
A New Interpolation Approach
and Corresponding Instance-Based Learning

Shiyou Lian[0000−0002−7569−1438]

Xi’an Shiyou University, Xi’an, China
sylian@xsyu.edu.cn

Abstract. Starting from finding approximate value of a function, introduces the measure
of approximation-degree between two numerical values, proposes the concepts of “strict
approximation” and “strict approximation region”, then, derives the corresponding one-
dimensional interpolation methods and formulas, and then presents a calculation model
called “sum-times-difference formula” for high-dimensional interpolation, thus develops a
new interpolation approach – ADB interpolation. ADB interpolation is applied to the in-
terpolation of actual functions with satisfactory results. Viewed from principle and effect,
the interpolation approach is of novel idea, and has the advantages of simple calculation,
stable accuracy, facilitating parallel processing, very suiting for high-dimensional interpo-
lation, and easy to be extended to the interpolation of vector valued functions. Applying
the approach to instance-based learning, a new instance-based learning method – learn-
ing using ADB interpolation – is obtained. The learning method is of unique technique,
which has also the advantages of definite mathematical basis, implicit distance weights,
avoiding misclassification, high efficiency, and wide range of applications, as well as being
interpretable, etc. In principle, this method is a kind of learning by analogy, which and the
deep learning that belongs to inductive learning can complement each other, and for some
problems, the two can even have an effect of “different approaches but equal results” in
big data and cloud computing environment. Thus, the learning using ADB interpolation
can also be regarded as a kind of “wide learning” that is dual to deep learning.

Keywords: Approximation-Degree· Interpolation· Strict Approximation· Sum-Times-
Difference Formula· Instance-Based Learning· Wide Learning

1 Introduction

Instance-based learning[1,2] is also called nonparametric approach[3,4]. Instead of establishing
a global model of sample data, the approach uses sample data to interpolate directly to achieve
objective function approximation. Examples are the experience, and the specific manifestation
of a general rule. From the cognitive perspective, the way of learning based on instances is
closer to human learning. So, it makes sense to give machines this learning ability. Instance-
based learning has been studied for a long time and many achievements have been made (such
as k-nearest neighbor algorithm, distance weighted nearest neighbor algorithm, locally weighted
regression algorithm etc.), but there are still some problems and shortcomings on which (such as
high-dimensional interpolation and misclassification). Therefore, instance-based learning as well
as corresponding interpolation technique still needs us to continue to research and develop. On
the other hand, the current environments of big data and cloud computing undoubtedly provide
strong support for instance-based learning, and for which also open up a new place to display

2 S. Lian

its prowess. Inspired by the approximate evaluation method of flexible linguistic functions[5,
6] in reference [7], in this paper, we intend to introduce a measure of degree of approximation
between numerical values to study the approximate evaluation of numerical functions, and then
explores new interpolation approaches based on the degree of approximation and corresponding
instance-based learning methods.

2 Approximation-Degree, Strict Approximation and Strict
Approximation Region

Definition 2.1. Let R be real number field, x0 ∈ [a, b] ⊂ R, and [α0, β0] ⊂ [a, b] be a neighbor-
hood of x0, which is called the approximation region of x0. For ∀x ∈ [a, b], say x is approximate
to x0 if and only if x ∈ [α0, β0].
Definition 2.2. Let Rn be n-dimensional real vector space, U = [a1, b1] × [a2, b2] × ... ×
[an, bn] ⊂Rn, and x0 = (x10 , x20 , ..., xn0

) ⊂ U . For ∀x= (x1, x2, ..., xn) ⊂ U , say x is strictly
approximate to x0 if and only if components x1, x2, ..., xn of x are approximate to components
x10 , x20 , ..., xn0 of x0, respectively, i.e., xi ∈ [αi, βi] ⊂ [ai, bi]([αi, βi] is approximation region of
xi0), i = 1, 2, ..., n;and “square” region [α1, β1] × [α2, β2] × ... × [αn, βn] ⊂ U is called the strict
approximation region of x0.

In contrast to the strict approximation region in Definition 2.2, we refer to the “circle” region
centered on point x0 as the ordinary approximation region of x0 ⊂ U . The relation between the
strict approximation region and the ordinary approximation region of the same (2D) point x0 is
shown in Fig. 2.1. The illustration also shows the relationship between the strict approximation
and the ordinary approximation. In fact, the reference [8] has stated: the geometric meaning of
“close to point (x1, x2, ..., xn)” is different from that of “close to x1 and close to x2 ,..., and close
to xn”.

Fig. 2.1. An illustration of the relation between strict approximation region and ordinary
approximation region

Where the square region is the strict approximation region of point x0, and the circular region is its
ordinary approximation region.

