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Abstract In this paper proof of the Polignac's Conjecture for gap equal to six is going to be presented. Consecutive

primes with gap six are known as sexy primes.  The proof represents an extension of the proof of  the twin prime

conjecture. It will be shown that sexy primes could be obtained through two stage sieve process, and that will be used

to prove that infinitely many sexy primes exist.

1 Introduction

In number theory, Polignac's conjecture states: For any positive even number g, there are infinitely

many prime gaps of size  g.  In other words: there are infinitely many cases of two consecutive

prime numbers with the difference g [1]. 

In [2] it has been shown that exists infinitely many consecutive prime numbers that have gaps that

are not bigger than 246. Recently, the Polignac's conjecture was proved for gaps of the size 2 and 4

[3]. The problem was addressed in generative space, which means that prime numbers were not

analyzed directly,  but rather their representatives that can be used to produce them. This paper

represents an extension of the previous work [3].  Here, the gap equal to six is going to be analyzed.

It will be shown that exist an infinite number of primes with gaps of the size 6 (also known as sexy

primes). It will be shown that sexy primes could be generated by two stage recursion type sieve

process.  This  process  will  be  compared  to  other  two stage  recursion sieve  process  that  leaves

infinitely many numbers. Fact that sieve process that generate sexy primes leaves more numbers

than the other sieve process will be used to prove that infinitely many sexy primes exist. Using very

similar line of reasoning, it can be shown that Polignac's conjecture for gaps equal to 8 holds, too.



Remark 1: In this paper any infinite series in the form c1·l ± c2 is going to be called a thread

defined by number c1 (in literature these forms are known as linear factors – however, it seems that

the term thread is probably better choice in this context). Here c1 and c2 are numbers that belong to

the set of natural numbers (c2 can also be zero and usually is smaller than c1) and l represents an

infinite series of consecutive natural numbers in the form (1, 2, 3, …).

2 Proof of the sexy prime conjecture

It is well known that all prime numbers can be expressed in one of the following form 

psk = 6k - 1

plk = 6k + 1, k ϵ N.

As it was already explained, we will call numbers  psk - numbers in  mps form and numbers  plk  -

numbers in mpl form. 

If two consecutive prime numbers have the gap of the size 6 it is clear that  both of those numbers

have to be in mps form or both have to be in mpl form. In this paper we will only analyze the case

of sexy primes in mps form. The case of sexy primes in mpl form can be analyzed analogously.

Here, we are going to present a two stage process that can be used for generation of the sexy primes

in mps form. In the first stage we are going to produce prime numbers by removing all composite

numbers from the set of natural numbers.  In the second stage, we are going to remove all twin

primes (since the prime numbers in mps form cannot have sexy pair from obvious reason), all prime

numbers in mpl form that are left, and all prime numbers in mps form that have an bigger sexy odd

neighbor (odd number that has gap 6 with the prime of interest) that is a composite number. At the

end, only the prime numbers in the  mps form, that represent the smaller number of a sexy prime

pair, are going to stay. Their number is approximately the half of the number of sexy primes in mps

form, or one quarter of all sexy primes (although a little bit bigger due to existence of sexy triplets



and quadruplets – in that case only the last number in the series is going to be removed from the set;

here, it is considered that number of triplets and quadruplets sexy primes is very small comparing to

the number of sexy primes). It is going to be shown that that number is infinite. Second half of the

sexy primes can be generated with similar procedure that takes care about sexy primes in mpl form.

STAGE 1

Prime numbers can be obtained in the following way: 

First, we remove all even numbers (except 2) from the set of natural numbers. Then, it is necessary

to remove the composite odd numbers from the rest of the numbers. In order to do that, the formula

for the composite odd numbers is going to be analyzed. It is well known that odd numbers bigger

than 1, here denoted by a, can be represented by the following formula

a = 2n +1,

where n ϵ N. It is not difficult to prove that all composite odd numbers a
c
 can be represented by the

following formula

ac=2 (2 i j+i+ j)+1=2((2 j+1)i+ j )+1. (1)

where i, j ϵ N. It is simple to conclude that all composite numbers could be represented by product

(i + 1)(j + 1), where i, j ϵ N. If it is checked how that formula looks like for the odd numbers, after

simple calculation, equation (1) is obtained. This calculation is presented here. The form 2m + 1, m

ϵ N will represent odd numbers that are composite. Then the following equation holds

2 m+1=(i 1+1)( j1+1) ,

where i
1
, j

1
 ϵ N. Now, it is easy to see that the following equation holds

m=
i1 j1+i 1+ j 1

2
.

