Functional Proofs of Goldbach Conjecture

Tae Beom Lee
join360@naver.com

Abstract

Goldbach's Conjecture(GC) states that any even integer ≥ 4 can be represented by the sum of two prime numbers. This was conjectured by Christian Goldbach in 1742 and still remains unproved. In this thesis we proved GC by introducing, we called them, Goldbach Partition Model Table(GPMT) and Sieve Functions(SFs). GPMT is a 2-dimensional table of all possible pair of two numbers ($x, 2 n-$ x), whose sum can be any even number $2 n$. To functionally treat the sieve of Eratosthenes, we devised SFs that have sinusoidal symmetry and period properties. By using GPMT and the SFs, we could induce GC False Conditions(GCFC) that must be satisfied if GC is false. And we proved that GCFC can not be satisfied, so, GC is true.

1. Introduction

GC [1][2] states that any even number ≥ 4 is the sum of two prime numbers, like $22=3$ $+19=5+17=11+11,38=7+31=19+19$. The conjecture has been shown to hold for all integers less than 4×10^{18} [3], but remains unproved despite various efforts [4][5][6].

Before we go further, let's define a basic terminology of GC.
Definition 1.1. Goldbach Partition(GP): A pair of two prime numbers (p, q) that satisfies $2 n$ $=p+q, n=2,3,4, \ldots$

In this thesis, we used Goldbach Partition Model Table(GPMT) and Sieve Functions(SFs). GPMT is a 2-dimensional arrangement of all possible GPs for a specific even number $2 n$, and SFs are functional representation of the sieve of Eratosthenes. By using GPMT and SFs, we could visually understand the symmetry and period properties of GC, from which we derived GC False Conditions(GCFC) that must be satisfied if GC is false. And we proved that GCFC can not be satisfied, so, GC is true.

2. Goldbach Partition Model Table(GPMT)

Lemma 2.1. Possible GPs for $2 n \geq 4$ have the form ($x, 2 n-x$), $x=1,2,3, \ldots$.
Proof. GP is the sum of two primes $p+q=2 n$, so, $q=2 n-p$, i.e., $(p, q)=(p, 2 n-p)$. So, possible GPs have the form $(x, 2 n-x)$.

Definition 2.2. Goldbach Partition Model Table(GPMT): A table with all possible GPs of the form $(x, 2 n-x)$, as in Table 1, and has the following properties.

Table 1 shows an example GPMT for $n=25,2 n=50$. Numbers $1,2, \ldots, 49$ are arranged downward and upward. Apparently, $x+(2 n-x)=2 n$, so, all possible GPs reside in the table. Numbers marked as red are prime numbers.

Table 1. Example GPMT for $n=25$.

x	2n-x	$2 \mathrm{n}=\mathrm{x}+(2 \mathrm{n}-\mathrm{x})$
1	49	50
2	48	
3	47	
4	46	
5	45	
6	44	
7	43	
8	42	
9	41	
10	40	
11	39	
12	38	
13	37	
14	36	
15	35	
16	34	
17	33	
18	32	
19	31	
20	30	
21	29	
22	28	
23	27	
24	26	
25	25	

Definition 2.3. Sieve set: Set of prime numbers in $2 \leq p \leq \sqrt{2 n}$, required for the sieve of Eratosthenes, and is denoted by $S=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}, p_{1}=2$.

3. Definitions

3.1 Functions

The sieve of Eratosthenes is a traditional method for finding all prime numbers up to any given number. It does so by iteratively or periodically, removing the multiples of each seed prime in a sieve set, as shown in Figure 1.

Figure 1. Example Eratosthenes sieve.

In Figure 1, the multiples of 2, 3 and 5 is crossed by lines. The number of crosses means how many times a number has been the multiples of prime numbers $2,3,5$, respectively.

To functionally represent the sieve of Eratosthenes, we introduce SFs and related functions.

Definition 3.1.1. Sieve Function(SF): A sine function, $f_{i}(x)=\sin \left(\frac{\pi x}{p_{i}}\right)$ where p_{i} is i th prime number, as shown in Figure 2.

(a) $f_{1}(x)=\sin \left(\frac{\pi x}{2}\right), p_{1}=2$.

(b) $f_{2}(x)=\sin \left(\frac{\pi x}{3}\right), p_{2}=3$.

Figure 2. Example SFs.
Figure $2(\mathrm{a})$ is SF for $p_{1}=2$ and (b) is for $p_{2}=3$. When $x=t p_{i}, t=0,1,2, \ldots, f_{i}(x)=$ $\sin \left(\frac{\pi t p_{i}}{p_{i}}\right)=\sin (\pi t)=0$. Considering zeros of a SF as the sieved numbers, it is exactly same as the sieve of Eratosthenes, except when $t=1$.
Definition 3.1.2. phased Sieve Function(pSF): A sine function $f_{i}\left(d_{i}-x\right), d_{i}=$ $2 n \bmod p_{i}$.
Definition 3.1.3. dual SF(dSF): A product of SF and pSF, $h_{i}(x)=f_{i}(x) f_{i}(2 n-x)=$ $f_{i}(x) f_{i}\left(d_{i}-x\right), d_{i}=2 n \bmod p_{i}$.

Note that $d_{i}=0$ when $p_{i} \mid 2 n$. Figure 3 depicts, $h_{2}(x)=f_{2}(x) f_{2}(50-x)=f_{2}(x) f_{2}(2-$ $x)=\sin \left(\frac{\pi x}{3}\right) \sin \left(\frac{\pi(2-x)}{3}\right)$ and $h_{3}(x)=f_{3}(x) f_{3}(50-x)=f_{3}(x) f_{3}(0-x)=-\sin \left(\frac{\pi x}{5}\right) \sin \left(\frac{\pi x}{5}\right)$. In case of $h_{3}(x)$, the zeros are same as the zeros of $f_{3}(x)$.

(a) $h_{2}(x)=f_{2}(x) f_{2}(2-x), d_{2}=2$.

(b) $h_{3}(x)=f_{3}(x) f_{3}(0-x), d_{3}=0$.

Figure 3. dSF examples.
In Figure 3, we can see that dSF is also a periodic sinusoidal function with period p_{i}. A dSF is bisymmetric at $x=n$, as in Figure 4.

Figure 4. Example bisymmetry of a dSF, $h_{2}(x)=f_{2}(x) f_{2}(50-x), n=25$.
Definition 3.1.4. Composite Sieve Function(CSF): A product of SFs, $F_{k}(x)=\prod_{i=1}^{k} f_{i}(x)$, as in Figure 5.

Figure 5. Example CSF, $n=25, k=4, S=\{2,3,5,7\}$.
Definition 3.1.5. Composite phased Sieve Function(CpSF): A product of pSFs, $G_{k}(x)=$ $\prod_{i=1}^{k} f_{i}(2 n-x)=\prod_{i=1}^{k} f_{i}\left(d_{i}-x\right)$, where $d_{i}=2 n \bmod p_{i}$.
Definition 3.1.6. Composite dual Sieve Function(CdSF): The product of dSFs, $H_{k}(x)=$ $\prod_{i=1}^{k} h_{i}(x)=\prod_{i=1}^{k} f_{i}(x) f_{i}(2 n-x)=F_{k}(x) F_{k}(2 n-x)$.

We can see that CdSF is also bisymmetric at $x=n$, as in Figure 6 .

Figure 6. Example bisymmetry of a CdSF, $H_{4}(x)=\prod_{i=1}^{4} f_{i}(x) f_{i}(2 n-x), n=25$.
Definition 3.1.7. Forward Sieve Function Set(FSFS): A set, $L_{f k}=\left\{f_{1}(x), f_{2}(x), \ldots, f_{k}(x)\right\}$, as in Figure 7.

Figure 7. Example FSFS, $n=25$.
In Figure 7, $L_{f k}=\left\{\sin \left(\frac{\pi x}{2}\right), \sin \left(\frac{\pi x}{3}\right), \sin \left(\frac{\pi x}{5}\right), \sin \left(\frac{\pi x}{7}\right)\right\}$, and the forward phase set is $D_{f k}$ $=\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}=\{0,0,0,0\}$.
Definition 3.1.8. Reverse Sieve Function Set(RSFS): A set, $L_{r k}=\left\{f_{1}(2 n-x), f_{2}(2 n-\right.$ $\left.x), \ldots, f_{k}(2 n-x)\right\}$, as in Figure 8.

${ }^{*} L_{\text {rk }}=\left\{f_{1}(2 n-x), f_{2}(2 n-x), f_{3}(2 n-x), f_{4}(2 n-x)\right\}$
Figure 8. Example RSFS, $n=25$.
In Figure 8, $L_{r k}=\left\{\sin \left(\frac{\pi(2 n-x)}{2}\right), \sin \left(\frac{\pi(2 n-x)}{3}\right), \sin \left(\frac{\pi(2 n-x)}{5}\right), \sin \left(\frac{\pi(2 n-x)}{7}\right)\right\}$, and the reverse phase set is $D_{r k}=\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}=\{0,2,0,1\}$. Note that the reverse phase of $f_{2}(x)$ is always 0 , because $d_{1}=2 n \bmod p_{1}=2 n \bmod 2=0$.
Definition 3.1.9. Total Sieve Function Set(TSFS): A set $L_{t k}=\left\{f_{1}(x), f_{2}(x), \ldots, f_{k}(x), f_{1}(2 n-\right.$ $\left.x), f_{2}(2 n-x), \ldots, f_{k}(2 n-x)\right\}=L_{t k} \cup L_{r k}$, as in Figure 9.