Definition 2.3. Let R be real number field, x0 ∈ [a, b] ⊂R, and [α0, β0] ⊂ [a, b] be the approxi-
mation region of x0. Set

Ax0
(x) =

{
1− x0−x

x0−α0
= x−α0

x0−α0
, x ∈ [α0, x0]

1− x−x0

β0−x0
= x−β0

x0−β0
, x ∈ [x0, β0]

(2.1)

A New Interpolation Approach and Corresponding Instance-Based Learning 3

to be called the degree of approximation, shortening as approximation-degree, of x to x0. We call
the function relation defined by the Equation (2.1) to be the approximation-degree function of
x0.

3 Approximate Evaluation of Functions Based on Approximation-
Degree

3.1 Finding Approximate Value of a Univariate Function Based on
Approximation-Degree

Let R be real number field, U = [a, b] ⊂R, V = [c, d]⊂R, y = f(x) is a continuous function
relation from U to V . In the condition that a pair (x0, y0) of corresponding values of function
y = f(x) and x′ approximate to x0 are known, find the approximate value of f(x′).

Let the approximation region of x0 be [a1, b1] ⊂ [a, b]. According to the definition of the
approximation-degree function above, the approximation-degree function of x0 is

Ax0
(x) =

{
x−a1
x0−a1 , x ∈ [a1, x0]
x−b1
x0−b1 , x ∈ [x0, b1]

(3.1)

And let the approximation region of y0 is [c1, d1] ⊂ [c, d], the approximation-degree function of
y0 is

Ay0(y) =

{
y−c1
y0−c1 , y ∈ [c1, y0]
y−d1
y0−d1 , y ∈ [y0, d1]

(3.2)

It can be seen that the range of approximation-degree function Ax0(x) is [0, 1] and which is also
reversible. In fact, it’s easy to obtain that

Ay0(y)−1 =

{
dy(y0 − c1) + c1, dy ∈ [0, 1]

dy(y0 − d1) + d1, dy ∈ [0, 1]
(3.3)

where dy is the approximation-degree of y to y0.
Now we find the approximation-degree Ax0

(x′), and then set Ay0(y′) = Ax0
(x′) (that is,

transmitting the approximation-degree of x′ (to x0) to y′ (to y0)); Further, we derive the required
approximate value of y′ from approximation-degree Ay0(y′) and inverse function Ay0(y)−1 of
approximation-degree function of Ay0(y).

It can be seen that the inverse function Ay0(y)−1 of Ay0(y) is a piecewise function, which has
two parallel expressions. Thus, substituting approximation-degree Ay0(y′) = d into Ay0(y)−1,
we can get two y (y1 and y2). Then, which y should be chosen as the desired approximate
value of function?

Obviously, the desired y is related to the position of x′ relative to x0 and the trend (i.e.,
being increasing, decreasing, or a constant) of f(x) near x0. Thus, we have the following ideas
and techniques:

(1) Consider the derivative f ′(x0) of the function f(x) at point x0. If the derivative f ′(x0)
is known, we can estimate the trend of f(x) near x0 according to the f ′(x0) being positive,
negative or zero, and then determine the choice of y’s value.

4 S. Lian

(2) Consider whether there is a point x* on the x′ side near the point x0 (which does not
beyond the approximation region of x0), whose corresponding value of function, f(x*) = y*, is
known. If there is such a point x*, we can estimate the trend of f(x) between the x0 and x* by
utilizing the size relation between the corresponding y* and y0, and then determine the choice
of y’s value. For instance, when x*< x′ < x0, if y*< y0, which then shows that the general trend
of function f(x) is increasing on the sub interval (x*, x0), thus the y1, i.e., that value less than
y0, should be chosen; while if y*> y0, which then shows that the general trend of function f(x)
is decreasing on the sub interval (x*, x0), thus the y2, i.e., that value larger than y0, should be
chosen.

(3) If the derivative f ′(x0) is unknown and there is no such reference point x*, take the
average (y1 + y2)/2 or take the y0 directly as the approximate value of f(x′).

Due to the space limit, in the following, we only discuss the second method further, and use
third method to classification problems. As for the first method, it will be introduced in another
article.

3.2 Finding Approximate Value of a Multivariate Function Based on
Approximation-Degree

Let’s take the function of two variables as an example to discuss this problem.
Let z = f(x, y) be a function (relation) from [a1, b1] × [a2, b2] to [c, d]. Suppose a pair of

corresponding values, ((x0, y0), z0), of function y = f(x, y) and point (x′, y′) approximate to
point (x0, y0) are known. In the case that expression of function f(x, y) is unknown or not used,
find the approximate value of f(x′, y′).

