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Abstract
In this manuscript we denote a unit disc by D = {z ∈ C | |z| < 1} and a semi plane as
P = {s ∈ C | <(s) > 1

2}. We denote, R≥0 = {x ∈ R | x ≥ 0} and R≥1 = {x ∈ R | x ≥ 1}.
Considering non negative real axis as a branch cut, we define a map from slit unit disc to the
slit plane as s : D \ R≥0 → P \ R≥1 defined as s(z) = 1

1−
√
z

which is proved to be one-one and

onto. Next, we define a function f(z) = (s − 1)ζ(s) where s = s(z) and both s(z) and f(z)
are proved to be analytic in D \ R≥0. Next we prove that s = s(z) is a conformal map. We
also show that f is continuous at 0. Using Cauchy’s residue theorem to a keyhole contour and
Lebesgue’s dominated convergence theorem along with Schwarz reflection principle, we prove
that, ∫ ∞

−∞

log |ζ( 1
2 + it)|

1
4 + t2

dt = 0

This settles the Riemann Hypothesis because this relation is an equivalent version of Riemann
Hypothesis as proved by Balazard, Saias and Yor [1].
Keywords: Branch cut, Cauchy-Riemann equations, Conformal map, Cauchy’s residue
theorem, Schwarz reflection principle, Lebesgue’s dominated convergence theorem, Critical
strip, Critical line, Riemann zeta function, Riemann Hypothesis.
Mathematics Subject Classification: 11M26, 11M06

1 Introduction

The Riemann zeta function, ζ(s) is defined as the analytic continuation of the Dirichlet series

ζ(s) :=

∞∑
n=1

1

ns

which converges in the half plane <(s) > 1. The Riemann zeta function is a meromorphic function
on the whole complex s-plane, which is holomorphic everywhere except for a simple pole
at s = 1 with residue 1. All the non trivial zeros of the Riemann zeta function lie in the
critical strip 0 < <(s) < 1. The Riemann Hypothesis states that all the non trivial zeros of
the Riemann zeta function lie on the critical line <(s) = 1

2 .
Levinson [6], in 1974 proved that more than one third of zeros of Riemann zeta function are on the
critical line. Balazard et al.(see [1, p.1] or [12, p.136]) in 1999 proved an equivalent of the Riemann
Hypothesis using the theory of Hardy spaces (see [3],[4],[5],[11]). Shaoji Feng [7], in 2012 proved that
atleast 41.28 % of the zeros of Riemann zeta function are on the critical line. Pratt et al.[8] in 2020
proved that more than five-twelfths of the zeros are on the critical line.

2 Main Result

Let
∑
<(ρ)> 1

2
be the sum over the hypothetical zeros with real part greater than 1

2 of the Riemann

zeta function, ζ(s). In the sum, zeros of multiplicity m are counted m times.
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Balazard et al. (see [1, p.1] or [12, p.136]) proved that,

1

2π

∫ ∞
−∞

log |ζ( 1
2 + it)|

1
4 + t2

dt =
∑
<(ρ)> 1

2

log

∣∣∣∣ ρ

1− ρ

∣∣∣∣ (1)

and the Riemann Hypothesis is true if and only if (see [1, p.1] or [12, p.136]),∫ ∞
−∞

log |ζ( 1
2 + it)|

1
4 + t2

dt = 0 (2)

The goal of this paper is to prove the following result.

Theorem 1: If ζ(s) denotes the Riemann zeta function then∫ ∞
−∞

log |ζ( 1
2 + it)|

1
4 + t2

dt = 0

We start the proof of Theorem 1 as follows: Denote a unit disc as D = {z ∈ C | |z| < 1} and D \R≥0
(where R≥0 = {x ∈ R | x ≥ 0}) as a slit disk which is simply connected [14, p.108] having all points
that are in disc D except the non negative reals which means D \ [0, 1). Let z denote an element of
the disc D. Considering the non negative real axis (i.e. [0,∞)) as the branch cut and 0 ≤ arg z < 2π
we define for z = reiθ, √

z :=
√
reiθ/2, 0 ≤ θ < 2π

write,

s = s(z) =
1

2
+

1 +
√
z

2(1−
√
z)

=
1

1−
√
z

(3)

Define a semi plane as P = {s ∈ C | <(s) > 1
2}. For R < 1, denote DR = {z ∈ C | |z| ≤ R} and

R≥1 = {x ∈ R | x ≥ 1}. We denote by f∗ the function defined almost everywhere on the circle
∂D = {z ∈ C | |z| = 1} by f∗(eiθ) = limR→1− f(Reiθ). We will now prove some Lemmas:

Lemma 1.1: Map s : D \ R≥0 → P \ R≥1 is one-one and onto.