In order to have m ϵ N, it is easy to check that i
1
 and j

1
 have to be in the forms



i
1
 = 2i and j

1
 = 2j,

where i, j ϵ N. From that, it follows that m must be in the form

m = 2ij + i + j = (2i + 1) j + i. (2)

When all numbers represented by m are removed from the set of odd natural numbers bigger than 1,

only the numbers that represent odd prime numbers are going to stay. In other words, only odd

numbers that  cannot be represented by (1) will  stay.  This process is  equivalent  to the sieve of

Sundaram [4].

Let us denote the numbers used for the generation of odd prime numbers with m2 (here we ignore

number 2). Those are the numbers that are left after the implementation of Sundaram sieve. The

number of those numbers that are smaller than some natural number n, is equivalent to the number

of prime numbers smaller than n. We denote with π(n) number of primes smaller than n, than the

following equation holds 

π(n)≈
n

ln (n)
.

From [6] we know that following holds

π(n)>
n

ln (n)
, n⩾ 17. (3)

STAGE 2

What was left after the first stage are prime numbers. With the exception of number 2, all other

prime numbers are odd numbers. All odd primes can be expressed in the form 2n + 1, n ϵ N. It is

simple to understand that their bigger sexy odd neighbor must be in the form 2n + 7, n ϵ N.  Now,

we should implement a second stage in which we are going to remove: 

A. Number 2 (since 2 cannot make a sexy pair);

B. All twin primes – so number of numbers that is going to be left is number of primes minus the

number of twin primes (number 2 is ignored, and that has no impact on the analysis that follows). It



is not difficult to prove that number of numbers left,  is infinite. That will be done later in the text.

C. The rest of mpl primes – it is trivial to see that it can be done by one thread that is defined by 3 –

so in this step it is going to be removed, approximately (having in mind that the number of  mps

primes is a bit bigger than the number of mpl primes), one half of the numbers that are left after step

B;

D. All odd primes in the form  2m + 1 such that 2m + 7, m ϵ N represents a composite number (all

primes whose bigger “sexy” neighbor is composite number). If we make the same analysis, like in

the Stage 1, it is simple to understand that m must be in the form

m = 2ij + i + j – 1 = (2i + 1) j + i -3. (4)

All numbers (in observational space) that are going to stay must be numbers in mps form and they

represent a smaller primes of the sexy prime pairs in mps form. What has to be noticed is that thread

in (4) that is defined by prime number 3 (for  i = 1) is not going to remove any number from the

numbers left, since it would remove same numbers as the thread defined by 3 used in Stage 1. 

Let us mark the number of sexy primes with π
G6

. Also, let us define the number of numbers that is

left after two consecutive implementations of Sundaram sieve as pd6. The numbers obtained after

recursive  implementation  of  two  Sundaram  sieves  (where  the  second  Sundaram  sieve  is

implemented on prime numbers from which number 2 and all twin primes are removed)  are going

to be called sexy double primes. The second stage sieve that is identical to the first stage sieve can

be obtained if the prime numbers left after the first stage and removal off 2 and all twin primes, are

lined up next to each other and then the numbers are removed from the exactly same positions like

in the first stage. In that case it is easy to understand that the following equation would holds (n ϵ N)

pd6 (n)≈
π(n)− πG2(n)

ln (π(n)− πG2(n))
, (5)

where  pd6(n) represents the number of sexy double primes smaller than some natural number  n.

Since the mps sexy primes are obtained by implementation of the Sundaram sieve in the first stage



and sieve that is similar to Sundaram sieve in the second stage, it can be intuitively concluded that

numbers  π
G6

/4 (which is half of the sexy primes in  mps form) and  pd6  should be comparable.

However, in the case of generation of mps sexy  primes the second stage sieve defined by (4) is not

equivalent to the the first stage sieve since the second stage  “Sundaram” sieve (defined by (4)) is

applied on an incomplete set, that is depleted by previously implemented Sundaram sieve. Here, it

will be shown that number of sexy double primes pd6 is smaller than the number  π
G6

/4. In order to

understand why it is so, we are going to analyze (2) and (4) in more detail. 

It is not difficult to be seen that m in (2) and (4) is represented by the threads that are defined by odd

prime numbers. For details see Appendix A. Now we are going to compare stages 1 and 2 step by

step, for a few initial steps (analysis can be easily extended to any number of steps).  Starting point

for the second stage is after removal of number 2 and all twin primes

Table 1 Comparison of the stages 1 and 2 – threads defined by a few smallest primes

Step Stage 1 Step Stage 2

1 Remove even numbers (except 2)

amount of numbers left is 1/2

1 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left is 1/2

2 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left is 2/3 of the
numbers that are left after previous step

2 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left is 3/4 of the
numbers that are left after previous step

3 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left is 4/5 of the
numbers that are left after previous step

3 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left is 5/6 of the
numbers that are left after previous step

4 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left is 6/7 of the
numbers that are left after previous step