By the definition of strict approximation, (x′, y′) approximate to (x0, y0) is equivalent to x′

approximate to x0 and y′ approximate to y0. Thus, we can find the approximate values zx and zy
of function f(x, y0) and f(x0, y) at points x′ and y′, respectively. It can be seen that this is really
two approximate evaluation problems of univariate functions. Thus, we further imagine that if
there is respectively an adjacent point (x*, y0) and (x0, y*) in the x-direction and y-direction
of the point (x0, y0), as shown in Fig. 3.1, whose corresponding function values f(x*, y0) and
f(x0, y*) are known, then the approximate value zx of f(x′, y0) can be got by utilizing f(x*, y0),
and the approximate value zy of f(x0, y

′) can be got by utilizing f(x0, y*), just like that of the
previous unary function. Thus, we firstly get separately the approximation-degree Ax0

(x′) and
Ay0(y′), then set Az0(z) = Ax0

(x′) and Az0(z) = Ay0(y′); and then, substitute them separately
into inverse function Az0(z)−1 of Az0(z) and get two pairs of candidate approximations, then
taking separately f(x*, y0) and f(x0, y*) as reference, choose zx and zy from respective candidate
values (as shown in Fig. 3.1).

Having got the approximate values zx and zy, how can we further get the approximate value
z we need?

Let z1 = (zx + zy)/2 be the average of zx and zy. It can be seen from Fig. 3.2 that z1 can
actually be viewed as an approximate value of f(x, y) at midpoint (denoted by (x1, y1)) between
(x′, y0) and (x0, y

′). We can see from the figure that z1 < z0, i.e., the varying trend of function
values from z0 to z1 is decreasing. Set z0−z1 = c1(c1 is the length of segment BC in Fig. 3.3(a)),
then z1 = z0− c1. According to the varying trend of function values from z0 to z1 (i.e., the slope
of segment AB in Fig. 3.3(a)), also, taking into account that point (x1, y1) is just the midpoint
of segment joining points (x′, y′) and (x0, y0), that is, (x′, y′) − (x0, y0) = 2(x1, y1) − (x0, y0),
so we infer that the approximate value of function at point (x′, y′) can be z0 − 2c1 (as shown in
Fig. 3.3(a)). Thus, it follows that

A New Interpolation Approach and Corresponding Instance-Based Learning 5

Fig. 3.1. Utilizing the values of the function at points (x*, y0) and (x0, y*) to determine the
approximate values of f(x′, y0) and f(x0, y

′), respectively

z = z0 − 2c1 = z0 − 2(z0 − z1) = z0 − 2[z0 − (zx + zy)/2] = zx + zy − z0

Fig. 3.2. Illustration-1 of synthesizing zx and zy into z

Of course, z1 may also be greater than z0 or equal to z0. If z1 > z0, then the varying trend of
function values from z0 to z1 is increasing (as shown in Fig. 3.3(b)). Set z0 − z1 = c2(c2 is the
length of segment BC in Fig. 3.3(b)), then z1 = z0 − c2. Then, according to the varying trend
of function values from z0 to z1 (i.e., the slope of segment AB in Fig. 3.3(b)), we infer that the
value of function at point (x′, y′) can be z0 − 2c2. Thus,

z = z0 + 2c2 = z0 + 2(z1 − z0) = z0 + 2[(zx + zy)/2− z0] = zx + zy − z0

The third case: z1 = z0. This indicates that the values of function remain unchanged from z0 to
z1. Thus, we can take z = z0. And by z0 = z1 = (zx + zy)/2, it follows that 2z0 = zx + zy. Thus,

z = 2z0 − z0 = zx + zy − z0

In summary, we see that, no matter what relationship may be between the average of zx and
zy and the z0, or no matter how the value of the function varies from z0 to z1, the approximate
value of the function at point (x′, y′) can always be taken as

z = zx + zy − z0 (3.4)

6 S. Lian

Fig. 3.3. Illustration-2 of synthesizing zx and zy into z

This equation is also the calculation model of the approximate value of function of two variables,
z = f(x, y).

It can be seen that this is actually splitting the approximate evaluation of a function of
two variables into the approximate evaluation of two functions of one variable, firstly, then,
synthesizing two obtained approximate values into a value as an approximate value of the original
function of two variables. Extending this technique of “first splitting then synthesizing” to
the approximate evaluation of a function of 3 variables, u = f(x, y, z), we obtain the formula
synthesizing approximate value of the function is

u = ux + uy + uz − 2u0 (3.5)

And then, for a function of n variables, y = f(x1, x2, ..., xn), the corresponding formula synthe-
sizing approximate value of the function is

y = yx1 + yx2 + ...+ yxn − (n− 1)y0

or

y =

n∑
i=1

yxi
− (n− 1)y0 (3.6)

For convenience of narration, we may as well refer to the Equations (3.4), (3.5) and (3.6) as the
sum-times-difference formula.

