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Abstract

We propose an alternative system of equations for the heat transfer
and diffusion in solids, which leads to the second-order elliptical equations
describing evolution of temperature and concentration fields with finite
rate of propagation. The comparison of heat and mass transfer within the
frames of parabolic and elliptic equations are discussed.

1 Introduction

The process of heat transfer in solid is described by a parabolic equation based
on two assumptions. The first is the continuity of heat propagation

∂q

∂t
+ (∇ · q) = 0, (1)

where q is the volume density of heat, q is the volume density of heat flux. The
second assumption is Fourier’s law, which establishes the relationship between
heat flux and temperature gradient

q = −κ∇θ, (2)

where κ is the coefficient of thermal conductivity, θ is a temperature. On the
other hand, for the systems that do not perform mechanical work we have

dq = cρdθ, (3)

where c is specific heat capacity of material, ρ is the mass density. Substituting
(2) and (3) into equation (1), we obtain the classical heat equation [1] in the
following form:

∂θ

∂t
− α∆θ = 0, (4)
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where α =
κ

cρ
is the coefficient of thermal diffusivity.

However the disadvantage of the Fourier law of thermal conductivity (2)
is that it leads us to an equation of parabolic type (4), which describes the
instantaneous propagation of heat in space [2,3]. However, this contradicts
the physical nature of the heat transfer process and the theory of relativity,
which requires a finite transfer rate of physical interactions. To overcome this
drawback, the following modification of Fourier law was proposed [4-7]:

τ
∂q

∂t
+ q = −κ∇θ, (5)

where τ is relaxation time. This modification takes into account the inertia of
the heat transfer process and leads us to the Cattaneo-Vernotte wave equation
of hyperbolic type [4-7]:

τ
∂2 θ

∂t2
+
∂θ

∂t
− α∆θ = 0, (6)

which is widely discussed in a literature [8-24]. However, eliminating the paradox
of instantaneous heat propagation [2,8,9], this equation leads to other paradox-
ical results associated with the wave nature of processes such as interference of
temperature waves, their reflection from the boundaries of the body and the
formation of shock heat waves [10-24].

A similar situation occurs in the diffusion of impurities in solids. The con-
tinuity condition

∂n

∂t
+ (∇ · n) = 0, (7)

(here n is the impurity concentration, n is the diffusive flux) combined with
Fick’s law

n = −D∇n, (8)

(here D is diffusion coefficient) leads us to the parabolic equation for the diffu-
sion flow

∂n

∂t
−D∆n = 0. (9)

However, despite the fact that the diffusion and heat transfer equations are the
same the hyperbolic diffusion equation and diffusion waves are not discussed in
a literature.

In the present paper, we propose an alternative approach to the description of
heat and diffusive mass transfer, which leads to an elliptic second order equations
describing a different dynamics of heat propagation and diffusion in solids.

2 Modified equation of heat conduction

In hydrodynamics the partner to continuity condition is the equation for the
mass flux acceleration (Euler equation) [25]. Based on this analogy we can
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suppose a similar equation for the heat flux. But unlike hydrodynamics, the
proposed equation should describe the deceleration of heat flux and can be
written as

1

s2
∂q

∂t
− ∇q = 0, (10)

where parameter s is a rate of heat propagation. Further, we assume that
s = const, which is determined by the properties of the material. In addition,
we take into account that the circulation of the heat flux in a closed loop should
be equal to zero. Then the complete system of equations describing the heat
transfer process is written in the following form:

∂q

∂t
+ (∇ · q) = 0, (11)

1

s2
∂q

∂t
− ∇q = 0, (12)

[∇× q] = 0. (13)

The equation (11) of this system is, as before, the equation of continuity. The
equation (12) shows that heat flux acceleration is directed along the heat gra-
dient (deceleration) and describes the process of relaxation of the heat flux.
Equation (13) shows that the heat flow is the vortex free.