4 Remove numbers defined by thread
defined by 11 (obtained for i = 5)

amount of numbers left is 9/10 of the
numbers that are left after previous step

5 Remove numbers defined by thread
defined by 11 (obtained for i = 5)

amount of numbers left is 10/11 of the
numbers that are left after previous step

5 Remove numbers defined by thread
defined by 13 (obtained for i = 6)

amount of numbers left is 11/12 of the
numbers that are left after previous step

From the table, it can be noticed that threads defined by the same number in first  and second stage



will not remove the same percentage of numbers. The reason is obvious – consider for instance the

thread defined by 3: in the first stage it will remove 1/3 of the numbers left, but in the second stage

it will remove ½ of the numbers left, since the thread defined by 3 in stage 1 has already removed

one third of the numbers (odd numbers divisible by 3 in observation space). So, only odd numbers

(in observational space) that give residual 1 and -1 when they are divided by 3 are left, and there is

approximately same number of numbers that give residual -1 and numbers that give residual 1,

when the number is divided by 3 (see Appendix A). Same way of reasoning can be applied for all

other threads defined by the same prime in different stages.

From Table 1 can be seen that in every step, except step 1, threads in the second stage will leave

bigger percentage of numbers than the corresponding threads in the first stage. This could be easily

understood from the analysis that follows: 

– suppose that we have two natural numbers  j,  k  such that  j – 1 ≥  k  (j,  k ϵ N  ), then the

following set of equations is trivially true

j+k− 1⩾ 2k

− j− k+1⩽ − 2k

jk− j− k+1⩽ jk− 2k

( j− 1)(k− 1)⩽ ( j− 2) k

k− 1
k

⩽
j− 2
j− 1

The equality sign holds only in the case j = k + 1. In the set of prime numbers there is only one case

when j = k + 1 and that is in the case of primes of 2 and 3. In all other cases p(i) – p(i - 1) > 1 , (i >

1, i ϵ N, p(i) is i-th prime number).  So, in all cases i > 2

p(i− 1)− 1
p (i− 1)

<
p (i)− 2
p (i )− 1

.

From Table 1 (or last equation) we can see that bigger number of numbers is left in every step of



stage 2 then in the stage 1 (except 1st step). From that, we can conclude that after every step bigger

than 1, part of the numbers that is left in stage 2 is bigger than number of numbers left in the stage 1

(that  is  also  noticeable  if  we  consider  amount  of  numbers  left  after  removal  of  all  numbers

generated by threads that are defined by all prime numbers smaller than some natural number).

From previous analysis we can safely conclude that the following equation holds  

πG6

4
> pd6= lim

n → ∞
pd6 (n) .

From previous inequality it can be concluded that  the following equation must hold

πG6 > pd6= lim
n→ ∞

pd6 (n) .

Having in mind (3) and (5), we can say that for some n big enough the following inequality holds

pd6 (n)>
π(n)− πG2(n)

ln (π(n)− πG2(n))
. (6)

It can be realized that n that is big enough is n ≥ 211, since 211 is the 17th  prime left, when number

2 and all  twin prime numbers are eliminated from the prime numbers set.  It  is  not  difficult  to

understand that the number of primes that are left when 2 and all twin primes are eliminated, is

infinite. That follows in an elementary way from the fact that the sum of the reciprocal of prime

numbers is infinite and Brun's theorem [7]. From the fact that sum of reciprocals of all primes is

infinite and fact that the sum of reciprocal of twin primes is finite [7] (also reciprocal of 2 is 1/2),

follows that the sum of reciprocals of primes that are not twin primes or 2, is infinite. Since all

reciprocal of primes are smaller than 1, it is easy to conclude that the number of primes that are not

twin primes and 2, has to be infinite.  Having that in mind it it easy to show that  following holds

lim
n→ ∞

π(n)− πG2(n)

ln (π(n)− πG2(n))
=∞ .

Then,  the following equation holds



pd6= lim
n → ∞

pd6 (n)=∞ .

Now, we can safely conclude that the number of sexy primes is infinite. That concludes the proof.

Here we will state the following conjecture: (for n big enough, and under assumption that number

of sexy k-plets (triplets and quadruplets;   there is only one quintuplet – quintuplet that starts with 5;

other quintuplets are not possible since one of five consecutive  numbers that are six apart must be

divisible by 5, so it is not a prime number – number 5 is the only exception; from the same reason,

k-plets, where  k > 5,  do not exist) is much smaller than the number of sexy primes (this can be

proved by using a procedure similar to one used in this paper)), number of sexy primes is given by

the following equation 

πG6 (n) ∼ 4C2⋅( (π(n)− πG2(n))
ln (π(n)− πG2(n))