4 Interpolation Based on Approximation-Degree

Let y = f(x) be a function (relation) from [a, b] to [c, d]. A set of pairs of corresponding values
of function y = f(x), (x1, y1), (x2, y2), ... , (xn, yn), is known, where x1 < x2 <, ..., < xn.
Now the question is: in the case that the expression of function f(x) is unknown or not used,
construct an interpolating function g(x) such that g(xi) = f(xi) (i = 1, 2, ..., n), and for other
x ∈ [a, b], g(x)≈f(x). This is the usual interpolation problem. We now use the approach that
finding approximate value of a function above to solve the interpolation problem.

Let a = x1, xn = b, then x1, x2, ..., xn is a group of interpolation base points (or nodes).
We definite the approximation region of x1 as [x1, x2], the approximation region of xi as

A New Interpolation Approach and Corresponding Instance-Based Learning 7

[xi−1, xi+1](i = 2, 3, ..., n − 1), and the approximation region of xn as [xn−1, xn], and then
definite separately the approximation-degree functions of base points x1, xi, and xn as

Ax1(x) =
x− x1
x1 − x2

, x ∈ [x1, x2] (4.1)

Axi
(x) =

{
x−xi−1

xi−xi−1
, x ∈ [xi−1, xi]

x−xi+1

xi−xi+1
, x ∈ [xi, xi+1]

(4.2)

Axn
(x) =

x− xn−1
xn − xn−1

, x ∈ [xn−1, xn] (4.3)

Note that it is not hard to see from the above expressions of approximation-degree functions that
when x ∈ [x1, (x1+x2)/2], [(xi−1+xi)/2, (xi+xi+1)/2], or[(xn−1+xn)/2, xn], the corresponding
approximation-degrees Ax1

(x), Axi
(x), andAxn

(x) are always ≥ 0.5. This means that x is closer
to the corresponding base point x1, xi, orxn.

We then define the approximation-degree functions of yi(i = 1, 2, ..., n) in the same principle
and way.

Ayi(y) =
y − yi−1
yi − yi−1

=
1

yi − yi−1
y − yi−1

yi − yi−1
, y ∈ [yi−1, yi] (4.4)

Ayi(y) =
yi−1 − y
yi−1 − yi

=
1

yi − yi−1
y − yi−1

yi − yi−1
, y ∈ [yi, yi−1] (4.5)

Ayi(y) =
yi+1 − y
yi+1 − yi

=
1

yi − yi+1
y − yi+1

yi − yi+1
, y ∈ [yi, yi+1] (4.6)

Ayi(y) =
y − yi+1

yi − yi+1
=

1

yi − yi+1
y − yi+1

yi − yi+1
, y ∈ [yi+1, yi] (4.7)

Obviously, in the four expressions above, (4.4) = (4.5) and (4.6) = (4.7). Thus, the 4 functional
expressions can be reduced as two expressions:

Ayi(y) =
1

yi − yi−1
y − yi−1

yi − yi−1

Ayi(y) =
1

yi − yi+1
y − yi+1

yi − yi+1

And then, we get the inverse expressions of these two functional expressions:

Ayi(y)−1 = dy(yi − yi−1) + yi−1 (4.8)

Ayi(y)−1 = dy(yi − yi+1) + yi+1 (4.9)

Here dy = Ayi(y) ∈ [0, 1] is the approximation-degree of y to yi.

Now, set

dy = dx = Axi(x)

8 S. Lian

Also, considering that on the sub interval [xi−1+xi

2 , xi],the interpolated function y = f(x) may
being increasing, decreasing, or a constant; while when y = f(x) is increasing,certainly yi−1 < yi,
so the corresponding y ∈ [yi−1+yi

2 , yi];when y = f(x) is decreasing, certainly yi < yi−1, so the

corresponding y ∈ [yi,
yi−1+yi

2]; and when y = f(x) is a constant, yi = yi−1, so the corresponding

y = yi ∈ [yi−1+yi
2 , yi] as well as y ∈ [yi,

yi−1+yi
2]. Thus, when x ∈ [xi−1+xi

2 , xi], the corresponding

yi and yi−1 are adjacent, and here Axi
(x) = x−xi−1

xi−xi−1
, thus the Expression (4.8), the expression

of the corresponding inverse function Ayi(y)−1, becomes

Ayi(y)−1 = x−xi−1

xi−xi−1
(yi − yi−1) + yi−1 = yi−yi−1

xi−xi−1
x+ xiyi−1−xi−1yi

xi−xi−1

namely

y =
yi − yi−1
xi − xi−1

x+
xiyi−1 − xi−1yi

xi − xi−1
, x ∈ [

xi−1 + xi
2

, xi] (4.10)

