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Abstract. The recent work on implementing regular expression (RE) matching or membership problem
solution for extended operators (ERE) like intersection, complement and subtraction gave exponential results
on the size of input. As our previous result was focused on deterministic finite automata (DFA) for extended
regular  expressions,  we  present  the  new linear  algorithm for  ERE matching on  non-deterministic  finite
automata (NFA) with the help of De Morgan’s law to re-write the expression in exceptional order so that the
conditional matching satisfies the correctness of the  matching algorithm on NFA. We also prove that the
proposed methodology is correct within the extensions of NFA like logical states as it was done before for
DFA in the prior scientific work. We will also show how to implement these logical states in NFA using
typical constructions like Thompson’s. The proof of linear working time is also given which is obvious due
to  the  re-writing  rules  for  correct  implementation.  The  important  role  of  concatenation  operator  over
extended constructions is also shown.
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Introduction.  Regular  expressions denoted by R are the grammar rules which are used to

express the languages L(R). This is widely used and powerful tool for working with textual data and
parsing. It’s commonly used in such programming products like Java, Perl or C#, etc.

We will define the languages and regular expressions as follows with respect to the supported
operators:

L(R) = { a: a in A }, where A is the alphabet and a is a single symbol in it;
L(R1 | R2) = { L(R1) + L(R2) } - union of two languages;
L(R1 * R2) = { L(R1) * L(R2) } - concatenation of two languages;
L(R*) = { eps, L(R), L(R * R) … L(R * R * … * R) } - Kleene closure or star operator, where

“eps” stands for an empty word.
For the  extended  regular  expressions  we  define  the  additional  operators  which  give  the

possibility to operate on regular languages as if they would be the sets:
L(R1 & R2) = { L(R1) & L(R2) } - intersection of two languages defined by the expressions;
L(R1 – R2) = { L(R1) – L(R2) } - subtraction of two languages;
L(~R) = { ~L(R) } - complement operator which defines all the strings in dictionary which

aren’t matched by regular expression R.
For our purposes we use the re-writing for complement  operator which can be defined by

subtraction operator as:
L(~R) = A* - L(R). (1)

In Combinatorics for logical and set operations there’s De Morgan’s law which is defined as
follows:

A | B = ~(~A & ~B),
A & B = ~(~A | ~B). (2)

The law (2) is true even for sets which can be defined by regular expressions and thus can be
applied for the purpose of re-writing gramatically the regular expressions. Further we will show that
it’s required in special cases when concatenation operator is used.

In  the  next  section  the  review of  the  previous  work  is  given  with  respect  to  the  actually
presented optimal results in this work.

Before we will define the membership problem for the word w and regular expression R as
follows:

w in L(R). (3)
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Past work.  Rosu gives the exponential  algorithm for extended operators – this  is  the bes
known result to the present time [1]. Our algorithm differs from the prior version for DFA with
the same constructions [2]. Thompson constructions are linear to the size of regular expression
and  are  used  in  our  algorithm  [3],  this  mainly  doesn’t  limit  the  type  of  algorithm  for  NFA
synthesis  as  we  will  prove  further.  Rabin  and  Scott  provide  us  with  the  subset  construction
algorithm of converting NFA directly to DFA [4] – this is as stated before the previous result
proposed by an author. Gelade and Neven give the exponential estimation of the size of the size,
in our case, of the states for extended operators [5]. The last work focuses on the state explosion
during subset construction when we were building DFA from the NFA[6] – this is the main fact
why  there  is  the  reason  of  building  the  linear  NFA within  the  linear  matching  time  for  the
membership problem.

The prior works [7, 8] were focused on the building of semantic rules for subset construction
of DFA supporting the extended operators – this is necessary to note that in our NFA the same
logical rules are applied.

The work [9] is  important  to use in the sense of past published work with respect  to the
extended operators.

Hsieh gives the product algorithm for construction of certain types of operator extensions in
ERE [10]  –  it  was  shown that  these  product  constructions  are  of  exponential  nature  [7].  For
practical reasons of product construction algorithm on intersection, complement and subtraction
we use Møller’s software: for certain types of expressions like “(0*1*… | …) [&, &~] (1*0*… |
…)” it demonstrates the exponential explosion of the number of states and transitions as well as
DFA state explosion for expressions in form “(0|1)1(0|1)(0|1) … (0|1)”.

Preliminaries. For the preliminary section we will define the NFA as a tuple:
<A, S, s0, T, F>, (4)

where A is an alphabet, S is a set of states, s0 is a starting state, T stands for transitions and F
is a set of final states.