Proof : For proving the map one-one, let s(z) = s(z′) where z, z′ ∈ D \ R≥0.

Write z = reiθ and z′ = r′eiθ
′

so we get,
√
reiθ/2 =

√
r′eiθ

′/2 and taking modulus we have
√
r =
√
r′

or r = r′ and hence eiθ/2 = eiθ
′/2. Hence we have, cos( θ−θ

′

2 ) = 1 and sin( θ−θ
′

2 ) = 0.
Since θ, θ′ ∈ (0, 2π), so we get θ = θ′ and hence we have z = z′.

For onto, let s0 ∈ P \ R≥1 then there exists z0 ∈ D \ R≥0 such that
√
z0 =

(
s0−1
s0

)
and s(z0) = s0.

Now we consider the function,
f(z) = (s− 1)ζ(s) (4)

where

s =
1

1−
√
z

(5)

then,

f(z) =

( √
z

1−
√
z

)
ζ

(
1

1−
√
z

)
(6)

Lemma 1.2: s = s(z) = 1
1−
√
z

is analytic in D \ R≥0 and f(z) = (s− 1)ζ(s) is analytic in D \ R≥0.

Proof : Any z ∈ D \ R≥0 can be written uniquely as z = reiθ, where r > 0 and θ ∈ (0, 2π).
Next, we define a function h : D \ R≥0 → C as h(z) :=

√
z and in polar form as:

∀(r, θ) ∈ R>0 × (0, 2π) : h(reiθ) :=
√
reiθ/2 (7)

=
√
r cos

(
θ

2

)
+ i

[√
r sin

(
θ

2

)]
(8)

= u(r, θ) + i · v(r, θ). (9)
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Now, functions u and v satisfy the polar version of the Cauchy-Riemann equations [10, p.232]:

∂u

∂r
=

1

r

∂v

∂θ
and

∂v

∂r
= −1

r

∂u

∂θ
.

ur = 1
2
√
r

cos
(
θ
2

)
, uθ = −

√
r
2 sin

(
θ
2

)
, vr = 1

2
√
r

sin
(
θ
2

)
and vθ =

√
r
2 cos

(
θ
2

)
. Since partial derivatives

of u and v satisfy Cauchy-Riemann equations and these partial derivatives are continuous in D\R≥0,
so h is analytic in D \ R≥0.
Since, s(z) = 1

1−
√
z

and h(z) =
√
z is analytic in C \R≥0, also q(z) = 1

1−z is analytic in C \R≥0 and

hence the composition, s(z) = q(h(z)) is analytic in D \ R≥0. Now k(z) = (z − 1)ζ(z) is analytic, so
the composition k(s(z)) = f(z) is analytic in D \ R≥0.

Lemma 1.3: Map s : D \ R≥0 → P \ R≥1 is conformal which takes the slit disc D \ R≥0 to the
slit plane P \ R≥1.

Proof : Since s(z) is analytic in D \ R≥0 so we have,

s′(z) =
1

2
√
z(1−

√
z)2

Since D \R≥0 is an open set [14, p.108] and the derivative of s(z) is non zero everywhere in D \R≥0
and also by Lemma 1.2 s(z) is analytic in D \ R≥0 and hence s(z) is conformal.

Also s = 1
1−
√
z
, hence z =

(
s−1
s

)2
so that |z| < 1 if and only if <(s) > 1

2 . Since by Lemma 1.1, s(z)

is one-one and onto, so it takes the slit disc D \ R≥0 to the slit plane P \ R≥1.

Lemma 1.4: f(z) is continuous at z = 0 and log |f(0)| = 0.

Proof : Since h(z) =
√
z is continuous at 0, so s(z) = 1

1−
√
z

is continuous at 0.