Similarly, the Expression (4.9) of the inverse function Ayi(y)−1 becomes

y =
yi − yi+1

xi − xi+1
x+

xiyi+1 − xi+1yi
xi − xi+1

, x ∈ [xi,
xi + xi+1

2
] (4.11)

Thus, with the two expressions, we can obtain directly the corresponding y ∈ [yi−1+yi
2 , yi] or

[yi,
yi−1+yi

2] from x ∈ [xi−1+xi

2 , xi], and obtain directly the corresponding y ∈ [yi,
yi+yi+1

2] or

[yi+yi+1

2 , yi] from x ∈ [xi,
xi+xi+1

2].
Actually, Equations (4.10) and (4.11) are two interpolation formulas. In this way, we actu-

ally derive an interpolation approach by using the approximate evaluation of function based on
approximation-degree. We call this approach to be the approximation-degree-based interpola-
tion, or ADB interpolation for short.

Specifically, the practice of ADB interpolation is: take base points a = x1, x2, ..., xn = b
as points of view, according to base points and their approximation regions to partition in-
terval [a, b] = [x1, xn] into 2n − 2 subintervals as shown in Fig. 4.1, [x1, (x1 + x2)/2], [(x1 +
x2)/2, x2], [x2, (x2 + x3)/2], ..., [(xn−1 + xn)/2, xn], as interpolation intervals; then, for evalu-
ated point x ∈ [(xi−1 + xi)/2, xi] do interpolating with Formula (4.10), for evaluated point
x ∈ [xi, (xi + xi+1)/2] do interpolating with Formula (4.11). Since each specific interpolating
formula implies the trend of interpolated function y = f(x) on the corresponding subintervals,
therefore, there is no much error between the obtained approximate value and the expected
value, and there would not occur the case that two y-values are got from an x.

Fig. 4.1. Illustration of interpolation intervals partitioned by base points and their approximation
regions in one-dimensional interpolation

Example 4.1. Use ADB interpolation to do interpolation for function y = sinx.

A New Interpolation Approach and Corresponding Instance-Based Learning 9

We take sampled data points of y = sinx, (xi, yi), as follows:
xi : 0× π, 0.1× π, 0.2× π, ..., 1.9× π, 2× π.
yi : sinxi.

and take interpolation points,
x : 0× π, 0.02× π, 0.04× π, 0.06× π, ..., 1.98× π, 2× π.

Using our ADB interpolation to do interpolation, the corresponding y-values obtained are as
follows:
0 0.0624 0.1249 0.1873 0.2497 0.3118 0.3681 0.4245 0.4808 0.5371 0.5923 0.6369 0.6816 0.7263 0.7710

0.8133 0.8420 0.8707 0.8994 0.9281 0.9530 0.9629 0.9728 0.9827 0.9926 0.9975 0.9876 0.9778 0.9679

0.9580 0.9424 0.9138 0.8851 0.8564 0.8277 0.7934 0.7487 0.7040 0.6593 0.6146 0.5653 0.5089 0.4526

0.3963 0.3400 0.2809 0.2185 0.1561 0.0936 0.0312 -0.0312 -0.0936 -0.1561 -0.2185 -0.2809 -0.3400 -0.3963

-0.4526 -0.5089 -0.5653 -0.6146 -0.6593 -0.7040 -0.7487 -0.7934 -0.8277 -0.8564 -0.8851 -0.9138 -0.9424

-0.9580 -0.9679 -0.9778 -0.9876 -0.9975 -0.9926 -0.9827 -0.9728 -0.9629 -0.9530 -0.9281 -0.8994 -0.8707

-0.8420 -0.8133 -0.7710 -0.7263 -0.6816 -0.6369 -0.5923 -0.5371 -0.4808 -0.4245 -0.3681 -0.3118 -0.2497

-0.1873 -0.1249 -0.0624 0.0000

And the effect is shown in Fig. 4.2.

Fig. 4.2. The effect drawing of ADB interpolation for function y = sinx

From the interpolation method of the univariate function and the method of finding the approx-
imate value of the function of n-variables above, we obtain a general n-dimensional ADB inter-
polation method, that is: splits an n-dimensional interpolation into n one-dimensional interpola-
tion, then use one-dimensional ADB interpolation to find the corresponding approximate values,
respectively, and finally synthesize the n approximate values by using sum-times-difference for-
mula into one value as the approximation value of the function of n variables. The n pairs of
one-dimensional interpolation formulas are required for n-dimensional ADB interpolation, they
are as follows: y =

yij...s−yi−1,j...s

x1i
−x1i−1

x1 +
x1i

yi−1,j...s−x1i−1
yij...s

x1i
−x1i−1

y =
yij...s−yi+1,j...s

x1i
−x1i+1

x1 +
x1i

yi+1,j...s−x1i+1
yij...s

x1i
−x1i+1y =

yij...s−yi−1,j...s

x2i
−x2i−1

x2 +
x2i

yi−1,j...s−x2i−1
yij...s

x2i
−x2i−1

y =
yij...s−yi+1,j...s

x2i
−x2i+1

x2 +
x2i

yi+1,j...s−x2i+1
yij...s

x2i
−x2i+1

...

