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Use of the fundamental problem of statistics to define the validity limit 

of Occam's razor principle  

Andrea Berdondini 

ABSTRACT: In statistics, to evaluate the significance of a result, one of the most used methods is the statistical 

hypothesis test. Using this theory, the fundamental problem of statistics can be expressed as follows: "A 

statistical data does not represent useful information, but becomes useful information only when it is shown 

that it was not obtained randomly". Consequently, according to this point of view, among the hypotheses that 

perform the same prediction, we must choose the result that has a lower probability of being produced 

randomly. Therefore, the fundamental aspect of this approach is to calculate correctly this probability value. 
This problem is addressed by redefining what is meant by hypothesis. The traditional approach considers the 

hypothesis as the set of rules that actively participate in the forecast. Instead, we consider as hypotheses the 

sum of all the hypotheses made, also considering the hypotheses preceding the one used. Therefore, each time 

a prediction is made, our hypothesis increases in complexity and consequently increases its ability to adapt to 

a random data set. In this way, the complexity of a hypothesis can be precisely determined only if all previous 

attempts are known. Consequently, Occam's razor principle no longer has a general value, but its application 

depends on the information we have on the tested hypotheses.  

Introduction 

The logical principle of Occam's razor [1], [2], suggests choosing the simplest hypothesis among 

those available. In this article, we will analyze this principle using the theory of statistical 

hypothesis test [3], [4]. By exploiting this theory, we will reformulate the fundamental problem of 

statistics in such a way as to bring attention to the link between the statistical data and the 

probability that it was produced randomly. Consequently, according to this point of view, among 

the hypotheses that perform the same prediction, we must choose the result that has a lower 

probability of being produced randomly. Therefore, it becomes essential to calculate this 

probability value correctly.  

 

This problem is addressed by redefining what is meant by hypothesis. The traditional approach 

considers the hypothesis as the set of rules that actively participate in the forecast. Instead, we 

consider as hypotheses the sum of all the hypotheses made, also considering the hypotheses 

preceding the one used. Therefore, each time a prediction is made, our hypothesis increases in 

complexity and consequently increases its ability to adapt to a random data set. In this way, the 

complexity of a hypothesis can be precisely determined only if all previous attempts are known. 

Consequently, Occam's razor principle no longer has a general value, but its application depends 

on the information we have on the tested hypotheses.  

 

Finally, we use this new definition of hypothesis to understand the reason for the high percentage 

of non-reproducible results, in which the hypothesis test was used.  

The fundamental problem of statistics  

In statistics, to evaluate the significance of a result, one of the most used methods is the statistical 

hypothesis test. Using this theory, the fundamental problem of statistics can be expressed as 

follows: "A statistical data does not represent useful information, but becomes useful information 
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only when it is shown that it was not obtained randomly". 

 

This definition is particularly significant, because it highlights the two fundamental aspects of 

statistics, which are its uncertainty and the reason for its uncertainty. Indeed, the purpose of 

statistics is the study of phenomena in conditions of uncertainty or non-determinism by exploiting 

the sampling of events related to the phenomenon to be studied. Knowing that the observed events 

can be randomly reproduced with a probability that will never be zero, we understand the reason 

for the indeterminism that characterizes the statistics. This probability value is called universal 

probability [5]. 

 

Through this definition of the fundamental problem of statistics, it is also possible to formulate 

the following paradox [6], which highlights how the evaluation of statistical results is dependent 

on each action performed on the analyzed data. 

The validity limit of Occam's razor principle  

In this paragraph, we will see how the information regarding the development of a hypothesis 

is fundamental to define the validity limit of Occam's razor principle. 

Let us start by giving some definitions useful to formalize our theory. 

Given an experiment that measures N values of a discrete variable X with cardinality C, we call 

D the set of dimension 𝐶𝑁, which includes all possible sequences 𝑋𝑁 of length N that can be 

observed. 

Now, we redefine the concept of hypothesis in order to define a chronological succession among 

the tested hypothesis. 

We call H(t) the hypothesis developed at time t. 

We call PH(t) the set of sequences 𝑋𝑁 ∈ 𝐷 that the hypothesis H(t) is able to predict. 

We call NPH(t) the cardinality of the set PH(t). 

We call TH(t) the set that includes all the hypotheses up to time t. 

 𝑇𝐻(𝑡) = {𝐻(𝑖1), 𝐻(𝑖2), … … , 𝐻(𝑖𝑡)}  

We call TPH(t) the union of all the sets PH(t) relating to all the hypotheses H(t) ∈ TH(t). 

