (2.3) (2.4), (2.5), (2.6) and (2.7), which
in turn were used to establish two relationships. As a result, some interesting formulas
were derived. Two new different expressions for the sums of real or complex powers of
binomial coefficients were also derived, thereby giving two new different expressions for
Franel number as well as first Strehl identity. A relationship between the sum of n terms
of an arithmetic progression, the sum of their squares, the sum of their cubes, and the
number of terms was established. Also, a relationship between the sum of n terms of an
arithmetic progression, the sum of their squares, the sum of their cubes, the sum of their
fourth powers, the sum of their fifth powers, and the number of terms was established.
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