10 S. Lian y =
yij...s−yi−1,j...s

xni
−xni−1

xn +
xni

yi−1,j...s−xni−1
yij...s

xni
−xni−1

y =
yij...s−yi+1,j...s

xni
−xni+1

xn +
xni

yi+1,j...s−xni+1
yij...s

xni
−xni+1

where yij...s is the value of function at base point (x1i , x2j , ..., xns
), i.e., yij...s = f(x1i , x2j , ..., xns

).
And the final synthesis formula (i.e., sum-times-difference formula) of approximate value of the
function is

y =

n∑
i=1

yxi − (n− 1)yij...s (4.12)

here yxi
is the approximate value of function that obtained by one-dimensional ADB interpola-

tion for xi(i = 1, 2, ..., n).
Actually, it is not difficult to see that the equation (4.12) can also be said to be the formula

of multidimensional ADB interpolation, which is also a calculation model of high-dimensional
interpolation.

Example 4.2. Using ADB interpolation to do interpolation for function z = 1
4x

2− 1
4y

2, the
effect is shown in Fig. 4.3.

Fig. 4.3. The effect drawing of ADB interpolation for function z = 1
4
x2 − 1

4
y2

Where the left is the functional graph before interpolating, and the right is the functional graph after
interpolating.

Example 4.3. Using ADB interpolation to do interpolation for function of three variables,
u = ze−x

3−y3−z3 , the effect (slice chart) is shown in Fig. 4.4.

5 Instance-Based Learning Using ADB interpolation

In the above, we develop a new interpolation approach, ADB interpolation, from finding ap-
proximate value of a function. Since ADB interpolation is a local interpolation, it can be used
for instance-based machine learning. In the following, we present two learning algorithms.

A New Interpolation Approach and Corresponding Instance-Based Learning 11

Fig. 4.4. The effect drawing of ADB interpolation for function ze−x3−y3−z3

(1) A leaning algorithm for regression problems

• Put samples in sample set X = {(xi, f(xi))}mi=1(x = (x1, x2, ..., xn)) into a corresponding data
structure S in centralized or distributed manner (as training examples);

• For the currently being queried x′ = (x′1, x
′
2, ..., x

′
n):

• According to its coordinate components x′1, x
′
2, ..., x

′
n look up in S sequentially or in parallel to

determine a xk(k ∈ {1, 2, ...,m}) to which the approximation-degree of x′ is highest;
• Take xk as the center, and according to the position of x′ relative to xk, choose n corresponding

nearest neighbors x1,x2, ...,xn (The data points here are renumbering.) from S, then construct
the corresponding one-dimensional interpolation formulas

yxj = g(xj |xkj , f(xk), xlj , f(xl)) (j = 1, 2, ..., n; l ∈ {1, 2, ..., n})

and then compute yx1 , yx2 , ..., yxn sequentially or in parallel;
• Return

f̂(x′) =
∑n

j=1 yxj − (n− 1)f(xk)

Example 5.1. Take the following pairs of corresponding values of function z = −x2 −
y2, ((xi, yj), zij), as example data:
xi: -20, -18, -16, ... , -2, 0, 2, ... , 16, 18, 20.

yj : -20, -18, -16, ... , -2, 0, 2, ... , 16, 18, 20.

zij : −x2i − y2j
and take the following data points, (x, y), as query data:

x: -20, -20, 20, -19.5, -17.8, -18, -15.3, -12, -10.2, -10, -10, 0, 0, 10, 10, 5.6, 4.7, -3.4, -1.8, -2.3, -3.6,
1.2, -5.4, -15.6, -20, -20, -20, -18.3, 18.4, 17.5, 16.2, 14.5, 11.1, -5.4, -12.1, -8.5, -13.9, -7.5, -7.8, -9.8,
-12.4, -13.5, -14.6, -17.5, -17.8.

y: -20, 20, -20, -19.5, -17.8, -5, -15.5, 2.5, -10.2, 10, -20, 0, -20, -20, -10, -15.3, -3.8, -13.4, -2.8, -1.9,

-5.6, -10.2, -6.5, 5.6, 0, -10, 10, 10.4, -18.1, -16.3, -14.4, -12.3, -6.3, -15.8, -8.2, -15.6, 0.9, 1.6, 3.2, 4.6,

6.6, 2.8, -0.9, 18.6, 13.2.

we use the above learning algorithm, the corresponding z-values obtained are as follows:
-800.0000 -800.0000 -800.0000 -762.0000 -634.4000 -350.0000 -476.0000 -151.0000 -208.8000 -200.0000

12 S. Lian

-500.0000 0 -400.0000 -500.0000 -200.0000 -267.0000 -37.8000 -192.8000 -12.4000 -9.6000 -45.6000 -

106.8000 -73.0000 -276.0000 -400.0000 -500.0000 -500.0000 -444.2000 -667.0000 -573.2000 -470.8000 -

362.8000 -164.4000 -280.0000 -214.2000 -317.0000 -195.2000 -60.2000 -72.4000 -118.4000 -198.8000 -

191.8000 -215.8000 -653.8000 -492.4000

The effect drawing is shown in Fig. 5.1.