Define p(z) := (z − 1)ζ(z). Since f(z) = (s − 1)ζ(s) where s = 1
1−
√
z

so, p(s(z)) = f(z). Since s(z)

is continuous at 0 and p(z) is continuous at s(0) = 1, so we have the composition p(s(z)) = f(z) is
continuous at 0. Hence,

f(0) = lim
z→0

f(z) = lim
s→1

(s− 1)ζ(s)

So since lims→1(s− 1)ζ(s) = 1 so we have,

f(0) = 1 (10)

So,
log |f(0)| = 0 (11)

L1, L2 R
x

y

O

Cε′

CR

Consider a keyhole contour (simple closed contour) C(ε′, R, ρ) consisting of two concentric circles,
a bigger circle CR of radius R unit, 0 < R < 1 and a smaller circle Cε′ of radius ε′ where ε′ > 0
arbitrarily small and having an infinitesimally small cross-cut to join CR and Cε′ . In this contour we
exclude the non negative real axis (i.e. [0,∞)). Let, this cross-cut be L1 above the positive x-axis
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and L2 below positive the x-axis. Let vertical distance between L1 and x-axis be ρ > 0 and vertical
distance between L2 and x-axis be ρ > 0. Then we have ,

C(ε′, R, ρ) = CR + L1 − Cε′ + L2 where ε′ > 0 arbitrarily small and 0 < R < 1

Let I(C) denote the interior of curve C(ε′, R, ρ) and I(C) denote the closure of interior of the curve
C(ε′, R, ρ).

Lemma 1.5:
1

2π

∫ 2π

0

log |f(Reiθ)|dθ = log |f(0)|+
∑

αn∈DR,f(αn)=0

log
R

|αn|

Proof : By Lemma 1.2, since f is analytic in D \ R≥0 so it is analytic in DR \ R≥0 where R < 1 and
hence f is analytic on and inside the simple closed contour C which is compact, so its zeros on and
inside C are finite say, αn. We define a finite product,

B(z) :=
∏

αn∈I(C),f(αn)=0

(
R2 − αnz
R(z − αn)

)
αn
|αn|

(12)

where in the above product, zeros of multiplicity m are counted m times. Define a function,

g(z) := f(z)B(z) = f(z)
∏

αn∈I(C),f(αn)=0

(
R2 − αnz
R(z − αn)

)
αn
|αn|

(13)

By definition of g(z), since B(z) is a finite product whose denominators are the zeros of f(z) and
f(z) is analytic in I(C) (since f is analytic in DR \R≥0) so g(z) is analytic and non zero in I(C). By

Cauchy’s residue theorem [14, p.133] since log g(z)
z is analytic on and inside the simple closed contour

C and g(z) is non zero on and inside C so,∮
C(ε′,R,ρ)

log g(z)

z
dz = 0

Since, C(ε′, R, ρ) = CR − Cε′ + L1 + L2 so we have

⇒
∫
CR

log g(z)

z
dz −

∫
Cε′

log g(z)

z
dz +

∫
L1

log g(z)

z
dz +

∫
L2

log g(z)

z
dz = 0 (14)

On CR we have z = Reiθ, on C ′ε : z = Reiθ, on L1 : z = x+ iρ and on L2 : z = x− iρ. Let ρ (which
is the distance between L1 and x-axis) tend to 0+ so we have,

i.

∫ 2π

0

log g(Reiθ)dθ − i.
∫ 2π

0

log g(ε′eiθ)dθ + lim
ρ→0+

(∫ R

ε′

log g(x+ iρ)

x+ iρ
dx−

∫ R

ε′

log g(x− iρ)

x− iρ
dx

)
= 0

(15)
For g(z) as defined in equation (13), we next prove using Schwarz reflection principle

lim
ρ→0+

(∫ R

ε′

log g(x+ iρ)

x+ iρ
dx−

∫ R

ε′

log g(x− iρ)

x− iρ
dx

)
= 0 (16)

Define an open set Ω = D \R≥0. Let Ω+ denote the part of Ω which lies in the upper half-plane and
Ω− denote the part of Ω which lies in the lower half-plane. Also let I = Ω ∩ R so that I denotes the
interior of that part of the boundary of Ω+ and Ω− that lies on the real axis. Then we have

Ω = Ω+ ∪ I ∪ Ω−

Since by Lemma 1.2, f is holomorphic function in Ω+ (since it is holomorphic in Ω) that extends
continuously to I and such that f is real valued on I (since ζ is real valued on I) then since by the
figure of contour C we have x− iρ ∈ Ω−, so using Schwarz reflection principle [15, p.60] on Riemann
zeta function we have for f(z) = (s− 1)ζ(s) where s = 1