${ }^{*} L_{t k}=L_{t k} \cup L_{r k}$
Figure 9. Example TSFS, $n=25$.

Definition 3.1.10. Complementary SF: A SF whose zeros comprise all non-zeros of a SF.

Figure 10. Graphs for complementary SF concept.
In Figure 10, $f_{1}(x-1)$ is a complementary SF of dashed graph $f_{1}(x)=\sin \left(\frac{\pi x}{2}\right)$. But, $f_{2}(x-1)$ can not be a complementary SF of dashed graph $f_{2}(x)$, because zeros of $f_{2}(x-$ 1) can not comprise all non-zeros of $f_{2}(x)=\sin \left(\frac{\pi x}{3}\right)$.

Definition 3.1.11. Complementary CSF(CCSF): A CSF whose zeros comprise all non-zeros of a CSF.

Figure 11 shows two CCSFs of $f_{1}(x) f_{2}(x)$, one is $f_{1}(x-1) f_{2}(x)$ and the other is $f_{1}(x-1) f_{2}(x-1)$. Dotted graphs are CSFs $f_{1}(x) f_{2}(x)$. We can see that the zeros of $f_{1}(x-1) f_{2}(x)$ and $f_{1}(x-1) f_{2}(x-1)$ comprise all non-zeros of $f_{1}(x) f_{2}(x)$, because of $f_{1}(x-1)$ is the complementary SF of $f_{1}(x)$.

(a) Dot CSF $f_{1}(x) f_{2}(x), \operatorname{CCSF} f_{1}(x-1) f_{2}(x)$.

(b) Dot CSF $f_{1}(x) f_{2}(x), \operatorname{CCSF} f_{1}(x-1) f_{2}(x-1)$.

Figure 11. Example CCSFs.
Figure 12 shows a dotted CSF $f_{2}(x) f_{3}(x)$ and $f_{2}(x-1) f_{3}(x-2)$. We can see that zeros of $f_{2}(x-1) f_{3}(x-2)$ can not comprise all the odd non-zeros of $f_{2}(x) f_{3}(x)$, such as $11,23$. So, $f_{2}(x-1) f_{3}(x-2)$ can not be a CCSF of $f_{2}(x) f_{3}(x)$.

* Dotted graph is CSF $f_{2}(x) f_{3}(x)$ and line graph is $f_{2}(x-1) f_{3}(x-2)$ which can't be a CCSF.

Figure 12. An example of CSF with no CCSF.
Definition 3.1.12. Zero function: Function $f_{0}(x)=\sin (\pi x)$, whose zeros are all integers.

3.2 Properties of Functions

Definition 3.2.1. Orthogonality of numbers: Numbers are orthogonal to each other if they are mutually co-prime.

Definition 3.2.2. Orthogonality of sinusoidal functions: Sinusoidal functions are orthogonal to each other if their periods are mutually co-prime.

By definition 3.2.2, SFs, pSFs, dSFs, CSFs, CpSFs and CdSFs are orthogonal to each other if their periods are co-prime to each other.

Definition 3.2.3. Zero configuration: Zero distribution of FSFS $L_{f k}=\left\{f_{1}(x), f_{2}(x), \ldots, f_{k}(x)\right\}$, in $0 \leq x \leq 2 n$, where k is the k 'th largest prime that is less than or equal to $\sqrt{2 n}$.

Definition 3.2.4. Configuration range: The zero configuration range, $0 \leq x \leq 2 n$.
Definition 3.2.5. Configuarion set: FSFS of a zero configuration. Configuration set is same as the SFs with sieve set $S=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$.
Definition 3.2.6. Configuration dimension: The number of SFs of a configuration set.
Definition 3.2.7. Phase set: A set of phases of pSFs, $D_{k}=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$, where $d_{i}=$ $2 n \bmod p_{i}$.

4. Lemmas

[Lemmas on Periods and Phases]

Lemma 4.1. $\mathrm{A} \mathrm{SF}, f_{i}(x)=\sin \left(\frac{\pi x}{p_{i}}\right)$ is a periodic function with period p_{i}.
Proof. $f_{i}(x)$ is a sinusoidal function which zero repeats with interval p_{i}. So, $f_{i}(x)$ is a periodic function with period p_{i}.
Lemma 4.2. A phased Sieve Function(pSF), $f_{i}\left(d_{i}-x\right), 0 \leq d_{i}<p_{i}$, is a periodic function with period p_{i}.
Proof. $f_{i}\left(x-d_{i}\right)$ is a sinusoidal function which zero repeats with interval p_{i}. So, $f_{i}\left(d_{i}-x\right)$ is a periodic function with period p_{i}.
Lemma 4.3. A dual $\operatorname{SF}(\mathrm{dSF}), h_{i}(x)=f_{i}(x) f_{i}(2 n-x)=f_{i}(x) f_{i}\left(d_{i}-x\right), d_{i}=2 n \bmod p_{i}$, is a periodic function with period p_{i}.
Proof. $h_{i}(x)$ is a product of two sinusoidal functions with same period p_{i}, so, $h_{i}(x)$ is a periodic function with period p_{i}.
Lemma 4.4. A CSF, $F_{k}(x)=\prod_{i=1}^{k} f_{i}(x)$, is a periodic function with period $Q_{k}=\prod_{i=1}^{k} p_{i}$.
Proof. $F_{k}(x)$ is the product of k periodic sine functions with period $p_{i, 1} \leq i \leq k$. So, $F_{k}(x)$ is a periodic function with period $Q_{k}=\prod_{i=1}^{k} p_{i}$.
Lemma 4.5. A Composite phased Sieve Function(CpSF), $G_{k}(x)=\prod_{i=1}^{k} f_{i}\left(d_{i}-x\right)$, where $d_{i}=2 n \bmod p_{i}$, is a periodic function with period $Q_{k}=\prod_{i=1}^{k} p_{i}$.
Proof. $G_{k}(x)$ is the product of k periodic sine functions with period $p_{i, 1} \leq i \leq k$. So, $G_{k}(x)$ is a periodic function with period $Q_{k}=\prod_{i=1}^{k} p_{i}$.

Lemma 4.6. A Composite dual Sieve Function(CdSF), $H_{k}(x)=\prod_{i=1}^{k} h_{i}(x)$, is a periodic function with period $Q_{k}=\prod_{i=1}^{k} p_{i}$.
Proof. $H_{k}(x)$ is the product of k periodic sine functions with period $p_{i}, 1 \leq i \leq k$. So, $H_{k}(x)$ is a periodic function with period $Q_{k}=\prod_{i=1}^{k} p_{i}$.

Lemma 4.7. A CpSF $F_{k}(x)$ can have $Q_{k}=\prod_{i=1}^{k} p_{i}$ phases.
Proof. The period of $F_{k}(x)$ is Q_{k}, so, it can have $0 \sim\left(Q_{k}-1\right)$ as its phases.

[Lemmas on Complementary Functions]

Lemma 4.8. Any SF $f_{i}(x)$ can not have a complementary SF except when $p_{1}=2$.
Proof. When $p_{1}=2, f_{1}(x)$ has a complementary SF $f_{1}(x-1)$. But, when $p_{i} \geq 3, f_{i}(x-d)$, $d=1,2, \ldots, p_{i}-1$, can not be a complementary SF, because its zeros can not comprise all non-zeros of $f_{i}(x)$.
Lemma 4.9. Complementary SF or complementary CSF(CCSF), if any, must have the same period with SF or CSF.

Proof. SF and CSF are sinusoidal functions with finite period, so, they will repeat their nonzeros within the first period infinitely many times. To comprise all infinitely repeating non-zeros of SF or CSF, complementary SF or CCSF must have the same period with SF or CSF.
Lemma 4.10. The product of SF with complementary SF or the product of CSF with CCSF must comprise all integers as its zeros.
Proof. By definition, a complementary function comprises all non-zeros of SF or CSF as its zeros. So, there can not exist any non-zeros when two functions are multiplied.
Lemma 4.11. A dSF can not be a complementary dSF of other dSF.
Proof. A dSF has period p_{i} and other dSF has period $p_{j} \neq p_{i}$. So, by Lemma 4.9, a dSF can not be a complementary dSF of other dSF.
Lemma 4.12. A CdSF, $H_{k}(x)$, can not have another dSF as a complementary function. Proof. The product of k dSFs is, $H_{k}(x)=\prod_{i=1}^{k} h_{i}=\prod_{i=1}^{k} f_{i}(x) f_{i}(2 n-x)$. The period of $H_{k}(x)$ is $Q_{k}=\prod_{i=1}^{k} p_{i}$, which can not be same as the period of any other dSF. So, by Lemma 4.9, a CdSFs can not have another dSF as a complementary function.

[Lemmas on Orthogonality]

Lemma 4.13. Any orthogonal number can't be equal to any product of other orthogonal numbers.

Proof. If an orthogonal number is equal to any product of other orthogonal numbers, it means that that orthogonal number is not co-prime to other orthogonal numbers. So, it contradicts to Definition 3.2.1.

Lemma 4.14. Any orthogonal SF can't be equal to any product of other orthogonal SFs.

Proof. If an orthogonal SF is equal to any product of other orthogonal SFs, it means that the period of that orthogonal SF is not co-prime to other orthogonal SFs. So, it contradicts to Definition 3.2.2.