The system (11) - (13) can be transformed to the following elliptic equations

1

s2
∂2q

∂t2
+ ∆q = 0, (14)

1

s2
∂2q

∂t2
+ ∆q = 0, (15)

which resemble wave equations in form, but describe non-propagating damped
waves. Assuming (3), from equation (14) we have the following elliptical equa-
tion for the temperature field θ(r, t):

1

s2
∂2θ

∂t2
+ ∆θ = 0, (16)

which is an alternative to the parabolic equation (4).

3 Comparison of parabolic and elliptic equations
of heat transfer

Let us compare the parabolic and elliptic equations in detail. As one can see
directly the stationary states described by equations (4) and (16) coincide. The
differences are only in the dynamics of the arrival of the physical system to these
states. Parabolic equation (4) admits a solution in the form of plane waves

θ = A exp [iω t+ i(k · r)] (17)
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with dispersion law
iω = −αk2. (18)

Here ω is the frequency, k is wave vector (k = |k| ). Relation (18) shows that
solution (17) is damping function.

On the other hand, elliptic equation (16) also admits solutions in the form
of plane waves (17), but with different dispersion dependence

iω = ± sk. (19)

Note that only solutions with iω = − sk are physically meaningful.
In particular, let us consider the cooling a plate with thickness l uniformly

heated to a temperature θ∗ and with zero temperature at the boundaries. The
solution to this problem in the frame of parabolic equation is expressed by the
following Fourier series [1]:

θp =
4θ∗

π

∞∑
n=0

1

(2n+1)
sin

(2n+1)πx

l
exp [−dnpt] (20)

with decrement of temperature damping

dnp =
α (2n+ 1)

2
π2

l2
. (21)

Hence, it can be seen that harmonics with high numbers n decay rapidly that
contributes to the rapid equalization of sharp temperature gradients, and the
cooling process is mainly determined by the zero harmonic:

θp0 =
4θ∗

π
sin

πx

l
exp

[
−απ

2

l2
t

]
. (22)

On the other hand, the solution to the problem of cooling the plate in the
case of elliptical equation (16) is expressed by the following series:

θe =
4θ∗

π

∞∑
n=0

1

(2n+1)
sin

(2n+1)πx

l
exp [−dnet] (23)

with decrement of temperature damping

dne =
s (2n+ 1)π

l
. (24)

The zero harmonic is expressed as follows:

θe0 =
4θ∗

π
sin

πx

l
exp

[
−sπ
l
t
]
. (25)

Thus, comparing damping parameters (21) and (24) one can see that in case
of elliptical equation the higher harmonics decay more slowly than in case of
parabolic equation.
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4 Elliptic equations of diffusion flow in a solid

By analogy, an equation describing the decceleration of the diffusion flux can
be written in the following form:

1

a2
∂n

∂t
− ∇n = 0, (26)

where parameter a is a speed of diffusion. Also we take into account that the
circulation of the diffusion flux in a closed loop should be equal to zero. Then
the complete system of equations describing the diffusion process is written in
the following form:

∂n

∂t
+ (∇ · n) = 0, (27)

1

a2
∂n

∂t
− ∇n = 0, (28)

[∇× n] = 0. (29)

The system (27) - (29) can be transformed to the following elliptic equations

1

a2
∂2n

∂t2
+ ∆n = 0, (30)

1

a2
∂2n

∂t2
+ ∆n = 0, (31)

which describe the diffusion mass transfer with finite rate.

5 Conclusion

Thus, equations (10) and (26) are the alternative laws of variation of the heat
and diffusive fluxes, which lead to a second-order differential equation of ellip-
tic type, describing the evolution of the temperature and concentration fields.
Solutions of elliptic equation have the same spatial distributions of temperature
and concentration fields as in the case of parabolic equation, but describe a
different dynamics of field propagation. In contrast to the hyperbolic equation,
which describes the propagation of heat in the form of harmonic waves, the
elliptic equation predicts the diffusion propagation of heat with a finite transfer
rate. We believe that from a physical point of view, the elliptic equation is more
suitable for describing heat transfer than parabolic and hyperbolic equations,
as well as for the description of impurity diffusion.
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