𝑇𝑃𝐻(𝑡) = ⋃ 𝑃𝐻(𝑖)

𝑡

𝑖=0

 

We call NTPH(t) the cardinality of the set TPH(t). Consequently, NTPH(T) defines the number 

of sequences, belonging to D, that the hypothesis TH(t) is able to predict. It may happen that 

different hypotheses forecast the same sequence of values of X, having made the union of the sets 

PH(t) these sequences are calculated only once. 

If we have only made a hypothesis H(t)=TH(t) and NPH(t)=NTPH(t). 
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If, on the other hand, more than one hypothesis has been tested H(t)≠TH(t) and 

NPH(t)≤NTPH(t). 

We define the ability of the hypothesis TH(t) to predict a sequence of N casual observations of 

the i.i.d. random variable X with discrete uniform distribution and cardinality C, the ratio: 

 
𝑁𝑇𝑃𝐻(𝑡)

𝐶𝑁
                                                                                                                                   (1) 

This ratio also defines the probability that the hypothesis TH(t) can predict the results of an 

experiment, in which the cardinality of D is equal to 𝐶𝑁, in a completely random way. 

Knowing that a hypothesis TH(t) can predict the results of an experiment only in the following 

two conditions: 

1) TH(t) is true.  

2) TH(t) is false and the prediction occurs randomly; the probability of this event is given by 

equation (1). 

Under these conditions, the probability that the hypothesis TH(t) is true turns out to be: 

1 −
𝑁𝑇𝑃𝐻(𝑡)

𝐶𝑁
                                                                                                                           (2) 

Consequently, this equation defines the parameter that must be used in the evaluation of H(t). 

So, if we want to compare two hypotheses H1(t) and H2(t), we have 4 possible results: 

1) NPH1(t)>NPH2(t) e NTPH1(t)>NTPH2(t)  

2) NPH1(t)>NPH2(t) e NTPH1(t)<NTPH2(t)  

3) NPH1(t)<NPH2(t) e NTPH1(t)<NTPH2(t)  

4) NPH1(t)<NPH2(t) e NTPH1(t)>NTPH2(t)  

NPH(t) and NTPH(t) define the number of sequences that hypothesis H(t) and the hypothesis 

TH(t) are able to predict. Consequently, they can be used as a measure of their complexity, in fact, 

the more complex a hypothesis is, the greater the number of results it can predict. 

Analyzing the four possible results, we note that even if a hypothesis H1(t) is less complex than 

a hypothesis H2(t) (NPH1(t)<NPH2(t)), it is possible to have a  hypothesis TH1(t) more complex 

than a hypothesis TH2(t) (NTPH1(t)>NTPH2(t)). Consequently, using equation (2) as an 

evaluation method, hypothesis H1(t) should be discarded in favor of hypothesis H2(t). This 

situation can happen, for example, if H1(t) is the last hypothesis of a long series of other hypotheses 

tested previously. 

In the event that there is no information on the hypotheses to be evaluated, it must be assumed 

that the hypotheses have been developed under the same conditions. Therefore, in this case, not 

being able to calculate TH(t), it is recommended to choose the simpler hypothesis H(t). 

Finally, from equation (2), we can deduce the following result: given a hypothesis H(t) the 

probability that is true can be calculated only if all the previously tested hypotheses are known. 
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Consequently, the complexity of a hypothesis not only depends on the mathematical formula 

that makes the prediction, but also depends on all the attempts made previously. Therefore, Occam's 

razor principle does not have an absolute value but its application depends on the information about 

the hypotheses.  

How to perform correctly the statistical hypothesis test  

It is interesting to note how the definition of hypothesis, which was given in the previous 

paragraph, can be seen as something extremely obvious or as something extremely innovative. 

Indeed, it may seem absolutely banal to consider all the hypotheses that have been tested, for the 

obvious reason that by running a large number of random hypotheses sooner or later there will be 

some hypothesis that will fit the data quite well. On the other hand, also considering the previous 

hypotheses represents a revolution in the evaluation of a hypothesis. In fact, from this point of view, 

the mere knowledge of the hypothesis that makes the prediction does not allow us to define its real 

complexity.  

 

Therefore, if in the statistical hypothesis test the p-value [7], [8], used as a threshold to reject 

the null hypothesis, is calculated considering only the hypothesis that actively participates in the 

prediction, it means, that we are underestimating the complexity of the hypothesis. Consequently, 

the p-value, thus calculated, is wrong and therefore determines a false evaluation of the hypothesis. 

It is therefore believed that this systematic error, in the execution of the hypothesis test, is 

responsible for the high number of non-reproducible results [9], [10]. 