Lemma 4.15. Any product of orthogonal functions with prime periods can't be equal to the zero function, $f_{0}(x)=\sin (\pi x)$.
Proof. Any product of orthogonal functions can't have the period 1 , which is the period of zero function $f_{0}(x)$. So, Any product of orthogonal functions can't be equal to $f_{0}(x)$.
Lemma 4.16. Any product of orthogonal functions with prime periods can't sieve out all numbers.

Proof. Any product of orthogonal functions can't sieve out all numbers, because it can't be equal to the zero function $f_{0}(x)$.

[Lemmas on Zero Configuration]

Lemma 4.17. For a zero configuration there are only one configuration set with minimum configuration dimension.

Proof. A minimum configuration dimension is the minimum number of SFs to sieve all composite numbers in $2 \leq x \leq \sqrt{2 n}$. Adding a SF with seed $p_{k+1}>\sqrt{2 n}$, does not affect the sieve result in $2 \leq x \leq \sqrt{2 n}$. So, for a zero configuration there are only one configuration set with minimum configuration dimension.

Appendix 1 shows the zero configuration of the window size $2 n$ when $n=25$. So, $2 n=50$, $k=4, p_{4}=7, Q_{4}=2{ }^{*} 3^{*} 5^{*} 7=210$. Window ASP source program is also provided to generate sliding window tables.

5. GC False Conditions(GCFC)

Figure 13 depicts the positions of all prime numbers and their symmetry values in configuration range $0 \leq x \leq 2 n$.

Left side Right side

Figure 13. Symmetry property of GC.
In Figure 13, the sieve set is $S=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ and the maximum left side prime number is p_{m}. The symmetry position of left side prime number p_{i} is $2 n-p_{i}$. Right side u prime numbers are denoted as q_{j} and their symmetry positions are denoted as $2 n-q_{j}$. From the patterns of FSFS, RSFS and TSFS, we can derive the following GC false conditions.

5.1 GC False Conditions

Lemma 5.1.1. If GC is false, conditions on FSFS, RSFS and TSFS in Table 2 must be satisfied.
Table 2. GC false zero or non-zero conditions.

View	Condition ID	Left side conditions					Right side conditions				
		1	$p_{1} \sim p_{k}$	$\mathrm{p}_{\mathrm{k}+1} \sim \mathrm{p}_{\mathrm{m}}$	$2 n-q_{j}$	compL	2n-1	$2 n-p_{1} \sim p_{k}$	$2 n-p_{k+1} \sim p_{m}$	q_{j}	compR
FSFS	Cf_{f}	\times	\bigcirc	\times	\bigcirc	\bigcirc	dc	\bigcirc	\bigcirc	\times	\bigcirc
RSFS	Cr_{r}	dc	\bigcirc	\bigcirc	\times	\bigcirc	\times	\bigcirc	\times	\bigcirc	\bigcirc
TSFS	$\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{\mathrm{f}} \cup \mathrm{Cr}_{r}$	dc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	dc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{*} \bigcirc$: must be zero, \times : must not be zero, dc: don't care, compL/R: Left/Right side composite numbers											

Proof. The rationales of each conditions in Table 2 are as follows.
Table 3. Rationales of GC false zero or non-zero conditions.

View	Condition ID	Left side conditions			Right side conditions		
		Conditions		Rationale	Condition		Rationale
FSFS	C_{f}	1	\times	no $f_{p_{i}}(x)$ can pass 1	$2 \mathrm{n}-1$	dc	$f_{p_{i}}(x)$ can pass $2 \mathrm{n}-1$
		$p_{1} \sim p_{k}$	\bigcirc	$f_{p_{i}}(x), 1 \leq i \leq k$ pass $\mathrm{p}_{1} \sim \mathrm{p}_{\mathrm{k}}$.	$2 n-p_{1} \sim p_{k}$	\bigcirc	if $2 n-p_{i}$ is prime GC is true
		$p_{k+1} \sim p_{m}$	\times	$\mathrm{p}_{\mathrm{k}+1} \sim \mathrm{p}_{\mathrm{m}}$ are prime numbers	$2 n-p_{k+1} \sim p_{m}$	\bigcirc	if $2 n-p_{i}$ is prime GC is true
		$2 \mathrm{n}-\mathrm{q}$ j	\bigcirc	if $2 n-q_{j}$ is prime GC is true	q_{j}	\times	q_{j} is a prime number
		compL	\bigcirc	left side composite numbers	compR	\bigcirc	right side composite numbers
RSFS	Cr_{r}	1	dc	symmetry point of 2n-1	2 n -1	\times	symmetry point of 1
		$p_{1} \sim p_{k}$	\bigcirc	symmetry point of $2 n-p_{1} \sim p_{k}$	$2 n-p_{1} \sim p_{k}$	\bigcirc	symmetry point of $p_{1} \sim p_{k}$
		$p_{\mathrm{k}+1} \sim \mathrm{p}_{\mathrm{m}}$	\bigcirc	symmetry point of $2 n-p_{k+1} \sim p_{m}$	$2 \mathrm{n}-\mathrm{p}_{\mathrm{k}+1} \sim p_{\mathrm{m}}$	\times	symmetry point of $p_{k+1} \sim p_{m}$
		$2 \mathrm{n}-\mathrm{qj}$	\times	symmetry point of q_{j}	q_{j}	\bigcirc	symmetry point of $2 n-q_{j}$
		compL	\bigcirc	symmetry point of compR	compR	\bigcirc	symmetry point of compl
TSFS	$\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{\mathrm{f}} \cup \mathrm{Cr}_{r}$	1	dc	zeros of FSFS and RSFS	2n-1	dc	zeros of FSFS and RSFS
		$p_{1} \sim p_{k}$	\bigcirc		$2 n-p_{1} \sim p_{k}$	\bigcirc	
		$p_{k+1} \sim p_{m}$	\bigcirc		$2 n-p_{k+1} \sim p_{m}$	\bigcirc	
		$2 \mathrm{n}-\mathrm{q}^{\text {j }}$	\bigcirc		q_{j}	\bigcirc	
		compL	\bigcirc		compR	\bigcirc	

Table 2 is just a summary of the rationales of Table 3. So, if GC is false, conditions on FSFS, RSFS and TSFS in Table 2 must be satisfied.

The condition $C_{t}=C_{f} \cup C_{r}$ states that all numbers between 1 and $2 n$, except 1 , must be zeros of TSFS. If this can not be satisfied, GC is true.

5.2 GCFC in View of Values of CSFs

Let's define two CSFs.

$$
\begin{equation*}
F_{k}(x)=\prod_{i=1}^{k} f_{i}(x) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
F_{m}(x)=\prod_{i=1}^{m} f_{i}(x) \tag{2}
\end{equation*}
$$

$F_{k}(x)$ is the product of SFs for the sieve set $S=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ and $F_{m}(x)$ is the product of SFs for all prime numbers less than $n,\left\{p_{1}, p_{2}, \ldots, p_{k}, \ldots, p_{m}\right\}$. Then, to make GC false the following functional value conditions must be satisfied.

Table 4. Functional value representation of GCFC.

$F_{k}\left(p_{i}\right)=0,1 \leq i \leq k$	$(3-1)$
$F_{k}\left(p_{i}\right) \neq 0, k+1 \leq i \leq m$	$(3-2)$
$F_{m}\left(p_{i}\right)=0,1 \leq i \leq m$	$(3-3)$
$F_{k}\left(2 n-p_{i}\right)=0,1 \leq i \leq m$	$(4-1)$
$F_{m}\left(2 n-p_{i}\right)=0,1 \leq i \leq m$	$(4-2)$
$F_{k}\left(q_{j}\right) \neq 0,1 \leq j \leq u$	$(5-1)$
$F_{m}\left(q_{j}\right) \neq 0,1 \leq j \leq u$	$(5-2)$
$F_{k}\left(2 n-q_{i}\right)=0,1 \leq j \leq u$	$(6-1)$
$F_{m}\left(2 n-q_{i}\right)=0,1 \leq j \leq u$	$(6-2)$

If all the above conditions can be satisfied GC is false, if not GC is true.

5.3 GCFC in GPMT View

The symmetricity of GCFC can be represented via GPMT without even numbers, as in Table 5 and 6 . Table 5 is when n is even and Tabel 6 is when n is odd.

Table 5. Prime vs non-prime symmetry for GCFC, $n=$ even.