+
(π(n)− πG4 (n))

ln (π(n)− πG4(n)) ) ,  

where C
2
 represents the twin prime constant [5], and π

G4
(n) is number of cousin primes smaller than

n and comes from the analysis of sexy primes in  mpl form. Why it is reasonable to make such

conjecture is explained in Appendix B. Since  π
G2

(n) ≈ π
G4

(n) we have

πG6 (n) ∼ 8C2⋅( (π(n)− πG2(n))
ln (π(n)− πG2(n)) ) ,

If we  mark the number of primes smaller than some natural number  n with π(n) =  f (n), where

function f (n) gives good estimation of the number of primes smaller than n, than π
G6

(n), for n big

enough, is given by the following equation (under assumption π
G2

(n) ≈ π
G4

(n))

πG6 (n) ∼ 8C2⋅ ( f ( f (n)− 4C2 f ( f (n)))) .
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APPENDIX A.

Here it is going to be proved that m in (2) is represented by threads defined by odd prime numbers.

Now, the form of  (2) for some values of i will be checked.

Case i = 1: m = 3j + 1,

Case i = 2: m = 5j + 2, 

Case i = 3: m = 7j + 3, 



Case i = 4: m = 9j + 4 = 3(3j + 1) + 1,

Case i = 5: m = 11j + 5,

Case i = 6: m = 13j + 6 , 

Case i = 7: m = 15y + 7 = 5(3j + 1) + 2, 

Case i = 8: m = 17j + 8, 

It can be seen that  m is represented by the threads that are defined by odd prime numbers. From

examples (cases i = 4, i = 7), it can be seen that if  (2i + 1) represent a composite number, m that is

represented by thread defined by that number also has a representation by the the thread defined by

one of the prime factors of that composite number. That can be proved easily in the general case, by

direct calculation, using representations similar to (2). Here, that is going to be analyzed. Assume

that 2i + 1 is a composite number, the following holds  

2i + 1 = (2l + 1)(2s + 1)

where (l, s ϵ N). That leads to

i =  2ls + l + s.

The simple calculation leads to

m = (2l +1) (2s + 1) j + 2ls + l + s = (2l + 1)(2s+1)j + s(2l + 1) + l

or

m = (2l+1)((2s+1)j + s) + l

which means

m = (2l + 1)f + l,

and that represents the already exiting form of the representation of m for the factor (2l + 1), where

f = (2s + 1)j + s.

In the same way this can be proved for (4), (5) and (7).



Note: It is not difficult to understand that after implementation of stage 1, the number of numbers in

residual classes of some specific prime number are equal. In other words, after implementation of

stage 1, for example, all numbers divisible by 3 (except 3, but it does not affect the analysis) are

removed. However, the number of numbers in the forms 3k + 1 and 3k + 2 (alternatively, 3k – 1)

are equal.  The reason is that the thread defined by any other prime number (bigger than 2) will

remove the same number of numbers from the numbers in the form  3k + 1 and from the numbers in

the form 3k + 2. It is simple to understand that, for instance, thread defined by number 5, is going

to remove 1/5 of the numbers in form  3k + 1 and  1/5 of the numbers in form 3k + 2. This can be

proved by elementary calculation. That will hold for all other primes and for all other residual

classes.

APPENDIX B.

Here asymptotic density of numbers left, after implementation of the first and second Sundaram

sieve is calculated.

After first k steps of the first Sundaram sieve, after removal of all composite even numbers, density

of numbers left is given by the following equation

ck=
1
2
∏
j=2

k+1

(1−
1

p( j )
) ,

where p(j) is j-th prime number.

In the case of second “Sundaram” sieve the density of numbers left after the first k-steps is given by

the following equation

c2k=∏
j=2

k+1

(1− 1
p ( j)− 1)=∏j=2

k+1

( p( j)− 2
p ( j)− 1).

So, if implementation of first sieve will result in the number of prime numbers smaller than n which

we denote as π(n), than implementation of the second sieve on some set of size π(n)-π
G2

(n) should



result in the number of numbers  gp(n) that are defined by the following equation (for some big

enough n)

gp(n)=rS2S1(n)⋅
π(n)− πG2(n)

ln (π(n)− πG2(n))
,

where r
S2S1

(n) is defined by the following equation (k is the number of primes smaller or equal to n1

= sqrt(n), where sqrt marks square root function)

r S2S1(n)=
c2k

ck

=

∏
p>2, p≤ n1

( p − 2
p − 1)

∏
p≤ n1
( p − 1

p )
=2 ∏

p>2, p≤ n1
( p − 2

p − 1)(
p

p − 1)≈ 2C2 .

For n that is not big, gp(n) should be defined as   

gp(n)= f COR(n)⋅ 2C2⋅
π(n)− πG2(n)

ln (π (n)− πG2(n))
,

where  f
COR

(n)  represents  correction  factor  that  asymptotically  tends  toward  1  when  n tends  to

infinity.