 

Taking advantage of these considerations it is understood that evaluating a statistical result can 

be very difficult because some information can be hidden. For example, we are obliged to report 

the mathematical formula that makes the prediction but, instead, we may not report all previous 

failed attempts. Unfortunately, this information is essential for evaluating the hypothesis, because 

they are an integral part of the hypothesis. Indeed, if we test 10 hypotheses, we simply interpolate 

the data with those ten hypotheses and choose the hypothesis that passes the chosen evaluation test. 

 

This problem also depends on the increasing use of statistical software capable of quickly 

executing a huge number of mathematical models. Consequently, there is the risk of "playing" with 

this software by performing a multitude of analyzes and this sooner or later leads to a random 

correlation.  

 

For these reasons, the evaluation of statistical results represents one of the most important 

challenges for scientific research. Unfortunately, it is a difficult problem to solve because, as 

mentioned, some information can always be hidden when writing an article. The simplest solution 

adopted is to use more selective evaluation parameters, which in practice means making it unlikely 

to pass the evaluation test by developing random hypotheses. However, this solution has different 

problems in fact, in this way, we can discard correct hypotheses and cannot be applied to all fields 

of research. For example, in finance where the possible inefficiencies of the markets [11], which 

can be observed, are minimal, adopting very restrictive valuation methods means having to discard 

almost any hypothesis. 
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Conclusion 

In this article, we have discussed the logical principle of Occam's razor using the hypothesis test 

theory. This allowed us to reformulate the fundamental problem of statistics, in such a way as to 

make us understand the importance of correctly calculating the probability of obtaining the same 

results randomly. Solving this problem involved redefining the concept of hypothesis. According 

to this point of view, by hypothesis we mean the sum of all tested hypotheses.  Consequently, the 

complexity of a hypothesis not only depends on the mathematical formula that makes the prediction 

but also depends on the previous hypotheses tested.  

 

Therefore, according to this approach, the logical principle of Occam's razor no longer has a 

general value if one considers as a hypothesis only the set of rules that actively participate in the 

prediction. If, on the other hand, the hypothesis is considered as the sum of all the tested hypotheses, 

in this case, Occam's razor principle returns to have a general value. 

 

Finally, it is noted that not considering all the tested hypotheses causes a systematic error in the 

application of the statistical hypothesis test. Therefore, it is hypothesized that this error, which leads 

to underestimate the complexity of a hypothesis, is the cause of the high percentage of non-

reproducible scientific results. 

References 

[1] Roger Ariew, “Ockham's Razor: A Historical and Philosophical Analysis of Ockham's Principle of Parsimony”, 

1976. 

[2] Sober, Elliott (2004). "What is the Problem of Simplicity?". In Zellner, Arnold; Keuzenkamp, Hugo A.; 

McAleer, Michael (eds.). Simplicity, Inference and Modeling: Keeping it Sophisticatedly Simple. Cambridge, 

U.K.: Cambridge University Press. pp. 13–31. ISBN 978-0-521-80361-8. Retrieved 4 August 2012ISBN 0-

511-00748-5 (eBook [Adobe Reader]) paper as pdf. 

[3] Fisher, R (1955). "Statistical Methods and Scientific Induction" (PDF). Journal of the Royal Statistical Society, 

Series B. 17 (1): 69–78. 

[4] Borror, Connie M. (2009). "Statistical decision making". The Certified Quality Engineer Handbook (3rd ed.). 

Milwaukee, WI: ASQ Quality Press. pp. 418–472. ISBN 978-0-873-89745-7. 

[5] Cristian S. Calude (2002). “Information and Randomness: An Algorithmic Perspective”, second edition. 

Springer. ISBN 3-540-43466-6. 

[6] Berdondini Andrea, “The Information Paradox”, (July 8, 2019). Available at SSRN: 

https://ssrn.com/abstract=3416559.  

[7] Wasserstein, Ronald L.; Lazar, Nicole A. (7 March 2016). "The ASA's Statement on p-Values: Context, 

Process, and Purpose". The American Statistician. 70 (2): 129–133. doi:10.1080/00031305.2016.1154108. 

[8] Hung, H.M.J.; O'Neill, R.T.; Bauer, P.; Kohne, K. (1997). "The behavior of the p-value when the alternative 

hypothesis is true". Biometrics (Submitted manuscript). 53 (1): 11–22.  

[9] Munafò, M., Nosek, B., Bishop, D. et al. “A manifesto for reproducible science”. Nat Hum Behav 1, 0021 

(2017). https://doi.org/10.1038/s41562-016-0021. 

[10] Ioannidis, J. P. A. “Why most published research findings are false”. PLoS Med. 2, e124 (2005). 

[11] Black, F. (1971) “Random Walk and Portfolio Management,” Financial Analyst Journal, 27, 16-22. 



6 
 

 

 

E-mail address: andrea.berdondini@libero.it 

 

 

mailto:andrea.berdondini@libero.it