$\begin{gathered} X_{\text {odd }} \\ 3 \leq x \leq n \end{gathered}$	A Xodd condition	B Yodd condition	$\begin{gathered} Y_{\text {odd }} \\ n \leq x \leq 2 n \end{gathered}$	AB	$\begin{gathered} \mid \mathrm{X}_{\text {odd }}- \\ \mathrm{Y}_{\text {odd }} \mid \end{gathered}$	Remarks
-	$\mathrm{n}=\mathrm{even}$	$\mathrm{n}=$ even	-	\bigcirc	-	- A, B: prime or non-prime condition - AB: logical product of A and B - \|X $\mathrm{X}_{\text {odd }}-\mathrm{Y}_{\text {odd }} \mid$: absolute gap between pair - GC false conditions - all primes must not symmetrically overlap.
$\mathrm{n}-1$	\bigcirc	\bigcirc	$\mathrm{n}+1$	\bigcirc	2	
n-3	\bigcirc	-	$\mathrm{n}+3$	\bigcirc	6	
n-5	-	\bigcirc	$\mathrm{n}+5$	\bigcirc	10	
n-7	\bigcirc	\bigcirc	$\mathrm{n}+7$	\bigcirc	14	
$\mathrm{n}-9$	\bigcirc	\bigcirc	$\mathrm{n}+9$	\bigcirc	18	
n -11	\bigcirc	\bigcirc	$\mathrm{n}+11$	\bigcirc	22	
$\mathrm{n}-13$	\bigcirc	\bigcirc	$\mathrm{n}+13$	\bigcirc	26	
\ldots	\cdots	\ldots	\ldots	\bigcirc	\ldots	

7	\bigcirc	\bigcirc	$2 n-5$	\bigcirc	$2 n-12$
5	\bigcirc	\bigcirc	$2 n-3$	\bigcirc	$2 n-8$
3	\bigcirc	\bigcirc	$2 n-1$	\bigcirc	$2 n-4$

-there must be no primes with distance $2,6,10, \ldots$ bisymmetric at n

* legend: $\mathrm{X}_{\text {odd }} / \mathrm{Y}_{\text {odd: }}$ odd numbers in $3 \leq \mathrm{x} \leq \mathrm{n} / \mathrm{n} \leq \mathrm{x} \leq 2 \mathrm{n}$, : prime(true), \bigcirc : non-prime(false)

Table 6. Prime vs non-prime symmetry for GCFC, $n=$ odd.

$\begin{gathered} \mathrm{X}_{\text {odd }} \\ 3 \leq \mathrm{x} \leq \mathrm{n} \end{gathered}$	A Xodd condition	B Yodd condition	$\begin{gathered} Y_{\text {odd }} \\ n \leq x \leq 2 n \end{gathered}$	AB	$\begin{gathered} \mid X_{\text {odd }}- \\ Y_{\text {odd }} \mid \\ \hline \end{gathered}$	Remarks
n	\bigcirc	\bigcirc	n	\bigcirc	0	- A, B: prime or non-prime condition - AB: logical product of A and B - \|X $\mathrm{X}_{\text {odd }}-\mathrm{Y}_{\text {odd }} \mid$: absolute gap between pair - GC false conditions - all primes must not symmetrically overlap. - there must be no primes with distance $0,4,8, \ldots$ bisymmetric at n
n-2	\bigcirc	\bigcirc	$\mathrm{n}+2$	\bigcirc	4	
n-4	\bigcirc	\bigcirc	$\mathrm{n}+4$	\bigcirc	8	
n-6	\bigcirc	\bigcirc	$\mathrm{n}+6$	\bigcirc	12	
n-8	\bigcirc	\bigcirc	$\mathrm{n}+8$	\bigcirc	16	
n-10	\bigcirc	\bigcirc	$\mathrm{n}+10$	\bigcirc	20	
n-12	\bigcirc	\bigcirc	$\mathrm{n}+12$	\bigcirc	24	
n-14	\bigcirc	-	$\mathrm{n}+14$	\bigcirc	28	
\ldots	\ldots	\ldots	\ldots	\bigcirc	\ldots	
7	\bigcirc	\bigcirc	2n-5	\bigcirc	$2 \mathrm{n}-12$	
5	\bigcirc	\bigcirc	2n-3	\bigcirc	$2 \mathrm{n}-8$	
3	\bigcirc	\bigcirc	$2 \mathrm{n}-1$	\bigcirc	$2 \mathrm{n}-4$	
* legend: $\mathrm{X}_{\text {odd }} / \mathrm{Y}_{\text {odd: }}$ odd numbers in $3 \leq \mathrm{x} \leq \mathrm{n} / \mathrm{n} \leq \mathrm{x} \leq 2 \mathrm{n}$, О: prime(true), \bigcirc : non-prime(false)						

6. ProofS OF GC

6.1 Proof by Orthogonality Property

Lemma 6.1.1. The product of all SFs in any TSFS(Definition 3.1.9) can't be equivalent to the zero function $f_{0}(x)=\sin (\pi x)$ (Definition 3.1.12). So, the zeros of TSFS can't make all numbers in $1 \leq x \leq 2 n$ as its zeros, i.e., GCFC can't be satisfied.

Proof. As in Lemma 5.1.1, to satisfy GCFC, all numbers in $1 \leq x \leq 2 n$, must be the zeros of TSFS, which is equivalent to the zero function $f_{0}(x)=\sin (\pi x)$. But, Lemma 4.15 states that any product of orthogonal functions with prime periods can't be equal to the zero function $f_{0}(x)$. So, the CdSF(Definition 3.1.6) $H_{k}(x)=\prod_{i=1}^{k} h_{i}(x)=\prod_{i=1}^{k} f_{i}(x) f_{i}(2 n-x)$, which is the product of all SFs in TSFS, can't be same as $f_{0}(x)$, because $h_{i}(x)$ is an orthogonal function with a prime period.

6.2 Proof by Functional Equivalence Contradiction

Figure 14 (a), (b) depicts SFs of FSFS(Definition 3.1.7) and RSFS(Definition 3.1.8) for $n=25$. The configuration range(Definition 3.2.4) is $0 \leq x \leq 50$, so, the sieve set(Definition
2.3) is $S=\{2,3,5,7\}$ and $F_{k}(x)=F_{4}(x)=\sin \left(\frac{\pi x}{2}\right) \sin \left(\frac{\pi x}{3}\right) \sin \left(\frac{\pi x}{5}\right) \sin \left(\frac{\pi x}{7}\right), F_{k}(2 n-x)=$ $F_{4}(2 n-x)=\sin \left(\frac{-\pi x}{2}\right) \sin \left(\frac{\pi(2-x)}{3}\right) \sin \left(\frac{-\pi x}{5}\right) \sin \left(\frac{\pi(1-x)}{7}\right)$.

Figure 14 (c), (d) depicts SFs of FSFS and RSFS for 9 primes in $0 \leq x \leq 25$, which are $\{2,3,5,7,11,13,17,19,23\}$. So, $F_{m}(x)=F_{9}(x)=\sin \left(\frac{\pi x}{2}\right) \ldots \sin \left(\frac{\pi x}{23}\right), F_{m}(2 n-x)=F_{9}(2 n-$ $x)=\sin \left(\frac{-\pi x}{2}\right) \ldots \sin \left(\frac{\pi(4-x)}{23}\right)$.

(a) FSFS: $f_{1}(x) \sim f_{4}(x)$.

(b) RSFS: $f_{1}(2 n-x) \sim f_{4}(2 n-x)$.

(c) FSFS: $f_{1}(x) \sim f_{9}(x)$.

(d) RSFS: $f_{1}(2 n-x) \sim f_{9}(2 n-x)$.

Figure 14. Example graphs of FSFS and RSFS.
Here, we copied the following four conditions from Table 4 for convenience sake.

$$
\begin{align*}
& F_{k}\left(2 n-p_{i}\right)=0,1 \leq i \leq m \tag{4-1}\\
& F_{m}\left(2 n-p_{i}\right)=0,1 \leq i \leq m \tag{4-2}\\
& F_{k}\left(2 n-q_{i}\right)=0,1 \leq j \leq u \tag{6-1}\\
& F_{m}\left(2 n-q_{i}\right)=0,1 \leq j \leq u \tag{6-2}
\end{align*}
$$

In Figure 12 (a), all $\left(2 n-p_{i}\right), 1 \leq i \leq m$ lies between $n \sim 2 n$. To satisfy (4-1), (4-2), (61) and (6-2) for all prime numbers between $0 \sim 2 n, F_{k}(x)$ must functionally equivalent to $F_{m}(x)$ in $n \leq x \leq 2 n$.

But, the graphs of Figure 14 (b) can not occur at $2 n=50$. The node point, where all k graphs of $f_{i}(x)$ pass, only occurs at $x=Q_{k}=\prod_{i=1}^{k} p_{i}$, as in Figure 15.

$$
* f_{1}(x) \sim f_{4}(x), Q_{4}=\prod_{i=1}^{4} p_{i}=2 * 3 * 5 * 7=210 .
$$

Figure 15. Periodic occurrences of node point of SFs.

Also, the graphs of Figure 14 (d) can not occur at $2 n=50$. The node point, where all m graphs of $f_{i}(x)$ pass, only occurs at $x=Q_{m}=\prod_{i=1}^{m} p_{i}$.

Lemma 6.2.1. The functional value representation (4-1) and (4-2) causes functional symmetry contradiction. So, GCFC can't be satisfied.

Proof. Conditions (4-1) and (4-2) cause functional symmetry contradictions, because they are obviously the functional symmetries of (1) and (2). But, those functional symmetries can't occur at $2 n$, they occur only at $x=Q_{m}=\prod_{i=1}^{m} p_{i}$ and $x=Q_{m}=\prod_{i=1}^{m} p_{i}$, respectively. So, (41) and (4-2) can't be satisfied for all p_{i}, they can only be satisfied for some p_{i}.

In algebraic view, (4-1) and (6-1) mean that there are p_{j} and q_{j} that satisfy the following equations for all prime numbers in $0 \leq x \leq 2 n$.

$$
\begin{align*}
& p_{j} \mid 2 n-p_{i}, 1 \leq j \leq k, 1 \leq i \leq m \tag{7}\\
& p_{j} \mid 2 n-q_{i}, 1 \leq j \leq k, 1 \leq i \leq u \tag{8}
\end{align*}
$$

To make GCFC false, both the algebraic and functional conditions must be satisfied. It is hard to algebraically prove whether there exists such n that satisfies (7) and (8). But, it is obvious that (4-1) and (4-2) causes functional contradiction.