1−
√
z
, f(x+ iρ) = f(x+ iρ) = f(x− iρ). So
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using this fact and since by equation (12) the finite product B(z) satisfies, B(x+ iρ) = B(x− iρ) so
equation (13) gives g(x+ iρ) = g(x− iρ).
Let us denote

T =
1

2i

(
log g(x+ iρ)

x+ iρ
− log g(x− iρ)

(x− iρ)

)
then we have T = =

(
log g(x+iρ)

x+iρ

)
. Since g is analytic on and inside the keyhole contour C, so it is

continuous on and inside C and we have

lim
ρ→0+

=
(

log g(x+ iρ)

x+ iρ

)
=

1

2i
lim
ρ→0+

(
log g(x+ iρ)

x+ iρ
− log g(x− iρ)

(x− iρ)

)

⇒ lim
ρ→0+

=
(

log g(x+ iρ)

x+ iρ

)
=

1

2i

(
lim
ρ→0+

log g(x+ iρ)

x+ iρ
− lim
ρ→0+

log g(x+ iρ)

(x+ iρ)

)

⇒ lim
ρ→0+

=
(

log g(x+ iρ)

x+ iρ

)
=

1

2i

(
lim
ρ→0+

log g(x+ iρ)

x+ iρ
− lim
ρ→0+

(
log g(x+ iρ)

(x+ iρ)

))
Since conjugation is a continuous function and g is analytic on C so we get

lim
ρ→0+

=
(

log g(x+ iρ)

x+ iρ

)
=

1

2i

(
log g(x)

x
−
(

log g(x)

x

))

Since ζ is real on the real line so g is real on the real line and we have

lim
ρ→0+

=
(

log g(x+ iρ)

x+ iρ

)
= 0

So by epsilon-delta definition of limit, given ε > 0 there exists δ > 0 such that∣∣∣∣=( log g(x+ iρ)

x+ iρ

)∣∣∣∣ < ε whenever ρ < δ

⇒ −ε < =
(

log g(x+ iρ)

x+ iρ

)
< ε whenever ρ < δ

On integrating both sides of above inequality,

−(R− ε′)ε <
∫ R

ε′
=
(

log g(x+ iρ)

x+ iρ

)
dx < (R− ε′)ε whenever ρ < δ

⇒ 1

(R− ε′)
lim
ρ→0+

∫ R

ε′
=
(

log g(x+ iρ)

x+ iρ

)
dx = 0

⇒ lim
ρ→0+

(∫ R

ε′

log g(x+ iρ)

x+ iρ
dx−

∫ R

ε′

log g(x− iρ)

x− iρ
dx

)
= 0

which proves equation (16). So equation (15) gives∫ 2π

0

log g(Reiθ)dθ =

∫ 2π

0

log g(ε′eiθ)dθ

Taking real parts on both sides,∫ 2π

0

log |g(R.eiθ)|dθ =

∫ 2π

0

log |g(ε′.eiθ)|dθ

Taking limit as ε→ 0+ we get,∫ 2π

0

log |g(R.eiθ)|dθ = lim
ε′→0+

∫ 2π

0

log |g(ε′.eiθ)|dθ (17)
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By equation (13) putting g(z) = f(z)B(z) in the left hand side of above equation we have,∫ 2π

0

log |f(R.eiθ).B(R.eiθ)|dθ = lim
ε′→0+

∫ 2π

0

log |g(ε′.eiθ)|dθ (18)

On |z| = R, using equation (12) we have,

|B(z)| =
∏

αn∈I(C),f(αn)=0

∣∣∣∣ R2 − αnz
R(z − αn)

∣∣∣∣ (19)

On |z| = R,
R2(z − αn)(z − αn) = R2(zz − (αnz + zαn) + αnαn)

⇒ R2(z − αn)(z − αn) = R2(R2 − (αnz + zαn) + αnαn)

⇒ R2(z − αn)(z − αn) = (R2 − αnz)(R2 − αnz)∣∣∣∣ R2 − αnz
R(z − αn)

∣∣∣∣ = 1 (20)

So, using equation (19) and (20),
|B(Reiθ)| = 1 (21)