Fig. 5.1. An effect drawing of the learning using ADB interpolation

Where the grid curve is the graph formed by example data from function z = −x2 − y2, and the red
circles indicate the points obtained by learning using ADB interpolation.

Example 5.2. Fig. 5.2 below shows an effect drawing of learning using ADB interpolation.
The example data are taken from the peaks function in MATLAB, and the query data is also
designed according to this function. Limited by space, these data are omitted.

As can be seen from the above, this instance-based learning using ADB interpolation has
the following characteristics:

• The learning method takes data points (xl) of training examples (xl, f(xl)) as centers to set
approximation regions and compute approximation-degrees.

• ADB interpolation is a local interpolation, the training examples involved in interpolation are
related to the position of the currently queried data point x′ relative to its nearest data point
xk, the number of which is related to the dimension of the vector x, n-dimensional x only
involves 1+n training examples ((xk, f(xk)) and (x1, f(x1)), (x2, f(x2)), ..., (xn, f(xn))).
But since the point x′ is only approximate to the point xk, the corresponding yxj (j =

1, 2, ..., n) are most affected by the example (xk, f(xk), and the final synthesized value f̂(x′)
is also most affected by (xk, f(xk).

• If distributed storage and parallel processing (including parallel lookup and parallel com-
putation) are used, the time complexity of corresponding algorithm is independent of the

A New Interpolation Approach and Corresponding Instance-Based Learning 13

Fig. 5.2. An illustration of the effect of learning using ADB interpolation

Where the left is the functional graph formed by example data and the right is the functional graph
obtained by learning using ADB interpolation

dimension of vector x, and its efficiency is almost equal to that of one-dimensional interpo-
lation at all time.

• The interpolation formulas (including sum-times-difference formula) are derived entirely by
the mathematical method, so they have definite mathematical basis.

• The sum-times-difference formula is actually a linear combination of coordinate components
of an interpolation point, and the denominators of the coefficients before each coordinate
component are separately the difference between the coordinate component and the corre-
sponding coordinate component of corresponding base point, that is, the distance between
the two, so, these coefficients happen to also have a function of the weight values. Thus,
viewed from the form, the sum-times-difference formula is a linear weighted regression for-
mula. That is to say, the sum-times-difference formula here coincides with the traditional
local weighted linear regression model. However, in local weighted linear regression, these
coefficients are determined by searching, while in our ADB interpolation, these coefficients
are determined by looking up. The former is guided and constrained by error function (e.g.

E = 1
2

∑
x∈X1⊂X(f(x) − f̂(x))2), and the latter by approximation-degree function (e.g.

Axi
(x)). In the sense of approximation-degree, the approximate value f̂(x′) of the function

obtained from the sum-times-difference formula is always the most accurate.
• The accuracy of the returned approximate value f̂(x′) of a function is positively related to

the approximation-degree of x′ to xk.
• Comparing the learning using ADB interpolation with the deep learning, the deep learning

is to approximate objective function with the strategy of deepening vertically[9], yet the
learning using ADB interpolation can approximate objective function with the strategy of
increasing density horizontally. So, the learning using ADB interpolation and the deep learn-
ing can complement each other, and can even have an effect of “different approaches but
equal results” in the case of sufficient samples.

(2) A learning algorithm for classification problems

14 S. Lian

• Put samples in sample set X = {(xi, f(xi))}mi=1(x = (x1, x2, ..., xn), f(x) is a class label) into a
corresponding data structure S in centralized or distributed manner;

• For the currently being queried x′ = (x′1, x
′
2, ..., x

′
n):

• According to its coordinate components x′1, x
′
2, ..., x

′
n look up in S sequentially or in parallel to

determine a xk(k ∈ {1, 2, ...,m}) to which the approximation-degree of x′ is highest;
• If such a xk is found, return

f̂(x′) = f(xk)

• Else exit.