6.3 Proof by Complementary Function Concept

Lemma 6.3.1. Any $\operatorname{CdSF}\left(\right.$ Definition 3.1.6) $H_{k-1}(x)$ can not have dSF(Definition 3.1.3) $h_{k}(x)$, as its complementary function. So, GCFC can't be satisfied.

Proof. Lemma 4.9 states that a complementary SF or complementary CSF(CCSF) must have the same period with SF or CSF. So, any CdSF $H_{k-1}(x)$ can not have a dSF $h_{k}(x)$, as its complementary function. That is to say, $H_{k}(x)=h_{k}(x) H_{k-1}(x)$ can not comprise all integers in configuration range $0 \leq x \leq 2 n$ as its zeros. So, GCFC can not be satisfied.

To help understand we added an example case at Appendix B.

7. Conclusion

In this thesis, we devised GPMT and SFs to functionally understand the various symmetry and period properties of GC. They have the properties of sinusoidal functions, from which we could derive the GC false conditions(GCFC) of Lemma 5.1.1. We proved that GCFC can not be satisfied in three points of view, orthogonality property view, functional symmetry contradiction view and complementary function concept view. So, GC is true.

References

[1] https://en.wikipedia.org/wiki/Christian Goldbach
[2] https://en.wikipedia.org/wiki/Goldbach\'s conjecture
[3] http://sweet.ua.pt/tos/goldbach.html
[4] Richard K. Guy, Unsolved problems in number theory, Third Edition, Springer-Verlag, Berlin (2004).
[5] Johan Härdig, Goldbach's Conjecture, U.U.D.M. Project Report 2020:37, Department of Mathematics Uppsala University.
[6] H. A. Helfgott, "The Ternary Golbach Conjecture is True", arXiv:1312.7748v2 [math.NT], 17 Jan 2014.

List of Figures

1 Example Eratosthenes sieve 2
2 Example SFs 3
3 dSF examples 3
4 Example symmetry of a dSF, $h_{3}(x)=f_{3}(x) f_{3}(50-x), n=25$ 3
5 Example CSF, $n=25, k=3, S=\{2,3,5,7\}$. 3
6 Example symmetry of a CdSF, $H_{4}(x)=\prod_{i=1}^{4} f_{i}(x) f_{i}(2 n-x), n=25$ 4
7 Example FSFS, $n=25$. 4
8 Example RSFS, $n=25$ 4
9 Example TSFS, $n=25$ 4
10 Graphs for complementary SF concept 5
11 Example CCSFs 5
12 An example of CSF with no CCSF. 5
13 Symmetry property of GC 8
14 Example graphs of FSFS and RSFS 12
15 Periodic occurrences of node point of SFs 12
16 Graphs for complementary SF concept 12
List of Tables
1 Example GPMT for $\mathrm{n}=25$ 2
2 GC false zero or non-zero conditions 9
3 Rationales of GC false zero or non-zero conditions 9
4 Functional value representation of GCFC 10
5 Prime vs non-prime symmetry for GCFC, $n=$ even 10
6 Prime vs non-prime symmetry for GCFC, $n=$ odd 11

Appendix A. Sliding Window Tables and ASP Program Source.

A.1. Zero Configuration of Sliding Window 2n, $\boldsymbol{n}=\mathbf{2 5}$.

From	To	Phas		1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49
0	50	00			3	5	7		11	13		17	19		23			29	31			37		41	43		47	
160	210	10			163		167			173			179	181					191	193		197	199					
0	50	00			3	5	7		11	13		17	19		23			29	31			37		41	43		47	
2	52	22	2	3	5	7		11	13		17	19		23			29	31			37		41	43		47		
4	54	14		5	7		11	13		17	19		23			29	31			37		41	43		47			53
6	56	01		7		11	13		17	19		23			29	31			37		41	43		47			53	
8	58	23			11	13		17	19		23			29	31			37		41	43		47			53		
10	60	10		11	13		17	19		23			29	31			37		41	43		47			53			59
12	62	02		13		17	19		23			29	31			37		41	43		47			53			59	61
14	64	24			17	19		23			29	31			37		41	43		47			53			59	61	
16	66	11		17	19		23			29	31			37		41	43		47			53			59	61		
18	68	03		19		23			29	31			37		41	43		47			53			59	61			67
20	70	20			23			29	31			37		41	43		47			53			59	61			67	
22	72	12	12	23			29	31			37		41	43		47			53			59	61			67		71
24	74	04				29	31			37		41	43		47			53			59	61			67		71	73
26	76	21			29	31			37		41	43		47			53			59	61			67		71	73	
28	78	13		29	31			37		41	43		47			53			59	61			67		71	73		
30	80	00	23	31			37		41	43		47			53			59	61			67		71	73			79
32	82	22				37		41	43		47			53			59	61			67		71	73			79	
34	84	14			37		41	43		47			53			59	61			67		71	73			79		83
36	86	01		37		41	43		47			53			59	61			67		71	73			79		83	
38	88	23			41	43		47			53			59	61			67		71	73			79		83		
40	90	10		41	43		47			53			59	61			67		71	73			79		83			89
42	92	02		43		47			53			59	61			67		71	73			79		83			89	
44	94	24			47			53			59	61			67		71	73			79		83			89		
46	96	11		47			53			59	61			67		71	73			79		83			89			
48	98	03				53			59	61			67		71	73			79		83			89				97
50	100	20			53			59	61			67		71	73			79		83			89				97	
52	102	12		53			59	61			67		71	73			79		83			89				97		101
54	104	04				59	61			67		71	73			79		83			89				97			103
56	106	21			59	61			67		71	73			79		83			89				97		101	103	
58	108	13		59	61			67		71	73			79		83			89				97		101	103		107
60	110	00		61			67		71	73			79		83			89				97		101	103		107	109
62	112	22				67		71	73			79		83			89				97		101	103		107	109	
64	114	14			67		71	73			79		83			89				97		101	103		107	109		113
66	116	01		67		71	73			79		83			89				97		101	103		107	109		113	
68	118	23			71	73			79		83			89				97		101	103		107	109		113		
70	120	10		71	73			79		83			89				97		101	103		107	109		113			
72	122	02		73			79		83			89				97		101	103		107			113				
74	124	24				79		83			89				97		101	103		107			113					
76	126	11			79		83			89				97		101	103		107	109		113						
78	128	03		79		83			89				97		101	103		107	109		113							127
80	130	20			83			89				97		101	103		107	109		113							127	
82	132	12		83			89				97		101	103		107	109		113							127		131
84	134	04				89				97		101	103		107			113							127		131	
86	136	21			89				97		101	103		107	109		113							127		131		
88	138	13		89				97		101	103		107	109		113							127		131			137

From	To	Phas	ase	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49
90	140	00	6				97		101	103		107	109		113							127		131			137	139
92	142	22	1			97		101	103		107	109		113							127		131			137	139	
94	144	14	43		97		101	103		107	109		113							127		131			137			
96	146	01	15	97		101	103		107	109		113							127		131			137	139			
98	148	23			101	103		107	109		113							127		131			137	139				
100	150	10		101	103		107	109		113							127		131			137	139					149
102	152	02		103		107	109		113							127		131			137	139					149	151
104	154	424	46		107	109		113							127		131			137	139					149	151	
106	156	11		107	109		113							127		131			137	139					149	151		
108	158	03		109		113							127		131			137	139					149	151			157
110	160	20			113							127		131			137	139					149	151			157	
112	162	12	201	113							127		131			137	139					149	151			157		
114	164	04								127		131			137	139					149	151			157			163
116	166	21	14						127		131			137	139					149	151			157			163	
118	168	13						127		131			137	139					149	151			157			163		167
120	170	00					127		131			137	139					149	151			157			163		167	
122	172	22				127		131			137	139					149	151			157			163		167		
124	174	1744			127		131			137	139					149	151			157			163		167			173
126	176	01	101	127		131			137	139					149	151			157			163		167			173	
128	178	23			131			137	139					149	151			157			163		167			173		
130	180	10	041	131			137	139					149	151			157			163		167			173			179
132	182	02				137	139					149	151			157			163		167			173			179	
134	184	24			137	139					149	151			157			163		167			173			179	181	
136	186	11	131	137	139					149	151			157			163		167			173			179	181		
138	188	03	351	139					149	151			157			163		167			173			179	181			
140	190	20						149	151			157			163		167			173			179	181				
142	192	12					149	151			157			163		167			173			179	181					191
144	194	04				149	151			157			163		167			173			179						191	193
146	196	21	16		149	151			157			163		167			173			179	181					191	193	
148	198	13	311	149	151			157			163		167			173			179	181					191	193		197
150	200	00) 31	151			157			163		167			173			179	181					191	193		197	199
152	202	22	5			157			163		167			173			179	181					191	193		197		
154	204	14			157			163		167			173			179	181					191	193		197			
156	206	01	121	157			163		167			173			179	181					191	193		197	199			
158	208	23	34			163		167			173			179	181					191	193		197	199				
160	210	10	6		163		167			173			179	181					191	193		197	199					

A.2. Geometric Zero Configuration of A.1.