Next we prove that in equation (18),

lim
ε′→0+

∫ 2π

0

log |g(ε′.eiθ)|dθ = 2π log |g(0)|

Since by Lemma 1.4 and equation (13) g is continuous at 0, so we have limz→0 g(z) = g(0).
Since modulus is a continuous function, so we have limz→0 |g(z)| = |g(0)|.
Since logarithm is a continuous function and g(0) 6= 0, so we have limz→0 log |g(z)| = log |g(0)|.
So given ε > 0, there exists δ > 0 such that

|log |g(z)| − log |g(0)|| < ε whenever |z − 0| < δ

Writing z = ε′eiθ, we have

log |g(0)| − ε < log |g(ε′.eiθ)| < log |g(0)|+ ε whenever ε′ < δ

Integrating we get,

2π log |g(0)| − 2πε <

∫ 2π

0

log |g(ε′.eiθ)|dθ < 2π log |g(0)|+ 2πε whenever ε′ < δ

⇒
∣∣∣∣( 1

2π

∫ 2π

0

log |g(ε′.eiθ)|dθ
)
− log |g(0)|

∣∣∣∣ < ε whenever ε′ < δ

So we have for ε′ > 0 arbitrarily small,

lim
ε′→0+

∫ 2π

0

log |g(ε′.eiθ)|dθ = 2π log |g(0)| (22)

Since g is continuous at 0 so g(0) = limε′→0+ g(ε′eiθ). By equation (13), as ε′ → 0+ the closure of
interior of the curve C which is I(C) becomes DR, so we get

|g(0)| = |f(0)|
∏

αn∈DR,f(αn)=0

R

|αn|
(23)

putting the value of |g(0)| from equation (23) in equation (22) we get,

lim
ε′→0+

∫ 2π

0

log |g(ε′.eiθ)|dθ = 2π log |f(0)|+ 2π
∑

αn∈DR,f(αn)=0

log
R

|αn|
(24)
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Using equation (21) and (24) in equation (18) we have,

1

2π

∫ 2π

0

log |f(Reiθ)|dθ = log |f(0)|+
∑

αn∈DR,f(αn)=0

log
R

|αn|
(25)

Lemma 1.6:
1

2π

∫ 2π

0

log |f∗(eiθ)|dθ = log |f(0)|+
∑

αn∈D\R≥0,f(αn)=0

log
1

|αn|

Proof : Taking R→ 1− in equation (25) we get,

lim
R→1−

1

2π

∫ 2π

0

log |f(Reiθ)|dθ = log |f(0)|+ lim
R→1−

∑
αn∈DR,f(αn)=0

log
R

|αn|
(26)

We first prove that

lim
R→1−

∑
αn∈DR,f(αn)=0

log
R

|αn|
=

∑
αn∈D,f(αn)=0

log
1

|αn|

On the one hand, when αn ∈ DR then R
|αn| ≥ 1 and when αn ∈ D then 1

|αn| ≥ 1. Also we have,

∑
αn∈DR,f(αn)=0

log
R

|αn|
≤

∑
αn∈D,f(αn)=0

log
1

|αn|
∀ R < 1 (27)

On the other hand,
∑
αn∈DR,f(αn)=0 log R

|αn| is monotonically increasing and is bounded above ( for

the latter see [1, p.2] and Lemma 1.8). Thus the limit L := limR→1−
∑
αn∈DR,f(αn)=0 log R

|αn| exists.

Also,

L ≥
∑

|αn|≤R1,f(αn)=0

log
R2

|αn|
∀R1, R2 < 1

Let R2 → 1−, we obtain

L ≥
∑

|αn|≤R1,f(αn)=0

log
1

|αn|
∀R1 < 1

Let R1 → 1−, we obtain

L ≥
∑

|αn|≤1,f(αn)=0

log
1

|αn|

So we get,

lim
R→1−

∑
|αn|≤R,f(αn)=0

log
R

|αn|
= L =

∑
|αn|≤1,f(αn)=0

log
1

|αn|
(28)

Since on |αn| = 1 we have log 1
|αn| = 0 so the above equation becomes,

lim
R→1−

∑
|αn|≤R,f(αn)=0

log
R

|αn|
=

∑
|αn|<1,f(αn)=0

log
1

|αn|
(29)

Also since by equation (4) f(αn) = 0 if and only if ζ(ρn) = 0 and there exists no zero ρn such that
ρn ∈ R and ρn ∈ R≥1 so there does not exists any zero αn of f such that αn ∈ R and αn ∈ R≥0.
Hence we get

lim
R→1−

∑
|αn|≤R,f(αn)=0

log
R

|αn|
=

∑
αn∈D\R≥0,f(αn)=0

log
1

|αn|
(30)