Example 5.3. Suppose that the data points of training examples of a classification problem
are shown as the black circles in Fig. 5.2, and the small boxes surrounding them are their respec-
tive strict approximation regions; and the white circles represent data points to be classified.
Using the learning algorithm that using ADB interpolation to classify these data points, the
classifying results are shown in the figure. As you can see, there are two queried data points are
respectively classified to two classes to which the corresponding training example data points
belong, because they are located respectively in the strict approximation regions of the corre-
sponding data points, while the two queried data points outside the small boxes are not classified.

Fig. 5.3. An illustration of applying the learning using ADB interpolation to classification

It can be seen that for classification problems, the learning using ADB interpolation has the
following advantages:
• Although similar to the traditional 1-NN algorithm, the approximation regions in the algo-

rithm are aimed at the data points of training examples, and which are strict approximation
regions of square.

• Since the approximation and approximation regions involved in the algorithm are strict
approximation and strict approximation regions, for classification problems, learning using
ADB interpolation avoids, from the source, the problem in traditional instance-based learning
(e.g. k-NN algorithm) that some datum objects with similar partial attributes are classified
into a class.

• The classifying result of learning using ADB interpolation is unique, and there is no the
phenomenon like k-NN algorithm, that classifying result may change with the change of k’s
value.

A New Interpolation Approach and Corresponding Instance-Based Learning 15

6 Summary

In this paper, started from finding approximate value of a function, we introduced the measure
of approximation-degree between numerical values, proposed the concepts of ”strict approxi-
mation” and ”strict approximation region”, then, derived the corresponding one-dimensional
interpolation methods and formulas, and then presented a calculation model called ”sum-times-
difference formula” for high-dimensional interpolation, thus we developed a new interpolation
approach – approximation-degree-based interpolation, i.e., ADB interpolation. ADB interpola-
tion was applied to the interpolation of actual functions with satisfactory results. Viewed from
principles and examples, the approach is of novel idea, and it has the advantages of simple
calculations (they are all arithmetic), stable accuracy (benefitting from local interpolation and
that the approximation-degrees are always not less than 0.5); especially, the approach facilitates
parallel processing, very suiting for high-dimensional interpolation, and easy to be extended to
the interpolation of vector valued functions.

Applying ADB interpolation to instance-based learning, we obtained a new instance-based
learning method – learning using ADB interpolation, and we also gave several examples of the
learning. Viewed from principles and examples, the learning method is of unique technique
(e.g., taking data points of training examples as centers to set approximation regions that are
also strict approximation regions and compute approximation-degrees). Besides the advantages
of ADB interpolation, the learning method has also the advantages of definite mathematical
basis, implicit distance weights, avoiding misclassification (guaranteed by strict approximation),
high efficiency (benefitting from distributed storage and parallel processing), and wide range
of applications (which can be applied to the regression or classification problems, and can be
used for large sample learning or small sample even single sample learning), as well as being
interpretable, etc. In principle, this method is a kind of learning by analogy, which and the deep
learning that belongs to inductive learning can complement each other, and for some problems,
the two can even have an effect of “different approaches but equal results” in big data and cloud
computing environment. Thus, the learning using ADB interpolation can also be regarded as a
kind of “wide learning” that is dual to deep learning.

References

1. Tom M. Mitchell: Machine Learning. MecGraw-Hill Companies, Inc. (1997)
2. Stuart Russell, Peter Norvig: Artificial Intelligence: A Modern Approach. Second Edition. Pearson

Education Limited, London (2003)
3. Ethem Alpaydin: Introduction to Machine Learning. Third Edition. Massachusetts Institute of Tech-

nology (2014)
4. Stuart J. Russell, Peter Norvig: Artificial Intelligence: A Modern Approach. Third Edition. Pearson

Education Limited, London (2016)
5. Shiyou Lian: Correspondence between Flexible Sets, and Flexible Linguistic Functions, in: Shiyou

Lian, Principles of Imprecise-Information Processing: A New Theoretical and Technological System,
pp. 205–228. Springer, Singapore (2016)

6. Shiyou Lian: Approximate Evaluation of Flexible Linguistic Functions, in: Shiyou Lian, Principles
of Imprecise-Information Processing: A New Theoretical and Technological System, pp. 393–417.
Springer, Singapore (2016)

7. Shiyou Lian: Principles of Imprecise-Information Processing: A New Theoretical and Technological
System. Springer, Singapore (2016)

16 S. Lian

8. Shiyou Lian: Multidimensional Flexible Concepts and Flexible Linguistic Values and Their Mathe-
matical Models, in: Shiyou Lian, Principles of Imprecise-Information Processing: A New Theoretical
and Technological System, pp. 45–79. Springer, Singapore (2016)

9. Yoshua Bengio: Deep Learning. July 23, 2015, LxMLS (2015), Lisbon Machine Learning Summer
School, Lisbon Portugal, http://www.iro.umontreal.ca/ bengioy/talks/lisbon-mlss-19juillet2015.pdf