From	To		ase		1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33			7	39	41	43	45	47	49
0	50	0	0	0		-	-	-		-	-		-	-		-			-	-				-		-	-		-	
160	210	1	0	6		\bullet		-			-			-	-					-	-			-	-					
0	50	0	0	0		-	-	-		-	-		-	-		-			-	-				-		-	-		-	
2	52	2	2	2	-	-	-		-	-		-	-		-			-	-						\bullet	-		-		
4	54	1	4	4	-	-		-	-		-	-		-			-	\bullet						-	-		\bullet			\bullet
6	56	0	1	6	-		-	-		-	-		-			-	\bullet			-				-		-			\bullet	
8	58	2	3	1		-	-		-	-		-			-	-			-						-			\bullet		
10	60	1	0	3	-	-		-	-		-			-	-			-		-	-			-			-			-
12	62	0	2	5	-		-	-		-			-				\bullet		-	-			-			-			-	
14	64	2	4	0		-	-		-			-	-			-		-	-		-				\bullet			-	\bullet	

From	To	Phase		1	3	5	11	13151719		$23 \quad 25 \quad 27 \quad 29$		333537		414	4345	4749
16	66	11	2	-	\bullet	\bullet		- -	-	- -	-				\bullet	
18	68	03	4	-		\bullet	-	- -		- - -		-		\bullet		-
20	70	20	6		\bullet	\bullet	-	\bullet	-	- -		\bullet	\bullet	-		\bullet
22	72	1	1	-		- -		- -	-	\bullet	\bullet				\bullet	\bullet
24	74	0	3			\bullet		- - -		\bullet						- -
26	76	2	5		-	\bullet	\bullet	- -	-	\bullet		-		\bullet	-	\bullet
28	78	13	0	-	\bullet	\bullet		- - -		-	-	\bullet	\bullet		-	
30	80	00	2	-		-	-	- -		- -	\bullet			-	-	\bullet
32	82	2	4			- -	-	\bullet	\bullet	- -		\bullet		\bullet		\bullet
34	84	14	6		\bullet	- -		- -		- -		\bullet			\bullet	-
36	86	0	1	-		- -	-	-		- -	-	-				-
38	88	23	3		\bullet	- -		\bullet	-	- -		- -		\bullet	-	
40	90	10	5	-	-	-		- -	-	-	-	-	-		-	\bullet
42	92	02	0	-		\bullet	-	- -		- -	-			\bullet		\bullet
44	94	2	2		\bullet	\bullet	-	- -		- - -		\bullet			-	
46	96	11	4	-		\bullet		- -		-		\bullet			\bullet	
48	98	0	6			-	-	- -		- -	\bullet	-		\bullet		-
50	100	2	1		-	-	-	-	-	- -		-	-			-
52	102	12	3	-		- -		- -	-	\bullet	-				\bullet	\bullet
54	104	04	5			- -		- - -		- -		\bullet				- -
56	106	21	0		-	\bullet	-	- -		- -		\bullet		\bullet		
58	108	1	2	-	\bullet	\bullet		- -	\bullet	\bullet	\bullet		\bullet		\bullet	
60	110	0	4	-		-	-	- -		- -				\bullet		- -
62	112	2	6			- -	-	\bullet	-	\bullet		\bullet		-	-	\bullet
64	114	14	1		\bullet	- -		- -		\bullet		-				
66	116	0	3	-		- -		- -		\bullet	-	\bullet		-		\bullet
68	8	2	5		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		$\bullet \bullet$		\bullet	\bullet	
70	120	1	0	-	-	-	-	- -		-	-	-			-	
72	122	0	2	\bullet		\bullet	-	\bullet		- -	-	-		-		
74	124	24	4			\bullet		-		- - -		- -	-			
76	126	1	6			\bullet		- -	\bullet	- -	\bullet	- -				
78	128	0	1	\bullet		-	\bullet	\bullet		- - -	\bullet	-				\bullet
80	130	2	3		-	-		-	-	- - -		-				\bullet
82	132	12	5	\bullet		\bullet		- -	-	- -	\bullet				-	\bullet
84	134	0	0			\bullet		- - -		- - -					-	-
86	136	2	2		\bullet		\bullet	- -	-	- -				\bullet	\bullet	
88	138	3	4	-		-		- - \quad	-	\bullet			\bullet			\bullet
90	140	0	6			\bullet	-	- - -		-		-		\bullet		- -
92	142	22	1			- -	-	- -	\bullet			\bullet	\bullet		-	-
94	144	14	3			- -		- -				\bullet				
96	146	0	5	\bullet		- -	-	- -			\bullet	\bullet		-	-	
98	148	3	0		-	- -	-	\bullet		\bullet		-	\bullet	-		
100	150	1	2	\bullet	-	- -		-		\bullet	\bullet		\bullet			-
102	152	0	4	\bullet		- -	\bullet			- -		-				- -
104	154	2	6			-				- -					-	-
106	156	11	1	-	-	\bullet			-	-	-	-				
108	158	0	3	\bullet		\bullet		\bullet		- -	\bullet			-		\bullet
110	160	2	5		-			-	-	- -			-	-		-
112	162	1	0	-				- -		- -			\bullet		\bullet	
114	164	04	2					- -		- -		-				\bullet
116	166	21	4				\bullet	\bullet	-	\bullet		$\bullet \bullet$		\bullet		

Explanations on tables A. 1 and A. 2 are as follows.

- Horizontal arrangement.
- From: Start value of silding window.
- To: End value of sliding window.
- Phase: Phase of each pSFs, $d_{i}=2 n \bmod p_{i}, 2 \leq i \leq k$.
- Head row numbers: Odd numbers between $1 \sim 2 n$.
- Vertical arrangement.
- \quad Sliding window from $0 \sim 2 n$ to $\left(Q_{4}-2 n\right) \sim Q_{4}$.
- Other cells.
- number: Prime numbers between 0 ~ Q4.
- •: Prime numbers are replaced by \bullet to show geometric relationships between sliding windows.

- First two red letter rows.

- First row: The first sliding window.
- Secondt row: The last sliding window.
- The first row and the second row can not satisfy GCFC.

We can see the following characteristics from tables A.1.1. and A.1.2.
(1) As windows slide by 2 , the prime numbers also slide diagonally.
(2) Empty cells are the zeros of CpSFs.
(3) The zero configuration is unique for each windows.

A.3. Window ASP Program Source for Sliding Window Tables.

note) How to invoke: URL/SourceProgramName.asp?n=25

```
<!-- metadata type="typelib"
    file="c:\Program Files\Common Files\System\ado\msado15.d|l" -->
<html>
<head>
    <title>gc</title>
    <meta http-equiv="Content-Type" content="text/html; charset=euc-kr">
    <STYLE TYPE="text/css">
<!-
    td {font-size: 8pt; color: #000000;}
-->
</STYLE>
</head>
<%
'//* ASP source for sliding window table.
Function isPrime(num)
If num =< 2 then
    isPrime = false
Elself num = 2 Then
    isPrime = true
Else
    isPrime = true
    For a = 2 To num \2
        If num Mod a = 0 Then
        isPrime = false
        exit for
        End If
    Next
End If
End Function
'//* main
Server.ScriptTimeOut = 30
dim p(50000), phase(50000, 20), zero(50000)
n = Clnt(Request.QueryString("n")) 'n >= 25. URL/SourceProgram.asp?n=25
if isNull(n) or n<25 then n=25
n2 = n * 2
rn2 = int(sqr(n2))
cnt = 0
Q=2
FOR i=1 to rn2
```

```
    if isPrime(i) then
    cnt = cnt + 1
    p(cnt) = i
    Q=Q *i
    end if
    NEXT
    response.write "* n=" & n & ", 2n=" & n2 & ", max p=" & p(cnt) & ", Q=" & Q & " : "
    FOR i=1 to cnt
    response.write p(i) & " "
    NEXT
    response.write "<br><br>"
    '//* prime numbers, phases
    FOR i=0 to Q
    FOR j=1 to cnt
        phase(i, j) = i mod p(j)
    NEXT
    IF isPrime(i) THEN
        zero(i) = I 'display numbers indtead of
        zero(i) = "'"
        ELSE
        zero(i) = ""
        END IF
    NEXT
    '//* sliding window table
    response.write "<table><tr bgcolor=eeeeee align=center><td>From</tf><td>To</td><td colspan=" & cnt &
">phase</td>"
    FOR i=1 to n2 step 2
    response.write "<td width=13>" & i
    NEXT
    FOR i=0 to Q-n2 step Q-n2
    xfrom = i
    xto = xfrom + n2
    response.write "<tr align=center><td>" & xfrom & "<td>" & xto
    FOR j=1 to cnt
        response.write "<td>" & phase(i, j)
        NEXT
    col = -1
    FOR k=xfrom+1 to xto step 2
    col = col + 1
    if col mod 5 = 0 or i mod 5 = 0 then
    bg = "pink"
    else
    bg = "ffffff"
    end if
    if IsNumeric(zero(k)) or zero(k)="O" then
    color = "black"
    else
    color = "dddddd"
    end if
    response.write "<td bgcolor=" & bg & "><font color=" & color & ">" & zero(k)
```

NEXT
NEXT
NEXT

```
FOR i=0 to Q step 2
    xfrom = i
    xto \(=x\) from \(+n 2\)
    response.write "<tr align=center><td>" \& xfrom \& "<td>" \& xto
    FOR \(\mathrm{j}=1\) to cnt
    response.write "<td>" \& phase(i, j)
NEXT
col = -1
FOR \(\mathrm{k}=x\) from +1 to xto step 2
    \(\mathrm{col}=\mathrm{col}+1\)
    if col \(\bmod 5=0\) or \(\bmod 5=0\) then
    bg = "yellow"
    else
    bg = "ffffff"
    end if
    if IsNumeric(zero(k)) or zero(k)=" \(\bullet\) " then
    color = "black"
    else
    color = "dddddd"
    end if
    response.write "<td bgcolor=" \& bg \& "><font color=" \& color \& ">" \& zero(k)
NEXT
NEXT
response.write "</td></tr></table>"
\%>
```