We next show that we can apply Lebesgue’s dominated convergence theorem to move the limit inside
the integral of the left hand side in equation (26).
Denote log+ |f | = max(log |f |, 0) and log− |f | = max(− log |f |, 0).
Then we can write,

log |f(Reiθ)| = log+ |f(Reiθ)| − log− |f(Reiθ)| (31)
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By equation (11), log |f(0)| = 0 and so by equation (25) since |αn| ≤ R so,

1

2π

∫ 2π

0

log |f(Reiθ)|dθ ≥ 0 (32)

Using equation (31) and (32) we have,

1

2π

∫ 2π

0

log− |f(Reiθ)|dθ ≤ 1

2π

∫ 2π

0

log+ |f(Reiθ)|dθ (33)

Also note that we have, ∣∣log |f(Reiθ)|
∣∣ = log+ |f(Reiθ)|+ log− |f(Reiθ)| (34)

∣∣log |f(Reiθ)|
∣∣ ≤ 2 (log+ |f(Reiθ)|+ log− |f(Reiθ)|) (35)

So, we have 2 (log+ |f(Reiθ)|+ log− |f(Reiθ)|) as the dominating function. Next we prove that this
dominating function has a finite integral.
From equation (4),

f(z) = (s− 1)ζ(s)

where by equation (5), s = 1
1−
√
z

and by Lemma 1.2, f(z) is analytic in D \R≥0 where D is the unit

disc. Hence, ζ(s) is analytic in P \ R≥1 where P is the plane defined as P = {s ∈ C | <(s) > 1
2}.

f(Reiθ) =

√
Reiθ/2

1−
√
Reiθ/2

. ζ

(
1

1−
√
Reiθ/2

)
(36)

and s = 1
1−
√
Reiθ/2

. Also, when R < 1, <(s) > 1
2 .

Since ζ(s) is analytic in P \ R≥1 where P = {s ∈ C | <(s) > 1
2} so (see [9, p.29] or [13, p.547]),

ζ(s) = O(|s|) where s ∈ P \ R≥1 and |s| → ∞ (37)

So using equation (36) and (37), there exists some constant C > 0 such that,

|f(Reiθ)| ≤ C
√
R

|1−
√
Reiθ/2|2

<
C

|e−iθ/2 −
√
R|2
≤ C

sin2(θ/2)

Since we have
∫ 2π

0
log(sin2(θ/2))dθ <∞ so we have,

1

2π

∫ 2π

0

log+ |f(Reiθ)|dθ <∞ (38)

By equation (33) we have,
1

2π

∫ 2π

0

log− |f(Reiθ)|dθ <∞ (39)

So we have
1

2π

∫ 2π

0

2(log+ |f(Reiθ)|+ log− |f(Reiθ)|)dθ <∞ (40)

Using Lebesgue’s dominated convergence theorem in left hand side of equation (26) and substituting
the value of summation from equation (30), we get,

1

2π

∫ 2π

0

log |f∗(eiθ)|dθ = log |f(0)|+
∑

αn∈D\R≥0,f(αn)=0

log
1

|αn|
(41)

Lemma 1.7: ∫ 2π

0

log |f∗(eiθ)|dθ = 2

∫ ∞
0

log |ζ( 1
2 + it)|

1
4 + t2

dt

Proof : Let,

I =

∫ 2π

0

log |f∗(eiθ)|dθ (42)
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Since f(z) is defined by equation (6) so,

I =

∫ 2π

0

log

∣∣∣∣∣
(

e
iθ
2

1− e iθ2

)
ζ

(
1

1− e iθ2

)∣∣∣∣∣ dθ
Observe that,

1

1− e iθ2
=

1

2
+
i

2
cot

(
θ

4

)
and |e iθ2 | = 1

⇒ I =

∫ 2π

0

log

∣∣∣∣(1

2
+
i

2
cot

(
θ

4

))
ζ

(
1

2
+
i

2
cot

(
θ

4

))∣∣∣∣ dθ
Substituting t = 1

2 cot( θ4 ) we have dθ = −2
1
4+t

2 dt

I = 2

∫ ∞
0

log |( 1
2 + it)ζ( 1

2 + it)|
1
4 + t2

dt

Since by contour integration or by substitution, t = tan θ
2 we have [13, p.550],∫ ∞

−∞

log | 12 + it|
1
4 + t2

dt = 0

Since integrand is an even function so we have,∫ ∞
0

log | 12 + it|
1
4 + t2

dt = 0 (43)

