GEE Descriptors

Robert L. Jackson, Stilwell, Kansas

© 2015

Abstract:

This paper introduces a new set of descriptors for usage in cheminformatics.

A gradient of Electrostatic [Potential] Energy, or GEE, Descriptors. Consider a molecule so either Cartesian or spherical coordinates can be used to describe the atoms present in the compound:

Electrostatic potential for an atom directly correlates with or is proportional to the atom's electronegativity:

$$
V_{E, i} \propto \chi_{i},
$$

where $V_{E, i}$ is the electrostatic potential of atom E and χ is the electronegativity of atom i. Thus, the electrostatic potential energy for atom i, or E_{l}, can be expressed as the following:

$$
E_{i} \propto \chi_{i} \rho_{i},
$$

where ρ_{i} is the magnitude of the distance of atom i energy from an origin, or the center of the molecule. The above would suggest the total electrostatic energy of a molecule about its center would be defined as:

$$
E=\sum_{i} \chi_{i} \rho_{i}
$$

The gradient of electrostatic potential energy about the center of a molecule would be as follows:

$$
\nabla E=\nabla \sum_{i} \chi_{i} \rho_{i}
$$

where the ∇ is the del operator. After the application of the chain rule of differentiation, one obtains:

$$
\begin{gathered}
\nabla E=\nabla \sum_{i} \chi_{i} \rho_{i} \\
=\sum_{i} \rho_{i} \nabla \chi_{i}+\sum_{i} \chi_{i} \nabla \rho_{i}
\end{gathered}
$$

Since the electronegativity of an atom is relatively constant, the left term of the above expression drops out leaving:

$$
\nabla E=\sum_{i} \chi_{i} \nabla \rho_{i}
$$

Assuming one is working with spherical coordinates, the gradient of ρ_{i} will reduce to:

$$
\nabla \rho_{i}=\frac{1}{\rho_{i}}\left\langle x_{i}, y_{i}, z_{i}\right\rangle,
$$

where x_{i}, y_{i}, and z_{i} are the Cartesian coordinates of atom i from the center of the molecule.
Substituting in the spherical coordinates associated with the Cartesian system:

$$
\begin{aligned}
& x=\rho \cos \theta \sin \phi, \\
& y=\rho \sin \theta \sin \phi, \\
& z=\rho \cos \phi .
\end{aligned}
$$

The gradient of ρ_{i} simplifies to:

$$
\nabla \rho_{i}=\left\langle\cos \theta_{i} \sin \phi_{i}, \sin \theta_{i} \sin \phi_{i}, \cos \phi_{i}\right\rangle
$$

Knowing θ and ϕ are defined as:

$$
\begin{aligned}
& \theta=\arctan \left(\frac{y}{x}\right), \\
& \phi=\arccos \left(\frac{z}{\rho}\right) .
\end{aligned}
$$

then the gradient of ρ_{i} becomes:

$$
\begin{aligned}
& \nabla_{\rho_{i}}=\left\langle\cos \left(\arctan \left(\frac{y_{i}}{x_{i}}\right)\right) \sin \left(\arccos \left(\frac{z_{i}}{\rho_{i}}\right)\right)\right) \text { sin }\left(\arctan \left(\frac{y_{i}}{x_{i}}\right) \sin \left(\arccos \left(\frac{z_{i}}{\rho_{i}}\right)\right) \cdot \cos \left(\arccos \left(\frac{z_{i}}{\rho_{i}}\right)\right)\right\rangle, \\
& \left.=\left\langle\cos \left(\arctan \left(\frac{y_{i}}{x_{i}}\right)\right) \sin \left(\arccos \left(\frac{z_{i}}{\rho_{i}}\right)\right)\right), \sin \left(\arctan \left(\frac{y_{i}}{x_{i}}\right)\right) \sin \left(\arccos \left(\frac{z_{i}}{\rho_{i}}\right)\right) \cdot \frac{z_{i}}{\rho_{i}}\right\rangle .
\end{aligned}
$$

Thus, the gradient of the electrostatic potential energy about the center of the molecule is given as the following expression:

$$
\nabla E=\sum_{i} \chi_{i}\left\langle\cos \left(\arctan \left(\frac{y_{i}}{x_{i}}\right)\right) \sin \left(\arccos \left(\frac{z_{i}}{\rho_{i}}\right)\right), \sin \left(\arctan \left(\frac{y_{i}}{x_{i}}\right)\right) \sin \left(\arccos \left(\frac{z_{i}}{\rho_{i}}\right)\right), \cos \left(\arccos \left(\frac{z_{i}}{\rho_{i}}\right)\right)\right\rangle
$$

Next, one can define a set of descriptors based upon the distance from the center of a compound:
$G E E_{j}(\rho)=\sum_{i} \sum_{j}\left\{u_{\rho_{j}}(\rho)-u_{\rho_{j}+40}(\rho)\right\} \chi_{i}\left\langle\cos \left(\arctan \left(\frac{y_{i}}{x_{i}}\right)\right) \sin \left(\arccos \left(\frac{z_{i}}{\rho_{i}}\right)\right), \sin \left(\arctan \left(\frac{y_{i}}{x_{i}}\right)\right) \sin \left(\arccos \left(\frac{z_{i}}{\rho_{i}}\right)\right), \frac{z_{i}}{\rho_{i}}\right\rangle$
which can be reduced to Cartesian components:

$$
\begin{aligned}
& G E E_{j, x}(\rho)=\sum_{i} \sum_{j}\left\{u_{\rho_{j}}(\rho)-u_{\rho_{j}+40}(\rho)\right\} \chi_{i} \cos \left(\arctan \left(\frac{y_{i}}{x_{i}}\right)\right) \sin \left(\arccos \left(\frac{z_{i}}{\rho_{i}}\right)\right), \\
& G E E_{j, y}(\rho)=\sum_{i} \sum_{j}\left\{u_{\rho_{j}}(\rho)-u_{\rho_{j}+40}(\rho)\right\} \chi_{i} \sin \left(\arctan \left(\frac{y_{i}}{x_{i}}\right)\right) \sin \left(\arccos \left(\frac{z_{i}}{\rho_{i}}\right)\right), \\
& G E E_{j, z}(\rho)=\sum_{i} \sum_{j}\left\{u_{\rho_{j}}(\rho)-u_{\rho_{j}+40}(\rho)\right\} \chi_{i} \frac{z_{i}}{\rho_{i}} .
\end{aligned}
$$

Finally, the net GEE descriptors for ρ at j would be defined as the following expression:

$$
G E E_{j}(\rho)=\sqrt{G E E_{j, x}^{2}(\rho)+G E E_{j, y}^{2}(\rho)+G E E_{j, z}^{2}(\rho)}
$$