Appendix B. Example RSFS Sieve of Prime Numbers in in $n \leq x \leq 2 n$.
B.1. Table of the Sieve of Prime Numbers via RSFS, $\boldsymbol{n}=\mathbf{2 5}$.

seq	phases			3	5	7	11	13	17	19	23	29	31	37	41	43	47	pnum
	3	5	7															
1	0	0	0	x3	$\times 5$	$\times 7$	11	13	17	19	23	29	31	37	41	43	47	11
2	0	0	1	x3	$\times 5$	7	11	13	17	19	23	$\times 7$	31	37	41	$\times 7$	47	10
3	0	0	2	x3	$\times 5$	7	11	13	17	19	$\times 7$	29	31	$\times 7$	41	43	47	10
4	0	0	3	x3	$\times 5$	7	11	13	$\times 7$	19	23	29	$\times 7$	37	41	43	47	10
5	0	0	4	x3	$\times 5$	7	$\times 7$	13	17	19	23	29	31	37	41	43	47	11
6	0	0	5	x3	$\times 5$	7	11	13	17	$\times 7$	23	29	31	37	41	43	$\times 7$	10
7	0	0	6	x3	$\times 5$	7	11	$\times 7$	17	19	23	29	31	37	$\times 7$	43	47	10
8	0	1	0	x3	5	$\times 7$	$\times 5$	13	17	19	23	29	$\times 5$	37	x5	43	47	9
9	0	1	1	x3	5	7	$\times 5$	13	17	19	23	$\times 7$	$\times 5$	37	x5	$\times 7$	47	8
10	0	1	2	x3	5	7	$\times 5$	13	17	19	$\times 7$	29	$\times 5$	$\times 7$	x5	43	47	8
11	0	1	3	x3	5	7	$\times 5$	13	$\times 7$	19	23	29	$\times 5$	37	x5	43	47	9
12	0	1	4	x3	5	7	$\times 5$	13	17	19	23	29	$\times 5$	37	x5	43	47	10
13	0	1	5	x3	$\times 7$	7	$\times 5$	13	17	$\times 7$	23	29	$\times 5$	37	x5	43	x7	7
14	0	1	6	x3	5	7	$\times 5$	$\times 7$	17	19	23	29	$\times 5$	37	$\times 5$	43	47	9
15	0	2	0	x3	5	x5	11	13	$\times 5$	19	23	29	31	$\times 5$	41	43	$\times 5$	9
16	0	2	1	x3	5	$\times 5$	11	13	x 5	19	23	$\times 7$	31	$\times 5$	41	$\times 7$	$\times 5$	7
17	0	2	2	x3	5	x5	11	13	x5	19	$\times 7$	29	31	$\times 5$	41	43	x5	8
18	0	2	3	x3	5	$\times 5$	11	13	x 5	19	23	29	$\times 7$	$\times 5$	41	43	$\times 5$	8
19	0	2	4	x3	5	x5	$\times 7$	13	x5	19	23	29	31	$\times 5$	41	43	x5	8
20	0	2	5	x3	$\times 7$	$\times 5$	11	13	$\times 5$	$\times 7$	23	29	31	$\times 5$	41	43	x5	7
21	0	2	6	x3	5	x5	11	$\times 7$	$\times 5$	19	23	29	31	$\times 5$	$\times 7$	43	$\times 5$	7
22	0	3	0	x3	5	$\times 7$	11	x5	17	19	$\times 5$	29	31	37	41	$\times 5$	47	9
23	0	3	1	x3	5	7	11	$\times 5$	17	19	$\times 5$	$\times 7$	31	37	41	$\times 5$	47	9
24	0	3	2	x3	5	7	11	$\times 5$	17	19	$\times 5$	29	31	$\times 7$	41	$\times 5$	47	9
25	0	3	3	x3	5	7	11	$\times 5$	$\times 7$	19	$\times 5$	29	$\times 7$	37	41	$\times 5$	47	8
26	0	3	4	x3	5	7	$\times 7$	$\times 5$	17	19	$\times 5$	29	31	37	41	$\times 5$	47	9
27	0	3	5	x3	$\times 7$	7	11	x5	17	$\times 7$	$\times 5$	29	31	37	41	$\times 5$	$\times 7$	7
28	0	3	6	x3	5	7	11	$\times 5$	17	19	$\times 5$	29	31	37	$\times 7$	$\times 5$	47	9
29	0	4	0	x3	5	$\times 7$	11	13	17	$\times 5$	23	$\times 5$	31	37	41	43	47	10
30	0	4	1	x3	5	7	11	13	17	$\times 5$	23	$\times 5$	31	37	41	$\times 7$	47	10
31	0	4	2	x3	5	7	11	13	17	$\times 5$	$\times 7$	x5	31	$\times 7$	41	43	47	9
32	0	4	3	$\times 3$	5	7	11	13	$\times 7$	$\times 5$	23	x5	$\times 7$	37	41	43	47	9
33	0	4	4	x3	5	7	$\times 7$	13	17	$\times 5$	23	x5	31	37	41	43	47	10
34	0	4	5	x3	$\times 7$	7	11	13	17	$\times 5$	23	x5	31	37	41	43	$\times 7$	9
35	0	4	6	x3	5	7	11	$\times 7$	17	x5	23	x5	31	37	$\times 7$	43	47	9
36	1	0	0	3	$\times 5$	$\times 3$	11	$\times 3$	17	$\times 3$	23	29	x3	$\times 3$	41	$\times 3$	47	7
37	1	0	1	3	$\times 5$	x3	11	x3	17	x3	23	$\times 7$	x3	$\times 3$	41	x3	47	6
38	1	0	2	3	$\times 5$	$\times 3$	11	$\times 3$	17	$\times 3$	$\times 7$	29	x3	$\times 3$	41	$\times 3$	47	6
39	1	0	3	$\times 7$	$\times 5$	x3	11	x3	$\times 7$	x3	23	29	x3	$\times 3$	41	$\times 3$	47	5
40	1	0	4	3	$\times 5$	$\times 3$	$\times 7$	$\times 3$	17	$\times 3$	23	29	x3	$\times 3$	41	$\times 3$	47	6
41	1	0	5	3	$\times 5$	x3	11	$\times 3$	17	x3	23	29	x3	$\times 3$	41	x3	$\times 7$	6
42	1	0	6	3	$\times 5$	$\times 3$	11	$\times 3$	17	$\times 3$	23	29	x3	$\times 3$	$\times 7$	$\times 3$	47	6
43	1	1	0	3	5	x3	$\times 5$	x3	17	x3	23	29	x3	x3	x5	x3	47	6
44	1	1	1	3	5	$\times 3$	x5	x3	17	$\times 3$	23	$\times 7$	$\times 3$	$\times 3$	X 5	$\times 3$	47	5
45	1	1	2	3	5	$\times 3$	x5	x3	17	x3	$\times 7$	29	x3	$\times 3$	$\times 5$	x3	47	5
46	1	1	3	$\times 7$	5	$\times 3$	$\times 5$	x3	$\times 7$	$\times 3$	23	29	x3	x3	x 5	x3	47	4
47	1	1	4	3	5	x3	x5	x3	17	x3	23	29	$\times 3$	x3	x5	x3	47	6
48	1	1	5	3	$\times 7$	$\times 3$	x5	x3	17	$\times 3$	23	29	x3	$\times 3$	$\times 5$	x3	$\times 7$	4
49	1	1	6	3	5	x3	$\times 5$	x3	17	x3	23	29	x3	x3	$\times 5$	x3	47	6
50	1	2	0	3	5	$\times 3$	11	$\times 3$	$\times 5$	$\times 3$	23	29	x3	$\times 3$	41	x3	$\times 5$	6