So we can write I as,

I = 2

∫ ∞
0

log |ζ( 1
2 + it)|

1
4 + t2

dt

Putting the value of I from equation (42) we have,∫ 2π

0

log |f∗(eiθ)|dθ = 2

∫ ∞
0

log |ζ( 1
2 + it)|

1
4 + t2

dt (44)

Now since by equation (6), f(z) =
( √

z
1−
√
z

)
ζ
(

1
1−
√
z

)
and by equation (10), f(0) 6= 0, so f(αn) = 0

corresponds to ζ
(

1
1−√αn

)
= 0. Let, ρn denote non trivial zeros of Riemann zeta function then,

ρn =
1

1−√αn
(45)

Lemma 1.8: ∑
αn∈D\R≥0,f(αn)=0

log
1

|αn|
= 2

∑
ρn∈P\R≥1, ζ(ρn)=0

log

∣∣∣∣ ρn
1− ρn

∣∣∣∣
Proof : Since by equation (4), f(z) = (s− 1)ζ(s) so we have f(αn) = 0 if and only if ζ(ρn) = 0. By
Lemma 1.3, the map s : D \ R≥0 → P \ R≥1 defined as s(z) = 1

1−
√
z

is conformal so we have,∑
αn∈D\R≥0,f(αn)=0

log
1

|αn|
= 2

∑
αn∈D\R≥0,f(αn)=0

log
1√
|αn|

∑
αn∈D\R≥0,f(αn)=0

log
1

|αn|
= 2

∑
αn∈D\R≥0,f(αn)=0

log

∣∣∣∣∣
1

1−√αn

1− 1
1−√αn

∣∣∣∣∣ (46)
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By Lemma 1.1, s : D \ R≥0 → P \ R≥1 defined as s(z) = 1
1−
√
z

is injective and onto and since by

equation (45), ρn = 1
1−√αn so equation (46) becomes,

∑
αn∈D\R≥0,f(αn)=0

log
1

|αn|
= 2

∑
ρn∈P\R≥1, ζ(ρn)=0

log

∣∣∣∣ ρn
1− ρn

∣∣∣∣ (47)

Using equation (11), (44) and (47) in equation (41) we get,

1

2π

(
2

∫ ∞
0

log |ζ( 1
2 + it)|

1
4 + t2

dt

)
= 2

∑
ρn∈P\R≥1, ζ(ρn)=0

log

∣∣∣∣ ρn
1− ρn

∣∣∣∣ (48)

3 Proof of Theorem 1

Since the non trivial zeros of zeta function are countable so, equation (1) can be written as [13, p.549]

1

2π

∫ ∞
−∞

log |ζ( 1
2 + it)|

1
4 + t2

dt =
∑

<(ρn)> 1
2 , ζ(ρn)=0

log

∣∣∣∣ ρn
1− ρn

∣∣∣∣ (49)

Since the non trivial zeros lie in the critical strip, 0 < <(ρn) < 1 so we have,

1

2π

∫ ∞
−∞

log |ζ( 1
2 + it)|

1
4 + t2

dt =
∑

ρn∈P\R≥1, ζ(ρn)=0

log

∣∣∣∣ ρn
1− ρn

∣∣∣∣ (50)

By Schwarz reflection principle the integrand is an even function and hence we have

1

2π

(
2

∫ ∞
0

log |ζ( 1
2 + it)|

1
4 + t2

dt

)
=

∑
ρn∈P\R≥1, ζ(ρn)=0

log

∣∣∣∣ ρn
1− ρn

∣∣∣∣ (51)

Since the left hand sides of equation (48) and (51) are same so equating the right hand sides we get,

2
∑

ρn∈P\R≥1, ζ(ρn)=0

log

∣∣∣∣ ρn
1− ρn

∣∣∣∣ =
∑

ρn∈P\R≥1, ζ(ρn)=0

log

∣∣∣∣ ρn
1− ρn

∣∣∣∣
⇒

∑
ρn∈P\R≥1, ζ(ρn)=0

log

∣∣∣∣ ρn
1− ρn

∣∣∣∣ = 0

And equation (50) gives, ∫ ∞
−∞

log |ζ( 1
2 + it)|

1
4 + t2

dt = 0 (52)

Equation (52) completes the proof of Theorem 1. This resolves the Riemann Hypothesis because this
relation is an equivalent version of Riemann Hypothesis as proved by Balazard, Saias and Yor [1].
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