In the past work [2] we defined the special states by which we extended the definition of
NFA (4) with the intersection and subtraction operator constructions as follows:

<A, S, s0, T, F, B(S)>, (5)
where B(S) is the set  of logical conditions to be satisfied during the matching process or

subset construction.
We define the set B(S) for intersection and subtraction while the complement is given by re-

writing rule (1):
B(S) = { (1 | 2): L(R1) & L(R2); (1 & ~2) : L(R1) – L(R2) }, (6)

where pair of number one and two stands for the flag conditions in the final implementation
in order to the state become active and, thus, is to be included further in the stack during the
matching process in general as opposed to the subset construction [2].

As we are finished with introduction, review of the past work and preliminary information
it’s time to present the algorithm with a proof.

Re-writing algorithm. Our algorithm for NFA construction is based upon the previous result
[2],  while  the  DFA  construction  is  omitted  as  mainly  DFA  are  exponentially  large  for  the
predefined  set  of  expressions  due  to  the  Kleene  star  closure.  Thus,  we  use  the  same  non-
deterministic constructions.

Before the construction we have to give the notion to the re-writing rules which are used for
concatenation  operator  of  two  regular  expressions  with  the  different  operators  like  union  and
intersection: other operators like complement and subtraction are omitted because there is no need
to re-write the rules according to De Morgan’s law so that the matching process is correct within the
typical matching algorithm which is linearly defined by the upper bound:

O(NFA Matching) = O(N*M), (7)



where N is the size of the regular expression and M is the limit of input. We will show in proof
section of the algorithm that this is not required.

We state that in order of concatenation the following conditions are to be met in order to satisfy
the correctness of the construction of NFA for solving membership problem:

NFA((R1 | R2) * (R3 & R4)) =
NFA(~(~R1 & ~R2) * (R3 & R4)) =

NFA((R1 | R2) * ~(~R3 | ~R4)), (8)
where NFA(~R) is defined according to re-writing rule (1).
The same is true for subtraction and complement:

NFA((R1 | R2) * (R3 – R4)) = NFA(~(~R1 & ~R2) * (R3 – R4)),
NFA((R1 | R2) * ~R3) = NFA(~(~R1 & ~R2) * ~R3). (9)

And finally for the last combination like intersection:
NFA((R1 & R2) * (R3 – R4)) = NFA(~(~R1 | ~R2) * (R3 – R4)),

NFA((R1 & R2) * ~R3) = NFA(~(~R1 | ~R2) * ~R3). (10)
Thus, we use the re-writings in (8)-(10) according to De Morgan’s law – the linear size of

complement from regular expression here plays an important role and gives us the possibility to
safe the size of the built NFA which is linear to the size of regular expression. The NFA by itself is
constructed according to Thompson’s rules [3].

It’s necessary to note that the methodology as to the previous works [2, 7, 8] is also applicable
to the general case for NFA as the preliminary automaton to be converted to deterministic is of the
same  modeling  approach  as  it’s  used  in  the  typical  matching  algorithm  for  the  solution  of
membership problem.

In the next section we will prove the correctness of re-writing algorithm for certain types of
intersection operator conditions when the operators like union and intersection are put in the right
order.

Proof. In this section we will provide the reader with the proof of the correctness of the re-
writing rules for the concatenation of extended operator of intersection and union-operator which is
far more typical.

Let’s define the function T(R) as the degree of possibility of matching the regular expression R
in NFA – this function gives us the possibility to observe the number of situations during which the
concatenation matching is resumed.

Thus,  T(R)  is  defined  as  follows  for  the  specific  case  like  concatenation  of  union  and
intersection which, in turn, is the only special case to be considered:

T(R1 | R2) = 2,
T(R1 & R2) = 1. (11)

For  the  concatenation  operator  we  define  the  correctness  of  the  matching  in  membership
problem as the state when logical conditions are satisfied for union and intersection as well – this
can be written as:

T(R1 * R2): T(R1) <= T(R2). (12)
As per our re-writing rules the necessary condition (12) is satisfied, thus the correctness of

algorithm is proved. In general we can use empty string function [9] to compute the next node in
abstract syntax tree when parsing regular expression, however, this can be omitted as we can simply
rewrite the union operator according to De Morgan’s law.

Another proof is to be made for the logical states in NFA: as per non-deterministic case they
are remained  without  changes  and are  to  be addressed for  the  static  matching process  without
closure evaluation [2].

Conclusion. Thus, we obtained the linear polynomial results by applying De Morgan’s law in
re-writing  rules.  This  gives  us  opportunity  to  build  NFA-based  engines  for  extended  regular
expressions  as  they  work optimally  and aren’t  of  perfect  fit  for  other  problems which  are  not



omitted in the presented algorithm – we gain all the power of NFA in membership problem by
matching.

The author lefts not opened questions upon the effective linear matching of extended operators
in RE, however, there could be other open problems like implementation the specific features in the
same time.

For  the  practical  purposes  we have  also  developed  the  Java  version  of  regular  expression
engine based on the algorithm described in this article.  This program can be obtained upon the
request.
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