seq	phases			3	5	7	11	13	17	19	23	29	31	37	41	43	47	pnum
	3	5	7															
51	1	2	1	3	5	$\times 3$	11	x3	$\times 5$	x3	23	$\times 7$	x3	x3	41	x3	x5	5
52	1	2	2	3	5	$\times 3$	11	$\times 3$	$\times 5$	x3	$\times 7$	29	x3	x3	41	x3	x5	5
53	1	2	3	$\times 7$	5	$\times 3$	11	$\times 3$	x5	x3	23	29	x3	x3	41	$\times 3$	x5	5
54	1	2	4	3	5	x3	$\times 7$	$\times 3$	$\times 5$	$\times 3$	23	29	x3	x3	41	x3	$\times 5$	5
55	1	2	5	3	$\times 7$	x3	11	x3	$\times 5$	x3	23	29	x3	x3	41	x3	x5	5
56	1	2	6	3	5	$\times 3$	11	$\times 3$	$\times 5$	$\times 3$	23	29	x3	x3	$\times 7$	$\times 3$	$\times 5$	5
57	1	3	0	$\times 5$	5	$\times 3$	11	$\times 3$	17	x3	$\times 5$	29	x3	x3	41	x3	47	6
58	1	3	1	$\times 5$	5	$\times 3$	11	$\times 3$	17	x3	$\times 5$	$\times 7$	x3	$\times 3$	41	$\times 3$	47	5
59	1	3	2	$\times 5$	5	$\times 3$	11	$\times 3$	17	x3	$\times 5$	29	x3	x3	41	$\times 3$	47	6
60	1	3	3	$\times 5$	5	$\times 3$	11	$\times 3$	$\times 7$	x3	$\times 5$	29	x3	$\times 3$	41	$\times 3$	47	5
61	1	3	4	$\times 5$	5	$\times 3$	$\times 7$	$\times 3$	17	x3	$\times 5$	29	x3	x3	41	x3	47	5
62	1	3	5	$\times 5$	$\times 7$	$\times 3$	11	$\times 3$	17	x3	$\times 5$	29	$\times 3$	$\times 3$	41	$\times 3$	$\times 7$	4
63	1	3	6	$\times 5$	5	$\times 3$	11	x3	17	x3	$\times 5$	29	x3	x3	$\times 7$	x3	47	5
64	1	4	0	3	5	x3	11	$\times 3$	17	x3	23	$\times 5$	x3	x3	41	x3	47	7
65	1	4	1	3	5	$\times 3$	11	x3	17	x3	23	$\times 5$	x3	x3	41	x3	47	7
66	1	4	2	3	5	$\times 3$	11	$\times 3$	17	x3	$\times 7$	$\times 5$	x3	x3	41	$\times 3$	47	6
67	1	4	3	$\times 7$	5	$\times 3$	11	x3	$\times 7$	x3	23	$\times 5$	x3	x3	41	x3	47	5
68	1	4	4	3	5	x3	$\times 7$	$\times 3$	17	$\times 3$	23	$\times 5$	x3	x3	41	x3	47	6
69	1	4	5	3	$\times 7$	x3	11	$\times 3$	17	x3	23	$\times 5$	x3	x3	41	x3	$\times 7$	5
70	1	4	6	3	5	$\times 3$	11	$\times 3$	17	$\times 3$	23	$\times 5$	$\times 3$	$\times 3$	$\times 7$	$\times 3$	47	6
71	2	0	0	3	$\times 3$	$\times 7$	$\times 3$	13	x3	19	$\times 3$	$\times 3$	31	37	x3	43	x3	6
72	2	0	1	3	$\times 3$	7	$\times 3$	13	$\times 3$	19	$\times 3$	$\times 3$	31	37	$\times 3$	$\times 7$	x3	6
73	2	0	2	3	$\times 3$	7	$\times 3$	13	$\times 3$	19	$\times 3$	$\times 3$	31	$\times 7$	x3	43	x3	6
74	2	0	3	$\times 7$	$\times 3$	7	x3	13	x3	19	x3	$\times 3$	$\times 7$	37	x3	43	x3	5
75	2	0	4	3	x3	7	x3	13	x3	19	x3	x3	31	37	x3	43	x3	7
76	2	0	5	3	$\times 3$	7	$\times 3$	13	x3	$\times 7$	x3	$\times 3$	31	37	x3	43	x3	6
77	2	0	6	3	x3	7	$\times 3$	$\times 7$	x3	19	x3	$\times 3$	31	37	x3	43	x3	6
78	2	1	0	3	$\times 3$	$\times 7$	$\times 3$	13	x3	19	x3	$\times 3$	$\times 5$	37	x3	43	x3	5
79	2	1	1	3	$\times 3$	7	$\times 3$	13	x3	19	x3	x3	x5	37	x3	$\times 7$	x3	5
80	2	1	2	3	x3	7	x3	13	x3	19	$\times 3$	$\times 3$	x 5	$\times 7$	x3	43	x3	5
81	2	1	3	$\times 7$	x3	7	$\times 3$	13	x3	19	$\times 3$	x3	x5	37	x3	43	x3	5
82	2	1	4	3	$\times 3$	7	$\times 3$	13	x3	19	x3	$\times 3$	x 5	37	x3	43	x3	6
83	2	1	5	3	x3	7	x3	13	x3	$\times 7$	$\times 3$	x3	x5	37	x3	43	x3	5
84	2	1	6	3	$\times 3$	7	$\times 3$	$\times 7$	$\times 3$	19	$\times 3$	$\times 3$	$\times 5$	37	x3	43	x3	5
85	2	2	0	3	x3	$\times 5$	x3	13	x3	19	x3	x3	31	x5	x3	43	x3	5
86	2	2	1	3	x3	x5	x ${ }^{1}$	13	x3	19	x3	x3	31	x5	x3	$\times 7$	x3	4
87	2	2	2	3	$\times 3$	$\times 5$	x3	13	x3	19	x3	$\times 3$	31	x5	x3	43	x3	5
88	2	2	3	$\times 7$	$\times 3$	$\times 5$	x3	13	x3	19	x3	$\times 3$	$\times 7$	$\times 5$	x3	43	x3	3
89	2	2	4	3	x3	x5	x3	13	x3	19	x3	x3	31	x5	x3	43	x3	5
90	2	2	5	3	$\times 3$	$\times 5$	x	13	x3	$\times 7$	x3	$\times 3$	31	x5	x3	43	x3	4
91	2	2	6	3	x3	x5	x3	$\times 7$	x3	19	x3	x3	31	x5	x3	43	x3	4
92	2	3	0	$\times 5$	x3	$\times 7$	x3	$\times 5$	x	19	x3	$\times 3$	31	37	x3	$\times 5$	x3	3
93	2	3	1	$\times 5$	x3	7	$\times 3$	$\times 5$	x3	19	x3	x3	31	37	x3	x5	x3	4
94	2	3	2	$\times 5$	$\times 3$	7	$\times 3$	$\times 5$	$\times 3$	19	$\times 3$	$\times 3$	31	$\times 7$	$\times 3$	x5	x ${ }^{3}$	3
95	2	3	3	$\times 5$	x3	7	$\times 3$	x5	x3	19	x3	$\times 3$	$\times 7$	37	x3	x5	x3	3
96	2	3	4	$\times 5$	$\times 3$	7	$\times 3$	$\times 5$	$\times 3$	19	$\times 3$	$\times 3$	31	37	x3	x5	x ${ }^{3}$	4
97	2	3	5	$\times 5$	x3	7	$\times 3$	$\times 5$	$\times 3$	$\times 7$	$\times 3$	$\times 3$	31	37	$\times 3$	x5	x3	3
98	2	3	6	$\times 5$	$\times 3$	7	$\times 3$	$\times 5$	$\times 3$	19	$\times 3$	$\times 3$	31	37	x3	$\times 5$	x3	4
99	2	4	0	3	x3	$\times 7$	$\times 3$	13	x3	$\times 5$	x3	x3	31	37	x3	43	x3	5
100	2	4	1	3	$\times 3$	7	$\times 3$	13	$\times 3$	x5	x ${ }^{3}$	$\times 3$	31	37	x3	$\times 7$	x3	5
101	2	4	2	3	$\times 3$	7	$\times 3$	13	$\times 3$	x5	x3	x3	31	$\times 7$	x3	43	x3	5
102	2	4	3	$\times 7$	x3	7	$\times 3$	13	$\times 3$	$\times 5$	$\times 3$	$\times 3$	$\times 7$	37	x3	43	x3	4
103	2	4	4	3	$\times 3$	7	$\times 3$	13	x3	x5	x3	x3	31	37	x3	43	x3	6

seq	3	5	7	3	5	7	11	13	17	19	23	29	31	37	41	43	47	pnum
104	2	4	5	3	$x 3$	7	$x 3$	13	$x 3$	$x 5$	$x 3$	$x 3$	31	37	$x 3$	43	$\times 3$	6
105	2	4	6	3	$x 3$	7	$x 3$	$x 7$	$x 3$	$x 5$	$x 3$	$x 3$	31	37	$x 3$	43	$x 3$	5

Explanations on tables B. 1 are as follows.

- Header and the first row.

- seq: Sequence.
- phases: Phases of each seed $3,5,7$. Phase of 2 is always 0 , so, is omitted.
- 3,5, \ldots, 47: Prime numbers in the zero configuration range $0 \leq x \leq 50$.
- pnum: Number of remaining prime numbers.
- Other cells.
- $\quad x 3, x 5, x 7$: Prime numbers are sieved out by the phased SF of $3,5,7$, respectively. For example, at seq 105, x3 for prime number 5 means that 5 is sieved out by $\sin \left(\frac{\pi(2-x)}{3}\right)$, where the phase value of seed 3 is 2 .

- Actual case for $\mathbf{n}=\mathbf{2 5}$.

- phase for seed 3: $d_{2}=2 n \bmod 3=50 \bmod 3=2$.
- phase for seed 5: $d_{2}=2 n \bmod 5=50 \bmod 5=0$.
- phase for seed 7: $d_{2}=2 n \bmod 7=50 \bmod 7=1$.
- The actual case for phase set $D_{3}=\{2,0,1\}$ is marked as blue rectangle.
- The significance of B.1.
- To make GC false, all prime numbers in the zero configuration range $0 \leq x \leq 2 n$ must be the zeros of RSFS. So, RSFS must be the complementary function set of the FSFS.
- Table B. 1 shows all possible phase set $D_{3}=\left\{d_{2}, d_{3}, d_{4}\right\}$, where $d_{2}=0 \sim 2, d_{3}=$ $0 \sim 4, d_{4}=0 \sim 6$, so, there are 3 * 5 * $7=105$ phase combinations. It shows that any combination of phases can not sieve out all prime numbers in the zero configuration range $0 \leq x \leq 50$.

